
宅⽶⽹性能优化实践

胡勇、李智慧/宅⽶

宅米是一家专注校园电子商务的互联网企业，目前主营校园超市O2O。公司成立于2014

年11月，仅仅一年多的时间，公司即经过4轮融资，覆盖近200座城市，1000多所大中

专院校，10000多栋宿舍楼，日均订单20万，峰值订单50万。

像所有高速发展的初创互联网企业一样，宅米的成长是一部野蛮成长的历史。公司成立

之初，只有三个工程师，是创始人CEO孙高峰在上海交通大学计算机学院和软件学院挨

个宿舍敲门敲出来，他逢人便问：『同学，要不要创业？』。就这样，三个尚未毕业休

学创业的学生开发上线了宅米的第一个版本。

早期，为了迅速开发，技术人员选择了Ruby作为开发语言。由于业务快速增长，技术人

员缺乏经验，系统甫一上线，即经历了各种bug，各种系统崩溃。往往在业务最繁忙的

时候系统宕机了，公司上下焦头烂额匆忙应对，工程师每天工作近20个小时，困了就在

桌子上趴一会，醒来接着写代码，修bug。

但是就是在这样的跌跌撞撞中，公司业务仍然快速增长，只几个月的时间就成为该领域

中最主要的竞争者，公司顺利获得A轮融资。有钱了，公司便期望在技术研发方面投入

更多资源，招聘更多专业技术人才，开发出更完善更稳定的系统迎接下一轮更快速的发

展。但是招聘的时候才发现，市面上Ruby工程师非常稀缺，难以招募，技术团队迅速决

定转型，使用Java作为主要的后端开发语言。于是几个工程师一边自己学Java，一边招

Java，不到两个月的时间，组建了一个20多人的Java技术团队，完成对原有几个核心系

统的Java重构。

开发人员增加了，可以更加从容开展开发工作，应对新增业务和需求变更，Bug减少

了，系统稳定了。但是这时候的系统架构依然是一个非常简单的Web架构，如图1。

图1 最开始的系统架构

这样的系统能不能应对今后快速的业务发展？性能问题会不会成为持续增长的交易量的

瓶颈？系统能不能撑得住访问高峰期的大规模并发访问？

性能优化成为这个时候最重要的工作，于是安排专门的工程师进行性能测试和性能优

化，从架构、代码、数据库、运维各个层面梳理系统状况，发现系统瓶颈，进行针对性

优化。

一、 性能测试

校园零食购物的特点是在晚上10点左右进入高峰，在此前后一小时的交易量大概占整天

交易量的一半，也就是说，如果要设计一个日订单100万的系统，其实要承受的交易压

力是每小时50万单。

当初按照二八法则推算峰值每秒单量为556笔『500000 * 0.8 / (60 * 60 * 0.2)』，以此

为基准根据Nginx日志分析后端接口调用频率，推算出接口调用比率前20的请求，以此

构造测试场景。

在执行性能测试时，我们使用Jmeter作为性能测试工具，利用了云服务提供的系统资源

监控作为基础，同时抓取应用服务线程快照和MySQL数据库slow.log分析系统瓶颈。脚

本分别如下：

二、架构优化

性能测试结果并不乐观，我们结合互联网领域常用技术架构模式以及自身性能瓶颈，进

行了架构优化重构。

虽然系统此前使用了分布式缓存对热点数据进行缓存，但是比较随意，哪些数据需要缓

存，失效策略如何设置都没有认真分析和设计。性能测试后决定规范缓存使用，尽可能

将各种频繁读取的数据全部缓存起来，并将Redis服务器做集群和主从复制部署。

此外还使用第三方CDN服务进行静态文件访问加速，产品图片、JavaScript文件、CSS

文件等都通过CDN加速，同时通过Nginx反向代理服务器提供静态文件的前端缓存。

性能测试发现，系统主要瓶颈点在数据库上，虽然使用Redis将热点数据缓存起来，但是

数据库依然在并发量达到一定程度后表现出系统过载的情况。于是对数据库进行主从分

离。

优化后的系统架构如图2。

1 //抓取应用服务线程快照2

3 jstack `jps | grep -v grep | grep -v Jps|awk '{print $1}'`4

5 //MySQL数据库slow.log分析6

7 mysqldumpslow mysql-slow.log8

图2 优化后的系统架构

三、H5响应压缩优化

性能测试发现App应用比移动Web端响应速度更快，分析发现H5响应内容因为包含了大

量HTML，数据包大小远远大于App响应包。因此决定采用Nginx作为反向代理的同

时，对HTML内容进行压缩。

开启Nginx gzip压缩的指令如下：

1 #config gzip;2

3 gzip on;4

5 gzip_min_length 1k;6

7 gzip_buffers 4 16k;8

9 gzip_comp_level 2;10

11 gzip_types text/plain application/javascript application/x-javascript

text/css application/xml text/javascript image/jpeg image/gif image/png

application/json;

12

关于gzip_types，我们针对JSON数据也开启gzip压缩，降低App响应数据包大小，提高

响应性能。图3是开启gzip前后的性能测试结果对比：

图3 H5页面开启压缩前后性能对比

四、SQL语句与索引优化

性能测试过程中发现，由于此前主要精力都在关注如何快速实现业务，大量数据库查询

语句写得比较随意，索引设计非常不合理。

结合性能测试中Mysql数据库slow.log分析，定位慢查询SQL追加index，然后利用解释

执行计划explain优化SQL。在此简要列举几处示例。

（1） 某字段类型为varchar类型，根据查询关键字段查询时，写入值为Int类型，导致

无法命中索引。

优化前：

优化后：

（2） 查询条件左边写入函数，导致无法命中索引。

优化前：

select * from aa where aa.bb = 1449220364536130715;1

select * from aa where aa.bb = '1449220364536130715';1

select * from cc where date_format(dd,'%Y-%m-%d')=

(DATE_SUB(CURDATE(),INTERVAL 1 DAY));

1

优化后：

 （3） 追加Index时，计算数据唯一性巧妙添加左前缀索引，提高索引命中率，保证索引

字段唯一性。

利用如下SQL计算索引命中率：

以此算出城市拼音缩写长度为3时，命中率和唯一性比较高，则写下如下SQL：

五、数据库连接池优化

数据库的访问优化也比较重要，宅米后台系统开发使用了Mybatis + C3P0组合，在做

性能测试的时候发现在某些情况下有较为严重的性能问题。在高并发情况下，长时间施

加压力，应用程序出现不能访问的状况。

上网查找资料，发现很多人也遇到了C3P0的”APPARENT DEADLOCK”问题。

将C3P0切换成国产数据库连接池Druid之后，状况明显好转，类似问题再未出现过。

六、缓存使用优化

经过对数据库和缓存应用的一系列优化后，缓存的命中率保持在90%以上，进一步研究

后发现，Redis使用依然有提升的空间。

应用程序访问Redis的时候，可以通过使用Jedis的pipeline减少redis通信次数，有效提

升性能。Jedis是基于socket通信实现的，每次与Redis通信都会消耗相当的网络连接时

间，pipeline则是以打包批量的形式执行命令，图4是执行5000次set操作的响应时间对

比：

select * from cc where dd=(DATE_SUB(CURDATE(),INTERVAL 1 DAY))1

1 select count(distinct left(pinyin_initial,3))/count(*) as sel3,2

3 count(distinct left(pinyin_initial,4))/count(*) as sel4,4

5 count(distinct left(pinyin_initial,5))/count(*) as sel5,6

7 count(distinct left(pinyin_initial,6))/count(*) as sel6,8

9 count(distinct left(pinyin_initial,7))/count(*) as sel710

11 from city;12

ALTER TABLE `city` ADD INDEX `index_on_pinyinInitial` USING BTREE

(pinyin_initial(3));

1

图4 Jedis pipeline性能测试结果

七、订单数据冷热分离

随着业务的持续发展，订单表的数据会越来越多。按我们现在日订单量20万单预估，月

订单量则为600万单，年订单量则达到7200万单，而且日订单量还在不断的增加，用不

了多久，数据量就会超过MySQL的极限。

一开始我们考虑使用分布式数据库的方案，对订单表进行水平切分，使用订单号进行

hash，将订单数据切分到多张表上。 进一步分析后发现，订单数据具有明显的冷热不

均的特点，即刚刚创建的订单是热数据，不同应用以各种方式访问修改这些订单。经过

一段时间以后，特别是订单完成后，订单访问频率急剧降低，而且只有订单查询这一种

操作。于是我们考虑采取冷热数据分离的策略，以控制热库中数据总量，保障订单表数

据量始终维持在一个可以接受的范围内，进而提供稳定的数据访问性能。订单数据冷热

分离方案如图5。

图5订单数据冷热分离

八、系统性能监控

性能测试和性能优化虽然对系统做了充分的改进，但是实际线上性能表现究竟如何，出

现紧急性能问题时如何快速应对，还必须要对生产环境进行性能监控。在此简要列举一

些宅米的性能监控报警要点：

除了系统自身监控，很多系统故障和性能问题会直接反应到业务上。如果系统响应缓慢

甚至宕机，那么实时订单量也会受到影响，因此监控实时交易也可以发现系统问题。图

6是实时交易监控图，在这里例子中，21:33订单量突然降到零，虽然系统监控指标正

常，但是可以断定系统必定出了问题，马上打开应用日志查看，发现有个Bug导致某个

外部资源死锁，立刻手工释放该资源，系统恢复正常。

图6实时订单监控

九、总结

性能问题是实打实的问题，解决办法也应该针对具体问题各个击破。通过性能测试了解

系统现状，通过瓶颈分析发现具体问题，针对具体问题寻找解决方案，实现解决方案再

进行性能测试，整个性能优化形成闭环，系统得以持续优化。

经过一系列各种性能优化，虽然宅米主要系统性能现阶段能够满足需求，但是技术永远

要走到业务的前面，才能在业务增长以后从容应对。而初创互联网公司的野蛮成长速

度，永远也不要猜测，技术必须要做好充分准备，才能不拖业务的后腿，从容应对各种

局面。

