
实力 教育

传输层
了个

李明杰

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J

https://github.com/CoderMJLee
https://space.bilibili.com/325538782


传输层（ ）
◼传输层有2个协议

TCP（Transmission Control Protocol），传输控制协议

UDP（User Datagram Protocol），用户数据报协议

连接性 面向连接 无连接

可靠性 可靠传输，不丢包 不可靠传输，尽最大努力交付，可能丢包

首部占用空间 大 小

传输速率 慢 快

资源消耗 大 小

应用场景 浏览器、文件传输、邮件发送 音视频通话、直播

应用层协议 、 、 、 、

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



数据格式
◼ UDP是无连接的，减少了建立和释放连接的开销

◼ UDP尽最大能力交付，不保证可靠交付

因此不需要维护一些复杂的参数，首部只有8个字节（TCP的首部至少20个字节）

◼ UDP长度（Length）

占16位，首部的长度 + 数据的长度

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



检验和（ ）

◼检验和的计算内容：伪首部 + 首部 + 数据

伪首部：仅在计算检验和时起作用，并不会传递给网络层

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



端口（ ）
◼ UDP首部中端口是占用2字节

可以推测出端口号的取值范围是：0~65535

◼客户端的源端口是临时开启的随机端口

◼防火墙可以设置开启\关闭某些端口来提高安全性

◼常用命令行

netstat –an：查看被占用的端口

netstat –anb：查看被占用的端口、占用端口的应用程序

telnet 主机 端口：查看是否可以访问主机的某个端口

✓安装telnet：控制面板 – 程序 – 启用或关闭Windows功能 – 勾选“Telnet Client” – 确定

协议 默认端口号

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



数据格式

◼数据偏移

占4位，取值范围是0x0101~0x1111

乘以4：首部长度（Header Length）

首部长度是20~60字节

◼保留

占6位，目前全为0

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



小细节

◼有些资料中，TCP首部的保留（Reserved）字段占3位，标志（Flags）字段占9位

Wireshark中也是如此

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



一个细节
◼ UDP的首部中有个16位的字段记录了整个UDP报文段的长度（首部+数据）

◼但是，TCP的首部中仅仅有个4位的字段记录了TCP报文段的首部长度，并没有字段记录TCP报文段的数据长度

◼分析

UDP首部中占16位的长度字段是冗余的，纯粹是为了保证首部是32bit对齐

TCP\UDP的数据长度，完全可以由IP数据包的首部推测出来

✓传输层的数据长度 = 网络层的总长度 – 网络层的首部长度 – 传输层的首部长度

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



检验和（ ）

◼跟UDP一样，TCP检验和的计算内容：伪首部 + 首部 + 数据

伪首部：占用12字节，仅在计算检验和时起作用，并不会传递给网络层

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



标志位（ ）
◼ URG（Urgent）

当URG=1时，紧急指针字段才有效。表明当前报文段中有紧急数据，应优先尽快传送

◼ ACK（Acknowledgment）

当ACK=1时，确认号字段才有效

◼ PSH（Push）

◼ RST（Reset）

当RST=1时，表明连接中出现严重差错，必须释放连接，然后再重新建立连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



标志位（ ）
◼ SYN（Synchronization）

当SYN=1、ACK=0时，表明这是一个建立连接的请求

若对方同意建立连接，则回复SYN=1、ACK=1

◼ FIN（Finish）

当FIN=1时，表明数据已经发送完毕，要求释放连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



序号、确认号、窗口
◼序号（Sequence Number）

占4字节

首先，在传输过程的每一个字节都会有一个编号

在建立连接后，序号代表：这一次传给对方的TCP数据部分的第一个字节的编号

◼确认号（Acknowledgment Number）

占4字节

在建立连接后，确认号代表：期望对方下一次传过来的TCP数据部分的第一个字节的编号

◼窗口（Window）

占2字节

这个字段有流量控制功能，用以告知对方下一次允许发送的数据大小（字节为单位）

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



的几个要点
◼可靠传输

◼流量控制

◼拥塞控制

◼连接管理

建立连接

释放连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



可靠传输 停止等待 协议
◼ ARQ（Automatic Repeat–reQuest），自动重传请求

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



可靠传输 停止等待 协议

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



疑问
◼若有个包重传了N次还是失败，会一直持续重传到成功为止么？

这个取决于系统的设置，比如有些系统，重传5次还未成功就会发送reset报文（RST）断开TCP连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



可靠传输 连续 协议 滑动窗口协议

◼如果接收窗口最多能接收4个包

但发送方只发了2个包

◼接收方如何确定后面还有没有2个包？

等待一定时间后没有第3个包

就会返回确认收到2个包给发送方

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



可靠传输 连续 协议 滑动窗口协议

◼现在假设每一组数据是100个字节，代表一个数据段的数据

◼每一组给一个编号

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



可靠传输 （选择性确认）
◼在TCP通信过程中，如果发送序列中间某个数据包丢失（比如1、2、3、4、5中的3丢失了）

◼ TCP会通过重传最后确认的分组后续的分组（最后确认的是2，会重传3、4、5）

◼这样原先已经正确传输的分组也可能重复发送（比如4、5），降低了TCP性能

◼为改善上述情况，发展出了SACK（Selective acknowledgment，选择性确认）技术

告诉发送方哪些数据丢失，哪些数据已经提前收到

使TCP只重新发送丢失的包（比如3），不用发送后续所有的分组（比如4、5）

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



可靠传输 （选择性确认）
◼ SACK信息会放在TCP首部的选项部分

Kind：占1字节。值为5代表这是SACK选项

Length：占1字节。表明SACK选项一共占用多少字节

Left Edge：占4字节，左边界

Right Edge：占4字节，右边界

◼一对边界信息需要占用8字节，由于TCP首部的选项部分最多40字节，所以

SACK选项最多携带4组边界信息

SACK选项的最大占用字节数 = 4 * 8 + 2 = 34

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



思考一个问题
◼为什么选择在传输层就将数据“大卸八块”分成多个段，而不是等到网络层再分片传递给数据链路层？

因为可以提高重传的性能

需要明确的是：可靠传输是在传输层进行控制的

✓如果在传输层不分段，一旦出现数据丢失，整个传输层的数据都得重传

✓如果在传输层分了段，一旦出现数据丢失，只需要重传丢失的那些段即可

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



流量控制
◼如果接收方的缓存区满了，发送方还在疯狂着发送数据

接收方只能把收到的数据包丢掉，大量的丢包会极大着浪费网络资源

所以要进行流量控制

◼什么是流量控制？

让发送方的发送速率不要太快，让接收方来得及接收处理

◼原理

通过确认报文中窗口字段来控制发送方的发送速率

发送方的发送窗口大小不能超过接收方给出窗口大小

当发送方收到接收窗口的大小为0时，发送方就会停止发送数据

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



流量控制 特殊情况
◼有一种特殊情况

一开始，接收方给发送方发送了0窗口的报文段

后面，接收方又有了一些存储空间，给发送方发送的非0窗口的报文段丢失了

发送方的发送窗口一直为零，双方陷入僵局

◼解决方案

当发送方收到0窗口通知时，这时发送方停止发送报文

并且同时开启一个定时器，隔一段时间就发个测试报文去询问接收方最新的窗口大小

如果接收的窗口大小还是为0，则发送方再次刷新启动定时器

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制
◼拥塞控制

防止过多的数据注入到网络中

避免网络中的路由器或链路过载

◼拥塞控制是一个全局性的过程

涉及到所有的主机、路由器

以及与降低网络传输性能有关的所有因素

是大家共同努力的结果

◼相比而言，流量控制是点对点通信的控制

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 方法
◼慢开始（slow start，慢启动）

◼拥塞避免（congestion avoidance）

◼快速重传（fast retransmit）

◼快速恢复（fast recovery）

◼几个缩写

MSS（Maximum Segment Size）：每个段最大的数据部分大小

✓在建立连接时确定

cwnd（congestion window）：拥塞窗口

rwnd（receive window）：接收窗口

swnd（send window）：发送窗口

✓ swnd = min(cwnd, rwnd)

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 慢开始

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 慢开始

◼ cwnd的初始值比较小，然后随着数据包被接收方确认（收到一个ACK）

cwnd就成倍增长（指数级）

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 拥塞避免

◼ ssthresh（slow start threshold）：慢开始阈值，cwnd达到阈值后，以线性方式增加

◼拥塞避免（加法增大）：拥塞窗口缓慢增大，以防止网络过早出现拥塞

◼乘法减小：只要网络出现拥塞，把ssthresh减为拥塞峰值的一半，同时执行慢开始算法（cwnd又恢复到初始值）

当网络出现频繁拥塞时，ssthresh值就下降的很快

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 快重传
◼接收方

每收到一个失序的分组后就立即发出重复确认

使发送方及时知道有分组没有到达

而不要等待自己发送数据时才进行确认

◼发送方

只要连续收到三个重复确认（总共4个相同的确认），就应当立即重传对方尚未收到的报文段

而不必继续等待重传计时器到期后再重传

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 快重传

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 快恢复
◼当发送方连续收到三个重复确认，说明网络出现拥塞

就执行“乘法减小”算法，把ssthresh减为拥塞峰值的一半

◼与慢开始不同之处是现在不执行慢开始算法，即cwnd现在不恢复到初始值

而是把cwnd值设置为新的ssthresh值（减小后的值）

然后开始执行拥塞避免算法（“加法增大”），使拥塞窗口缓慢地线性增大

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 快重传 快恢复

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



拥塞控制 发送窗口的最大值
◼发送窗口的最大值：swnd = min(cwnd, rwnd)

◼当rwnd < cwnd时，是接收方的接收能力限制发送窗口的最大值

◼当cwnd < rwnd时，则是网络的拥塞限制发送窗口的最大值

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



序号、确认号

SYN=1, ACK=0

SYN=1, ACK=1,

SYN=0, ACK=1

HTTP请求

①

②

③

④

⑤

⑥

⑦

⑧

⑨

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



序号、确认号

①： 数据部分占 字节

原生

相对

②： 数据部分占 字节

原生

相对

③： 数据部分占 字节

原生

相对

④： 数据部分占 字节（ ）

原生

相对

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



序号、确认号

⑤： 数据部分占 字节

原生

相对

⑥： 数据部分占 字节

原生

相对

⑧： 数据部分占 字节

原生

相对

⑦： 数据部分占 字节

原生

相对

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



序号、确认号

⑨：连续收到了对方的 个 数据段， 数据部分占 字节

原生

相对

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



序号、确认号

seq=s1, ack=0

seq=s2, ack=s1+1

seq=s1+1, ack=s2+1

seq=s1+1, ack=s2+1

①

②

③

④

⑤

⑥

⑦

⑧

⑨

seq=s2+1, ack=s1+k+1

seq=s2+b1+1, ack=s1+k+1

seq=s2+b1+b2+1, ack=s1+k+1

seq=s2+b1+b2+b3+1, ack=s1+k+1

seq=s1+k+1, ack=s2+b1+b2+b3+b4+1

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



建立连接 次握手

CLOSED
关闭

SYN-SENT
同步已发送

ESTABLISHED
连接已经建立

客户端（Client） 服务器（Server）

LISTEN
监听

SYN-RCVD
同步已接收

ESTABLISHED
连接已经建立数据传输

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



建立连接 状态解读
◼ CLOSED：client处于关闭状态

◼ LISTEN：server处于监听状态，等待client连接

◼ SYN-RCVD：表示server接受到了SYN报文，当收到client的ACK报文后，它会进入到ESTABLISHED状态

◼ SYN-SENT：表示client已发送SYN报文，等待server的第2次握手

◼ ESTABLISHED：表示连接已经建立

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



建立连接 前 次握手的特点
◼ SYN都设置为1

◼数据部分的长度都为0

◼ TCP头部的长度一般是32字节

固定头部：20字节

选项部分：12字节

◼双方会交换确认一些信息

比如MSS、是否支持SACK、Window scale（窗口缩放系数）等

这些数据都放在了TCP头部的选项部分中（12字节）

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



建立连接 疑问
◼为什么建立连接的时候，要进行3次握手？2次不行么？

主要目的：防止server端一直等待，浪费资源

◼如果建立连接只需要2次握手，可能会出现的情况

假设client发出的第一个连接请求报文段，因为网络延迟，在连接释放以后的某个时间才到达server

本来这是一个早已失效的连接请求，但server收到此失效的请求后，误认为是client再次发出的一个新的连接请求

于是server就向client发出确认报文段，同意建立连接

如果不采用“3次握手”，那么只要server发出确认，新的连接就建立了

由于现在client并没有真正想连接服务器的意愿，因此不会理睬server的确认，也不会向server发送数据

但server却以为新的连接已经建立，并一直等待client发来数据，这样，server的很多资源就白白浪费掉了

◼采用“三次握手”的办法可以防止上述现象发生

例如上述情况，client没有向server的确认发出确认，server由于收不到确认，就知道client并没有要求建立连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



建立连接 疑问
◼第3次握手失败了，会怎么处理？

此时server的状态为SYN-RCVD，若等不到client的ACK，server会重新发送SYN+ACK包

如果server多次重发SYN+ACK都等不到client的ACK，就会发送RST包，强制关闭连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



释放连接 次挥手

ESTABLISHED
连接已经建立

FIN-WAIT-1
终止等待1

FIN-WAIT-2
终止等待2

TIME-WAIT
时间等待

CLOSED
关闭

客户端（Client） 服务器（Server）

连接释放

FIN=1，ACK=1，seq=u，ack=v
ESTABLISHED
连接已经建立

CLOSE-WAIT
关闭等待

LAST-ACK
最后确认

CLOSED
关闭

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



释放连接 状态解读
◼ FIN-WAIT-1：表示想主动关闭连接

向对方发送了FIN报文，此时进入到FIN-WAIT-1状态

◼ CLOSE-WAIT：表示在等待关闭

当对方发送FIN给自己，自己会回应一个ACK报文给对方，此时则进入到CLOSE-WAIT状态

在此状态下，需要考虑自己是否还有数据要发送给对方，如果没有，发送FIN报文给对方

◼ FIN-WAIT-2：只要对方发送ACK确认后，主动方就会处于FIN-WAIT-2状态，然后等待对方发送FIN报文

◼ CLOSING：一种比较罕见的例外状态

表示你发送FIN报文后，并没有收到对方的ACK报文，反而却也收到了对方的FIN报文

如果双方几乎在同时准备关闭连接的话，那么就出现了双方同时发送FIN报文的情况，也即会出现CLOSING状态

表示双方都正在关闭连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



释放连接 状态解读
◼ LAST-ACK：被动关闭一方在发送FIN报文后，最后等待对方的ACK报文

当收到ACK报文后，即可进入CLOSED状态了

◼ TIME-WAIT：表示收到了对方的FIN报文，并发送出了ACK报文，就等2MSL后即可进入CLOSED状态了

如果FIN-WAIT-1状态下，收到了对方同时带FIN标志和ACK标志的报文时

✓可以直接进入到TIME-WAIT状态，而无须经过FIN-WAIT-2状态

◼ CLOSED：关闭状态

◼由于有些状态的时间比较短暂，所以很难用netstat命令看到，比如SYN-RCVD、FIN-WAIT-1等

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



释放连接 细节
◼ TCP/IP协议栈在设计上，允许任何一方先发起断开请求。这里演示的是client主动要求断开

◼ client发送ACK后，需要有个TIME-WAIT阶段，等待一段时间后，再真正关闭连接

一般是等待2倍的MSL（Maximum Segment Lifetime，最大分段生存期）

✓MSL是TCP报文在Internet上的最长生存时间

✓每个具体的TCP实现都必须选择一个确定的MSL值，RFC 1122建议是2分钟

✓可以防止本次连接中产生的数据包误传到下一次连接中（因为本次连接中的数据包都会在2MSL时间内消失了）

◼如果client发送ACK后马上释放了，然后又因为网络原因，server没有收到client的ACK，server就会重发FIN

这时可能出现的情况是

① client没有任何响应，服务器那边会干等，甚至多次重发FIN，浪费资源

② client有个新的应用程序刚好分配了同一个端口号，新的应用程序收到FIN后马上开始执行断开连接的操作，本来
它可能是想跟server建立连接的

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J

https://www.rfc-editor.org/rfc/rfc1122.html


释放连接 疑问
◼为什么释放连接的时候，要进行4次挥手？

TCP是全双工模式

第1次挥手：当主机1发出FIN报文段时

✓表示主机1告诉主机2，主机1已经没有数据要发送了，但是，此时主机1还是可以接受来自主机2的数据

第2次挥手：当主机2返回ACK报文段时

✓表示主机2已经知道主机1没有数据发送了，但是主机2还是可以发送数据到主机1的

第3次挥手：当主机2也发送了FIN报文段时

✓表示主机2告诉主机1，主机2已经没有数据要发送了

第4次挥手：当主机1返回ACK报文段时

✓表示主机1已经知道主机2没有数据发送了。随后正式断开整个TCP连接

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J



释放连接 抓包
◼有时候在使用抓包工具的时候，有可能只会看到“3次“挥手

这其实是将第2、3次挥手合并了

◼当server接收到client的FIN时，如果server后面也没有数据要发送给client了

这时，server就可以将第2、3次挥手合并，同时告诉client两件事

✓已经知道client没有数据要发

✓ server已经没有数据要发了

小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J 

 
小
码
哥
教
育
 @
M了
个
J




