数组的常用方法
数组作为一种重要的数据类型，除了我们前面已经说到的 pop、push、shift、unshift 几个方法外，还有很多实用的方法也是我们的必备技能。
假设我们有一队人，如下图：
[image:]
我们要对其进行一些排序或筛选的操作（比喻按高矮排序，筛选女性等），我们都可以通过数组来进行操作。
注：这里更侧重讲解如何使用，至于详细方法请参考：数组 | MDN
抽出一些人
首先我们用数组定义该数据（为了简单起见，我们数据就不搞那么多）：
var aPerson = ['person1', 'person2', 'person3', 'person4', 'person5', 'person6']
slice
现在假设我们要抽取三个人，我们可以使用slice()方法来选取三个人，如下：
var aP3 = aPerson.slice(1, 4);
console.log(aPerson); // ['person1', 'person2', 'person3', 'person4', 'person5', 'person6']
console.log(aP3); // ["person2", "person3", "person4"]
该方法返回一个从开始到结束（不包括结束）选择的数组的一部分浅拷贝到一个新数组对象。原数组不会改变。
详细语法请参考：slice
splice
同样我们还可以使用splice()方法来选取，如下：
var aPerson = ['person1', 'person2', 'person3', 'person4', 'person5', 'person6']
var aP3 = aPerson.splice(1, 3);
console.log(aPerson); // ["person1", "person5", "person6"]
console.log(aP3); // ["person2", "person3", "person4"]
该方法通过删除现有元素或添加新元素来更改数组的内容。原数组会改变。
对于 slice 来说，splice 的功能会更强大点，其区别主要在于：
· slice 不改变原数组，而 splice 则会改变
· slice 的第二个参数为截至的索引值，而 splice 则表示要截取的个数
· splice 还能用于增加元素，slice 则不可以
详细语法请参考：splice
concat
除了从队伍里抽出一些人出来，我们还可以把另外一个队伍和这个队伍合并成一个新队伍，如下：
var aPerson1 = ['person1', 'person2', 'person3', 'person4', 'person5', 'person6']
var aPerson2 = ['person7', 'person8', 'person9'];

var aPerson3 = aPerson1.concat(aPerson2);
console.log(aPerson3); // ["person1", "person2", "person3", "person4", "person5", "person6", "person7", "person8", "person9"]
concat() 方法用于合并两个或多个数组。此方法不会更改现有数组，而是返回一个新数组。
详细语法请参考：concat
高矮排序
现在我们以高矮的形式定义一组数据，如下：
var aHeight = ['170', '165', '178', '183', '168', '175', '173'];
reverse
我们可以直接使用reverse()方法来实现倒序，如下：
aHeight.reverse();
console.log(aHeight); // ["173", "175", "168", "183", "178", "165", "170"]
该方法非常简单，没有任何参数，就是把数组的出现顺序调换下，第一个元素会成为最后一个，最后一个会成为第一个。一般也很少用到。
sort
比起 reverse() 来说，sort() 方法使用的地方就多了。我们先来个从矮到高的排序，如下：
aHeight.sort();
console.log(aHeight); // ["165", "168", "170", "173", "175", "178", "183"]
sort() 方法默认的排序是升序，如上代码可见。但是我们也可以传入一个函数，指定其排序方式，如现在让其以降序方式排列：
aHeight.sort(function(a, b){
 return b - a;
});
console.log(aHeight); // ["183", "178", "175", "173", "170", "168", "165"]
详细语法请参考：sort
随机排序
除了正常的升序降序之外，其实我们还经常使用到随机排序，如我们的抢红包，棋牌游戏中的洗牌都是随机排序的应用。
在使用随机排序的时候，我们得使用到一个随机函数 Math.random()。
该函数返回一个浮点数, 其数字在范围[0，1)。
这样我们就可以使用该随机生成浮点数与0.5大小进行比较，那样结果可能大于或小于0，最后就得到了我们的随机排序。
// 第一次运行
aHeight.sort(function(){
 return 0.5 - Math.random();
});
console.log(aHeight); // ["183", "168", "175", "173", "170", "165", "178"]

// 第二次运行
aHeight.sort(function(){
 return 0.5 - Math.random();
});
console.log(aHeight); // ["170", "183", "175", "168", "173", "165", "178"]
因为是随机的，所以每次运行都会不一样，我们可以多运行几次试试。
条件筛选测试
现在我们以肤色和年龄的的形式定义两组数据，如下（yellow 表示黄种人，white 表示白人，black 表示黑人）：
var aColor = ['yellow', 'black', 'white', 'white', 'yellow', 'yellow'];
var aAge = [19, 30, 25, 37, 18, 35];
测试是否符合条件
every
every() 方法用于测试数组的所有数据是否都通过了指定函数的测试，如果通过返回 true，否则 false。
比喻判断是否所有人的年龄都大于20岁，如下：
var ageTest = aAge.every(function(item, index){
 return item > 20;
})

console.log(ageTest); // false
every 需要数组中的每个数据都满足该条件则返回 true，否则就是 false。
详细语法请参考：every
some
对应 every() 方法，还有一个 some() 方法，表示数组中只要有任何一个数据满足条件则返回 ture，如果一个数据都不满足则返回 false。
比喻判断是否有人的年龄都大于32岁，如下：
var ageTest2 = aAge.some(function(item, index){
 return item > 32;
})

console.log(ageTest2); // true
详细语法请参考：some
includes
includes() 方法用来判断当前数组是否包含某指定的值，如果是，则返回 true，否则返回 false。
比喻判断是否有35岁的人，如下：
var ageTest3 = aAge.includes(35);
var ageTest4 = aAge.includes(28);

console.log(ageTest3); // true
console.log(ageTest4); // false
条件筛选
filter
比喻我要选取所有黄皮肤的人，如下：
var aYellow = aColor.filter(function(item, index) {
 return item === 'yellow';
})

console.log(aYellow); // ["yellow", "yellow", "yellow"]
该方法返回所有满足条件数据组成的数组。
详细语法请参考：filter
让每个人都干点啥
forEach
forEach() 方法对数组的每个元素执行一次提供的函数，该方法没有返回值。
比喻过节的时候给每个人去老板那边领个红包，如下：
var aPerson = ['person1', 'person2', 'person3', 'person4', 'person5', 'person6']

aPerson.forEach(function(item, index) {
 console.log(item + '领取了 200 元红包')
})
详细语法请参考：forEach
map
map() 方法创建一个新数组，其结果是该数组中的每个元素调用一个提供的函数。
比喻每个人的工资都增加 5000元，如下：
// 先构造一份工资数据
var aSalary = [8000, 7000, 1500, 9000, 22000];

var aNewSalary = aSalary.map(function(item, index) {
 return item + 5000;
})

console.log(aNewSalary); // [13000, 12000, 6500, 14000, 27000]

详细语法请参考：map
其他
除了上面说的那些方法之外，还有一些常用方法，如 indexOf、join 等等，这里就不再一一说明了，具体可参考：数组 | MDN
总之，数组的方法一定要了如指掌，如果你实在记不住，那也必须知道有这么个东西，以后知道怎么查阅，因为平时做业务的时候处理数据就需要这些各种方法。

image1.jpeg
A et

