事件兼容性初探
兼容性当然是指浏览器的兼容性，而浏览器的兼容性基本上是指 IE的兼容性 。是的，如果要找出最痛恨 IE浏览器的人，非前端工程师莫属。IE，不标准却用户量巨大，想不管它都不行。
当然，也不用为此沮丧，IE 的市场份额逐年下滑，胜利终将属于前端开发！
几个重要的区别
事件模型
IE9 之前只支持事件冒泡，不支持事件捕获，也因此事件捕获在实际开发的过程当中使用的非常少。
addEventListener
IE9 之前不支持 addEventListener 和 removeEventListener ，但是有对应的方法 attachEvent 和 detachEvent ，影响也不是很大。
事件对象
IE9（不包括IE9） 之前的事件对象也不规范。
第一个是获取对象的方式不同。
elem.attachEvent('click', function (event) {
 // 这种绑定方式，`event` 对象可以正确拿到
});

elem.onclick = function() {
 var event = window.event; // 这种绑定方式，只能从 `window` 上拿
}
第二个，事件对象几个常用的属性和方法也不标准，但有对应的属性和实现相同的效果。
	标准
	IE
	说明

	stopPropagation()
	cancelBubble
	cancelBubble默认值为 false ，设为 true 可以取消事件冒泡。

	preventDefault()
	returnValue
	默认值为 true ，设置为 false 可以取消事件的默认行为。

	target
	srcElement
	这个好说，事件的目标元素。

有必要说下事件的默认行为，举个例子， <a> 元素，点击就会跳转到一个新的页面，这个就是浏览器自带的事件的默认行为。
有时候我们不想要这个行为，那么调用事件对象上的 preventDefault() 方法就能达成效果。
跨浏览器的事件
我们当然不能只局限于理论，而是要用于实战。
我们的思路就是封装一个函数，让它的可以在所有的浏览器中正确的绑定事件，让使用者不用关注各个浏览器之间的差异，比如下面的 on 函数。
/**
 * 修复事件对象不兼容的地方
 */
function fixEventObj(e) {
 e.target = e.target || e.srcElement;
 e.preventDefault = e.preventDefault || function() {
 e.returnValue = false;
 };
 e.stopPropagation = e.stopPropagation || function() {
 e.cancelBubble = true;
 };

 return e;
}

/**
 * 跨浏览器的绑定事件
 */
function on(elem, type, handle) {
 if (elem.addEventListener) { // 检测是否有标准方法
 elem.addEventListener(type, handle, false);
 } else if (elem.attachEvent) { // 试图使用 `attachEvent`
 elem.attachEvent('on' + type, function(event) {
 event = fixEventObj(event);
 handle.call(elem, event); // 使用 call 来改变 handle 的作用域，使其指向 elem
 });
 } else { // 兜底
 elem['on' + type] = function() {
 var event = fixEventObj(window.event);
 handle.call(elem, event);
 }
 }
}

// 调用
on(document.body, 'click', function(e) {
 console.log('哈哈哈，好用！', e);
});
这里有个实例页面，点击查看。
代码是次要的，思路是重点。大家可以模仿这个 on 写个 off 函数，来跨浏览器的解绑事件。
绑定事件的历史演进
上面我们在写兼容代码的时候，涉及到 DOM0 级和 DOM2 级事件处理。
elem.onclick = function() {}; // dom 属性的绑定方式就是 DOM0 级
elem.addEventListener(); // 这种就是 DOM2 级
这里不含糊，推荐后一种。
DOM 也有版本演进，DOM0 和 DOM2 就是不同的版本，当然，版本啥的不是我们的重点，我们想探讨的是这两者的区别。
// 这种方式只能绑定一个 handle
// 当你试图绑定第二个时，就会覆盖上一个
elem.onclick = function() {};

// 这种则可绑定任意个 handle
// 在多人开发的项目中，这个特点非常重要，不同的伙伴给同一个元素绑定事件的几率很大的
elem.addEventListener(); // 这种就是 DOM2 级
好吧，事件兼容性就说到这里。
兼容性问题是肯定存在的，遇到这类问题更要耐心，试着找到不同之处，写出兼容性代码，终有一天，你能写出自己的 jQuery ！

