
从组合设计模式看Go语⾔的多态特性

李智慧

Go语言没有关于对象的关键词，没有class，没有extends，没有implements，但是Go

语言依然是一种完整的面向对象编程语言，拥有面向对象编程语言的三大特性：封装、

继承、多态。

传统的面向对象编程语言通过override和overwrite实现多态，特别是对接口的

override，使面向对象编程呈现出迷人的特性：针对接口编程，运行期注入实现，使程

序呈现多态的特性。

面向对象设计模式中最让人困惑，最引人入胜的就是那些灵活应用对象多态特性的模

式。

而Go语言的多态更加灵活，在传统的面向对象编程中，关于组合还是继承总有许多争

论，不良继承又带来诸多问题。

Go语言中组合就是继承（extends），struct中包含另一个struct，就拥有了另一个

struct的成员和方法。

Go语言定义就是实现（implements），go语言可以定义接口（interface），也可以定

义struct上的方法，但是方法不需要显式实现接口，只要方法签名一致就可以，如果一

个struct上定义的方法实现了interface上定义的所有方法，那么就认为该struct实现了

该接口。

一个完整的关于树的遍历的go语言实现如下，利用go的多态特性，不需要递归。

//树的中间节点

type node struct{

 *list.List //（匿名）组合即继承，node拥有了list的特性

 name string

}

//接⼝，关于树的遍历操作都在这⾥

type tree interface{

do()

}

func (l leaf)do(){//定义即实现，leaf实现了tree接⼝

 fmt.Println(l.name+" leaf do something.")

}

package main

import(

 "fmt"

 "container/list"

)

//接⼝，关于树的遍历操作都在这⾥

type tree interface{

do()

}

//树的中间节点

type node struct{

 *list.List //（匿名）组合即继承，node拥有了list的特性

 name string

}

//树的叶⼦

type leaf struct{

 name string

}

func (n node)do(){//定义即实现,node实现了tree接⼝

 for e:=n.Front();e!=nil;e=e.Next(){//node拥有了list的特性

 e.Value.(tree).do()

 }

 fmt.Println(n.name+" node do something.")

}

func (n node)addSub(sub tree){

 n.PushBack(sub)

}

func (l leaf)do(){//定义即实现，leaf实现了tree接⼝

 fmt.Println(l.name+" leaf do something.")

}

func main() {

 //定义树的节点

 n1 := node{list.New(),"n1"}

 n2 := node{list.New(),"n2"}

 l1 := leaf{"l1"}

 l2 := leaf{"l2"}

 //构造树的结构

以上为树的深度优先遍历，如果想改为广度优先遍历，只需要调整一行代码。

 n2.addSub(l2)

 n1.addSub(n2)

 n1.addSub(l1)

 //遍历树

 n1.do()

}

func (n node)do(){//定义即实现，node实现了tree接⼝

 fmt.Println(n.name+" node do something.")

 for e:=n.Front();e!=nil;e=e.Next(){//node拥有了list的特性

 e.Value.(tree).do()

 }

}

