
富途web前端组件化实践
TooBug / 富途web前端负责⼈人

关于

@TooBug
富途web前端负责⼈人

曾就职
腾讯CDC

曾维护
Less中⽂文官⽹网
Grunt中⽂文社区

曾翻译
《SVG精髓（第⼆二版）》
《与⼩小卡特⼀一起学Python》
《JavaScript模式》

富途组件化

1.前尘往事
2.初试⽜牛⼑刀
3.为伊憔悴
4.灯⽕火阑珊

后端⼯工程师的产物

弹窗

问题

⽆无法
维护

交互
各异

质量量
不不⼀一

效率
低下

前端从零到⼆二

富途组件化

1.前尘往事
2.初试⽜牛⼑刀
3.为伊憔悴
4.灯⽕火阑珊

组件化⽬目标

灵活性标准化模块化

• AMD模块化规范

• 开发免构建

• i18n插件

• html/text插件

• 构建打包上线

模块化

模块化

标准化

Widget preCreate / onCreate / postCreate

show / hide / layout / onCloseMessageBox

AlertBox bindEvent / title / content

ConfirmBox onCloseClick / onConfirmClick

Dialog init / ⾃自定义结构

标准化

标准化

灵活性

开放扩展和⾃自定义模板

组件化⽬目标

灵活性标准化模块化

使⽤用

繁琐 难以理理解

团队和项⽬目

问题

构建奇慢
跨项⽬目
复⽤用

易易⽤用性
规范性

构建不不
可控

开发版本和发布版本不不⼀一致，容易易逻辑不不⼀一致
发布版本依赖构建配置⽂文件，容易易漏漏配置项
发布过程完成构建，反馈不不直观

require.js 优化慢
与是否压缩并没有太⼤大关系
依赖关系不不透明，⽆无法介⼊入分析优化

仅限项⽬目⽬目录内寻址
按路路径精确寻址
⽆无法与npm配合使⽤用

需要定义结构和样式
API冗⻓长且不不规范
继承过多，难以理理解

富途组件化

1.前尘往事
2.初试⽜牛⼑刀
3.为伊憔悴
4.灯⽕火阑珊

跨项⽬目复⽤用

• 安装（下载） 升级

• 包管理理

• bower

• component

• npm

跨项⽬目复⽤用

• 引⽤用（打包）

• 尽可能兼容已有代码

• 跟包管理理⾃自然地结合

跨项⽬目复⽤用

跨项⽬目复⽤用

npm install ui-modal --save

• 1个⼈人 6个⽉月 2单事故

• 600+ js⽂文件

• 关键点：

• 多⻚页⾯面多⼊入⼝口

• require.js插件

• 远程模块

• shim(ueditor/jquery/
plupload/angular)

require.js → webpack

组件抽取

• 20+组件迁移到单独的Git仓库

• webpack⽀支持node_modules寻址

• 使⽤用npm引⽤用组件

组件抽取

组件抽取

i18n
• webpack-amdi18n-loader

• 与require.js i18n plugin⼏几乎⼀一样的⽤用法

• runtime选择语⾔言包

• 根据window._i18n.locale或者html[lang]选择

• ⽀支持AMD/CommonJS/JSON/Coffee

webpack-amdi18n-loader

组件开源

https://github.com/futuweb

https://github.com/futuweb

打包体积

• 同⼀一模块重复打包

• 多个⼊入⼝口⽂文件中的相同依赖

HTTP请求缓存复⽤用

打包速度

0

300

600

900

1200

re
qu
ire
.js
未
压
缩

re
qu
ire
.js
压
缩

re
qu
ire
.js
增
量

we
bp
ac
k全
量
未
压
缩

we
bp
ac
k全
量
压
缩

we
bp
ac
k增
量
压
缩

20
300

1530

1,020
950

速度 - 增量量和缓存
• 分治：划模块和⼦子任务 分别缓存打包

• 根据源码分析依赖列列表

• 根据打包后的⽂文件获取依赖列列表

• webpack watch的缓存落地

• 先打包 根据中间状态做缓存过滤 再压缩

速度 - 增量量和缓存

速度 - 增量量和缓存

打包环境

开发机 发布机 ⽣生产环境

环境不不⼀一
模块版本不不⼀一
依赖⾃自觉

影响发布时间
结果⽆无反馈
CPU负载⾼高

downtime
影响负载
安全和运维

打包环境

开发机 发布机 ⽣生产环境

环境不不⼀一
模块版本不不⼀一
依赖⾃自觉

影响发布时间
结果⽆无反馈
CPU负载⾼高

downtime
影响负载
安全和运维

CI

环境⼀一致
专属运算能⼒力力
邮件反馈

打包环境

问题

构建奇慢
跨项⽬目
复⽤用

易易⽤用性
规范性

构建不不
可控

需要定义结构和样式
API冗⻓长且不不规范
继承过多，难以理理解

问题

易易⽤用性
规范性

需要定义结构和样式

API 冗⻓长且不不规范

继承过多 难以理理解

依赖jQuery 难复⽤用

野蛮发展 缺少规划

从Git安装 semver失效

团队和项⽬目

组件2.0

• 全新API设计
• 去除多重继承的设计
• 组件封闭，提供定制化选项

• 全⾯面去jQuery 包装适配多框架
• 私有NPM
• 重新规划组件

组件2.0

• 增删、合并组件列列表
• 落地设计规范 统⼀一交互视觉
• 编写测试⽤用例例 ⾃自动化测试
• 全新⽂文档和展示⻚页
• 使⽤用LessCSS
• 全⾯面使⽤用ES2015

组件2.0 - ⾃自动化测试

组件2.0 - UI规范

组件2.0 - 私有NPM

组件2.0 - 私有NPM

• 私有NPM registry.npm.oa.com
• 命名空间@futuweb
• semver语义化版本 解决组件重复打包

组件2.0 - API

组件2.0 - API包装

组件2.0 - ⽂文档

组件2.0 - ⽂文档

富途组件化

1.前尘往事
2.初试⽜牛⼑刀
3.为伊憔悴
4.灯⽕火阑珊

蓦然回⾸首

2014
require.js
组件规范

2015
webpack

npm

2016
打包和构建

2017
组件2.0

蓦然回⾸首

• 团队的⼯工程化和技术迁移成本⾼高
• ⽅方案会和团队⼀一起不不断成⻓长
• 适合团队现状的⽅方案是最好的⽅方案
• 临渊羡⻥鱼者众 退⽽而结⽹网⽽而寡
• 细节为王 冷暖⾃自知

灯⽕火阑珊

• 不不断有新的问题出现
• 不不断有新的⼯工具出现
• 组件化和⼯工程化的终点在哪⾥里里

没有终点 - CSS

• 核⼼心问题：
• 代码组织和复⽤用
• 避免冲突

• CSS Next ?
• CSS modules ?

CSS Modules

CSS Modules

CSS Modules

• HTML模板中应⽤用不不⽅方便便

• classNames = require('xx.css');

没有终点 - 组件⽅方案
• web components

• 兼容性不不好
• 框架集成⽅方案缺失

• react / angular.js / vue 通⽤用组件⽅方案
• 原⽣生代码包装
• ngVue(angular.js + vue)
• JSX(react + vue)

npm是终极⽅方案吗

包管理理和引⼊入

• 包管理理
• bower和component已死
• jspm呢？

• 引⼊入
• ES Modules落地？
• system.js + http/2 ？

jspm + SystemJS

配置⼯工程师有归宿吗

Windows Mac / iOS Android Web?

