
Build Linux System

孟宁

关注孟宁

Based on Ubuntu 18.04 & linux-5.0.1

下载Linux内核源代码

• https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.0.1.tar.xz

• xz -d linux-5.0.1.tar.xz

• tar -xvf linux-5.0.1.tar

• cd linux-5.0.1

linux-5.0.1.tar.xz下载地址

安装内核编译工具

• sudo apt install build-essential flex bison libssl-dev libelf-dev
libncurses-dev

配置编译内核
• make defconfig #按照默认值生成.config

• make i386_defconfig #生成32位x86的配置文件，x86_64_defconfig为64为配置

• make config #遍历选择编译内核功能

• make allyesconfig #启用内核全部功能

• make allnoconfig #内核功能选项全部为否

• make menuconfig #开启文本菜单选项，对窗口有限制，尽量调大窗口

• make 或 make -j* # *为cpu核心数

升级当前系统内核

• sudo make modules_install # ⚠ 安️装前通过系统快照备份系统，以防出现故障前功尽
弃

• sudo make install

• sudo update-grub

• reboot

• uname -a

• Linux ubuntu 5.0.1 #1 SMP Wed Mar 13 14:19:31 CST 2019 x86_64 x86_64 x86_64
GNU/Linux

通过QEMU虚拟机加载内核

• sudo apt install qemu

• qemu-system-i386 -kernel linux-5.0.1/arch/x86/boot/bzImage # make
i386_defconfig

• qemu-system-x86_64 -kernel linux-5.0.1/arch/x86_64/boot/bzImage

构造MenuOS
• git clone https://github.com/mengning/menu.git

• cd menu

• sudo apt-get install libc6-dev-i386 # 在64位环境下编译32位需安装

• make rootfs

• cd ..

• qemu-system-i386 -kernel linux-5.0.1/arch/x86/boot/bzImage -initrd rootfs.img # make i386_defconfig

• qemu-system-x86_64 -kernel linux-5.0.1/arch/x86_64/boot/bzImage -initrd rootfs.img

基于BusyBox构造Linux系统
• wget https://busybox.net/downloads/busybox-1.30.1.tar.bz2

• tar -xvf busybox-1.30.1.tar.bz2

• make help可以得到一些编译busybox的帮助信息

• make defconfig

• make menuconfig修改如下配置：

• enable：Settings –> build options –> build busybox as a static binary（no share libs）

• make

基于BusyBox构造Linux系统
• 准备根目录映像，并安装busybox到根目录映像中

• dd if=/dev/zero of=rootfs.img bs=1M count=128

• mkfs.ext4 rootfs.img

• mkdir rootfs

• sudo mount -o loop rootfs.img rootfs

• 在busybox目录下

• sudo make CONFIG_PREFIX=../rootfs/ install

• 在../rootfs/etc/network/interfaces添加lo设备，可以直接拷贝ubuntu下的/etc/network/interfaces

• sudo umount rootfs

• qemu-system-x86_64 -kernel linux-5.0.1/arch/x86_64/boot/bzImage -hda rootfs.img -append "root=/dev/sda init=/bin/ash"

构建Linux内核的gdb调试环境

• 重新配置编译内核使之携带调试信息

• 在qemu中启动gdb server

• 建立gdb与gdbserver之间的连接

• 加载vmlinux中的符号表，设置断点

重新配置编译内核使之携带调试信息

• make defconfig

• make menuconfig

• Kernel hacking—>Compile-time checks and compiler options ---
> [*] Compile the kernel with debug info

• make重新编译（时间较长）

在qemu中启动gdb server
• qemu-system-x86_64 -kernel linux-5.0.1/arch/x86_64/boot/bzImage -hda

rootfs.img -append "root=/dev/sda init=/init nokaslr" -s -S

• 可以看到在新打开的qemu虚拟机上，整个是一个黑屏，此时qemu在等待gdb
的连接

• 关于-s和-S选项的说明

• -S freeze CPU at startup (use ’c’ to start execution)

• -s shorthand for -gdb tcp::1234 若不想使用1234端口，则可以使用-gdb
tcp:xxxx来取代-s选项

• nokaslr KASLR是kernel address space layout randomization的缩写

建立gdb与gdbserver之间的连接

• 在另外一个终端运行gdb，然后在gdb界面中运行如下命令

• target remote:1234 #则可以建立gdb和gdbserver之间的连接

• 按c 让qemu上的Linux继续运行

• 假如在前面使用-gdb tcp::xxxx，则这里的1234也要修改为对应的端口
xxxx

• 问题：此时没有加载符号表，无法根据符号设置断点

加载vmlinux中的符号表，设置断点
• 在gdb界面中targe remote之前加载符号表

• file linux-5.0.1/vmlinux

• 在gdb界面中设置断点

• break start_kernel #断点的设置可以在target remote之前，也可以在之后

• 在设置好start_kernel处断点并且target remote之后可以继续运行，则在运行到
start_kernel的时候会停下来，等待gdb调试命令的输入，可以使用list来显示断点处相
关的源代码

• 此后可以继续设置新的断点，...

