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不知道你是否留意过非洲的地图？和其他大洲按照地理边界划分国界的方式不同，很多非洲

国家的国境线都是规则的直线条组合。这种非自然的划分背后隐藏着一段屈辱的历史：19

世纪起，欧洲的资本主义新贵们开始了对非洲的掠夺。而在巧取豪夺资源之外，他们也没有

忘记抢占地盘，这些横平竖直的国境线就是对当年殖民主义者瓜分非洲无声的控诉。

下图是主要殖民国家在非洲的势力范围划分图，图片里的非洲如俎上的鱼肉般被肆意切割，

切下的每一块都像黑奴一样，被烫上宗主国的烙印。
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瓜分非洲（Scramble for Africa）（图片来自维基百科）

当然，我的目的不是探讨历史，举这个例子的原因是从非洲地图容易直观地联想到机器学习

中基于树方法的分类结果。树模型（tree-based model）遵循“分而治之”的思路，以递

推方式将特征空间划分为若干个矩形的区间，再在每个区间上拟合出一个简单的模型。在分

类问题中，这个简单模型就是类别的标签选择。在“人工智能基础课”中，我曾以用于分类

的决策树为例，对树模型做了介绍，你可以回忆一下。下图就是分类决策树对特征空间进行

划分的一个实例。

决策树的生成与对特征空间的划分（图片来自 Pattern Recognition and Machine

Learning, 图 14.5 & 14.6）



这一次，我将换个角度，从线性回归模型出发来理解树模型，这种理解思路将从回归树开

始。

顾名思义，回归树（regression tree）是用来完成回归任务的树模型。和全局的线性回归

相比，树模型是局部化的模型，可以实现非线性的拟合。在从整体到局部的过渡中，回归树

的操作和之前介绍过的回归样条方法一脉相承，采用的都是“分段函数”的思路，但两者的

区别在于回归树对特征空间执行的是递归式划分（recursive partitioning）。递归的划分

不要求一步到位，而是步步为营地对前一次划分的子区域继续做出细化，直到满足预先设定

的要求为止。这一点在上面的图示中也有所体现。

这样看来，回归树和原始线性回归的区别仅仅在于全局和局部的差异吗？非也！回归树的表

达能力强在对于特征之间相互作用（interaction）的刻画。当用来预测输出的特征有多个

时，不同的特征之间很可能存在着交互作用，共同对输出产生影响，而这种影响的作用就超

出了线性的范畴。假设输入的特征有  和  两个，如果要考虑它们之间的相互作用，线

性回归的模型就需要改写成

当  和  各自产生一点微小的变化时，这种变化在交互项中的累积就是

可以看出，原始的单个交互项在扰动之后变成了四项，其中的最后一项无疑会给线性模型的

解释造成困扰。而当特征的数目增加时，特征之间交互项的数目会以指数速度增加，从而给

这些非线性的描述带来严重的困难。

和线性回归“由因及果”的推理方式相比，回归树采用了更有弹性的“由果推因”的方式。

它并不直接构造从自变量到因变量明确的数量关系，而是通过对因变量进行分组来确定自变

量的影响方式。

分组的依据有两个：一个是作为输出的因变量的相似性，另一个是作为输入的单个自变量的

相异性。因变量的相似性决定了被划分到同一组的数据在输出上的差别较小，自变量的相异

性则决定了被划分到不同组的数据在某一个输入属性上的差别较大。对划分好的数据集继续

迭代执行这个过程，就可以完成对特征空间的递归式划分。
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由于回归树采用树状结构来建模，因此从树结构的角度看，对数据集的递归式划分就是对树

模型的不断分枝，每个分枝点都是让因变量产生最大差异的那个自变量。在这个过程中，每

个节点内样本的同质性会不断增强，当样本完全同质化或者数目过少时，回归树的构造就完

成了。分枝点具体的选择原则在上一季的专栏中我已经做过介绍，你可以回忆一下。

回归树和分类树的区别在于将信息增益的指标替换成了方差，算法会选择分类后两个类别方

差之和最小，也就是和原始方差相比下降最大的那个属性进行划分，这种划分方式被称为方

差下降（variance reduction）。

下面这个对回归树划分方式的说明来自中文文献《CART 分类与回归树介绍》，这篇文章发

表在 1997 年《火山地质与矿产》的第 18 卷第 1 期上，这从侧面反映出统计学习的应用范

围有多么广泛。文章说明划分的优劣取决于生成的结点中因变量的离散程度，划分之后因变

量的取值越集中，划分的效果就越好。树生成的算法就是一步一步找到每一个最优的划分。

假设训练集中总共有 300 个数据，方差为 51.5。有一种划分方式将数据集分为 142 和

158 两组，两组的方差分别是 46.7 和 49.3。这表明左右两个结点中因变量的离散程度和总

体的离散程度相近，显然，这一划分的效果不佳。相比之下，另一个划分可以让左结点中的

方差为 20.3，右结点中的方差为 26.0。这种划分减少了一半的方差，在每个结点里，因变

量都更加接近它们的平均值，因而是个更好的划分。

这样的过程体现出局部化模型典型的处理方式，也就是先将整体划分成局部，使每个局部都

体现出一定的规律性，再对每个局部的规律做出拟合。划分可以通过逐步选择具有最大信息

增益或者最大方差下降的特征来完成，那么在划分出的局部上如何来拟合呢？回归树给出了

一个非常简单的答案，那就是每个局部上所有数据的取值都是常数，其数值等于这个局部内

样本点输出的均值。这样的决策树输出的就是像楼梯一样高低错落的超平面的组合。

为了测试回归树的效果，我用它对一直应用于回归任务的英超数据集进行了拟合，结果如

下。实现回归树需要调用 Scikit-learn 库中 tree 模块的 DecisionTreeRegressor 类。在拟

合时，回归树的最大深度被设置为 3，这意味着对特征空间的划分次数为 3 次，最多可以

分成  个区域。可以看到，在一维的情形下，回归树其实是分段的常数函数，只不

过不同分段之间的分界点并不是人为指定，而是通过方差下降的方法计算出来的。
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回归树在英超数据集上的拟合结果

为了进一步考察回归树在多元回归问题中的表现，并观察回归树对特征之间的交互的处理方

式，我们再来看看用回归树去拟合位置评分数据和场均积分的关系。出于便于可视化的考

虑，在位置评分中我只选择了后卫评分和前锋评分两者作为输入的特征。选择这两者的考虑

是在前面的多元回归分析中已经证明，这两个属性和积分之间存在较强的相关性，而两个属

性所映射的二维平面也更容易观察。

从回归树的结果可以看出，在不同的数据点上，两个特征的交互方式是不同的。树算法首先

根据防守球员的得分将数据集一分为二。在防守水平前三分之一的队伍中，进攻水平并没有

产生太大的影响，一上一下两个傲然不群的数据点更像是数据集中的异常点。而在防守较差

的三分之二里，进攻和防守之间的互动就复杂了许多，形成的区域划分也复杂了许多。



回归树在英超数据集上的多元拟合结果

无论是回归树还是分类树，在生成时都遵循相同的流程，就是先划分特征空间，再对每个特

征空间去拟合。两者的区别主要在于选择划分特征时采用的指标不同。和线性回归相比，决

策树更加符合人类做出决策、尤其是像医学诊断这类决策的思维流程，它的描述性还要更好

一些。但是决策树对加性关系的表达能力不强，如果因变量真的是自变量的线性组合的话，

使用决策树恐怕就要弄巧成拙了。

在可用于划分的自变量较多时，即使树结构的结点树已经预先设定，要穷举搜索到方差和最

小的最优树依然是个费时费力的过程。贪心策略是确定决策树的结构时通常采用的方法。

贪心策略（greedy strategy）是活在当下的方法，在生成树时每次只增加一个结点，确定

结点时采取在当前状态下最优的选择，让每个子集都在当前条件下具有最正确的分类。但这

种方式并不能确保找到全局的最优解，因而容易造成过拟合。

贪心策略的另一个问题是终止条件，当树结构达到一定深度后，进一步的划分很可能不会让

子集方差产生明显的下降，继续划分下去就会造成过拟合。应对这一现象的手段是先让贪心
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策略生成一棵比较复杂的树，当每个子集中样本的数目都达到下限时终止算法，再来对这棵

树进行剪枝操作。

剪枝（pruning）是对决策树残余方差和复杂度之间的折中，对回归树来说，剪枝的目标函

数可以写成

其中  表示样本的自变量，  表示样本的因变量，  表示决策树划分出的区域，其中

包含  个样本，  表示划分区域的数目。显然，  的作用是对目标函数的正则化。

决策树一个主要的缺点是对数据点异常敏感，训练数据集一点不起眼的变动就足以生成一棵

完全不同的决策树，而数据集中的异常点也会对决策树结果造成未知的影响。此外，在处理

回归任务时，决策树得到的是不连续的结果。这样看来，回归样条就可以视为决策树的一个

优化。

广义来看，决策树可以视为对基本线性模型的层次化集成，这里的基本模型就是数据在每个

划分区域上的回归或分类规则，这些规则一般是线性的。决策树的作用是将这些固定的局部

线性规则进行拼接式的组合，从而生成整体意义上的非线性模型。后面我们将发现，看似简

单的集成策略却能在机器学习中发挥出出人意料的优异性能。

今天我以回归树为例，和你分享了决策树的基本原理，包含以下四个要点：

作为规则集合的决策树不仅仅是一类机器学习的模型，更是决策分析中常用的结构化方法。

那么你能想到哪些决策树在机器学习之外的应用呢？

欢迎发表你的观点。
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决策树是局部化的非参数模型；

决策树生成算法先将特征空间划分成若干区域，再在每个区域上拟合输出；

决策树能够更加灵活地刻画不同属性之间的相互作用；

决策树可以看成最简单的集成模型。
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林彦
2018-08-14



决策树我的理解过去可以用来搜索知识库和标签基于逻辑做问答。没有机器学习训练大量
数据就是一个专家系统，比如哈利波特里面分学院用的帽子，依赖知识和经验。现在有机
器学习，网上搜索不用机器学习的决策树案例不那么容易找到。

作者回复: 决策树还可以用作概念学习和基于规则的归纳推理，但都是早期的应用，随着符号主义

的衰落式微了。

林彦 

精选留言 (4)  写留言



2018-08-14

看到文中提到决策树和回归样条的关系。有下面的这些延伸思考和问题想请王老师确认。 
 
1. 回归树的特征选择（用来分枝的特征）是基于当前步骤取值区间使得所有决策树分枝的
方差下降之和最大化？在每个分枝区间内是一个线性回归模型，计算方差的方式和线性回
归模型一样？ …
展开

作者回复: 1. 方差下降是要让划分之后每个区域内的方差尽可能小，这使得每个区域内的数据相似

度较高，所以可以用单个常数，通常是分枝区间内的数据均值来拟合这个区域。 

想象一下这样的例子：平面左侧和右侧各有一个圆，每个圆里都均匀分布着数据。如果两个圆距

离较远，那么数据整体的方差就会比较大。理想的回归树应该把边界画在两个圆中间，这样划分

之后每一边的数据各自接近，两边的方差都比较小，和原来相比方差整体的下降就会较大。如果

把边界画在其中一个圆的中间，这个圆的半边数据就被归到另一个圆里，计算出来的方差依然会

很大，自然就不是最优的边界了。 

2. 样条回归拟合的思路和普通线性回归的思路一样，都是让训练集上的均方误差最小化，但没法

求解析解。结点位置和数目一般是靠试的，不成文的规则是根据自由度确定结点数目，再让结点

在定义域上均匀分布，也就是取定义域的分位点。

Ophui
2018-08-02



天一老师，扩充了样本维度形成的高维小样本集即便训练效果很好，是不是因为维度很
高，就会有问题？

作者回复: 为什么要扩充维度呢？原则上说，小样本维度过高会造成维数灾难，样本容量撑不起过

多的特征。最好对高维特征做个预处理，保留真正有意义的特征。

never_give...
2018-08-01



老师，我又来了😊，据我所知，决策树在游戏AI和项目管理方面有所应用。另外我突然想
到想一个问题，回归问题能从概率角度解释吗？好像不行，没有贝叶斯回归这个东西

展开

作者回复: 贝叶斯回归是有的哦，你可以查一查Bayesian regression，和11讲中的贝叶斯方法做

个比较。






