
JVM垃圾回收

JVM不但可以管理内存，还可以对内存进⾏⾃动垃圾回收。所谓⾃动垃圾回收就是将JVM堆中

的已经不再被使⽤的对象清理掉，释放宝贵的内存资源。那么要想进⾏垃圾回收，⾸先⼀个问

题就是如何知道哪些对象是不再被使⽤的，可以清理的呢？

JVM通过⼀种可达性分析算法进⾏垃圾对象的识别，具体过程是：从线程栈帧中的局部变量，

或者是⽅法区的静态变量出发，将这些变量引⽤的对象进⾏标记，然后看这些被标记的对象是

否引⽤了其他对象，继续进⾏标记，所有被标记过的对象都是被使⽤的对象，⽽那些没有被标

记的对象就是可回收的垃圾对象了。所以你可以看出来，可达性分析算法其实是⼀个引⽤标记

算法。

进⾏完标记以后，JVM就会对垃圾对象占⽤的内存进⾏回收，回收主要有三种⽅法。

第⼀种⽅式是清理：将垃圾对象占据的内存清理掉，其实JVM并不会真的将这些垃圾内存进⾏

清理，⽽是将这些垃圾对象占⽤的内存空间标记为空闲，记录在⼀个空闲列表⾥，当应⽤程序

需要创建新对象的时候，就从空闲列表中找⼀段空闲内存分配给这个新对象。

但这样做有⼀个很明显的缺陷，由于垃圾对象是散落在内存空间各处的，所以标记出来的空闲

空间也是不连续的，当应⽤程序创建⼀个数组需要申请⼀段连续的⼤内存空间时，即使堆空间

中有⾜够的空闲空间，也⽆法为应⽤程序分配内存。

第⼆种⽅式是压缩：从堆空间的头部开始，将存活的对象拷⻉放在⼀段连续的内存空间中，那

么其余的空间就是连续的空闲空间。

第三种⽅法是复制：将堆空间分成两部分，只在其中⼀部分创建对象，当这个部分空间⽤完的

时候，将标记过的可⽤对象复制到另⼀个空间中。JVM将这两个空间分别命名为from区域和

to区域。当对象从from区域复制到to区域后，两个区域交换名称引⽤，继续在from区域创建

对象，直到from区域满。

下⾯这系列图可以让你直观地了解JVM三种不同的垃圾回收机制。

回收前：

清理：



压缩：

复制：

JVM在具体进⾏垃圾回收的时候，会进⾏分代回收。绝⼤多数的Java对象存活时间都⾮常短，

很多时候就是在⼀个⽅法内创建对象，对象引⽤放在栈中，当⽅法调⽤结束，栈帧出栈的时

候，这个对象就失去引⽤了，成为垃圾。针对这种情况，JVM将堆空间分成新⽣代（young）

和⽼年代（old）两个区域，创建对象的时候，只在新⽣代创建，当新⽣代空间不⾜的时候，

只对新⽣代进⾏垃圾回收，这样需要处理的内存空间就⽐较⼩，垃圾回收速度就⽐较快。

新⽣代⼜分为Eden区、From区和To区三个区域，每次垃圾回收都是扫描Eden区和From区，

将存活对象复制到To区，然后交换From区和To区的名称引⽤，下次垃圾回收的时候继续将存

活对象从From区复制到To区。当⼀个对象经过⼏次新⽣代垃圾回收，也就是⼏次从From区复

制到To区以后，依然存活，那么这个对象就会被复制到⽼年代区域。

当⽼年代空间已满，也就是⽆法将新⽣代中多次复制后依然存活的对象复制进去的时候，就会

对新⽣代和⽼年代的内存空间进⾏⼀次全量垃圾回收，即Full GC。所以根据应⽤程序的对象

存活时间，合理设置⽼年代和新⽣代的空间⽐例对JVM垃圾回收的性能有很⼤影响，JVM设置

⽼年代新⽣代⽐例的参数是-XX:NewRat io。

JVM中，具体执⾏垃圾回收的垃圾回收器有四种。



第⼀种是 Serial 串⾏垃圾回收器，这是JVM早期的垃圾回收器，只有⼀个线程执⾏垃圾回

收。

第⼆种是 Parallel 并⾏垃圾回收器，它启动多线程执⾏垃圾回收。如果JVM运⾏在多核CPU

上，那么显然并⾏垃圾回收要⽐串⾏垃圾回收效率⾼。

在串⾏和并⾏垃圾回收过程中，当垃圾回收线程⼯作的时候，必须要停⽌⽤户线程的⼯作，否

则可能会导致对象的引⽤标记错乱，因此垃圾回收过程也被称为stop the world，在⽤户视⻆

看来，所有的程序都不再执⾏，整个世界都停⽌了。

第三种 CMS 并发垃圾回收器，在垃圾回收的某些阶段，垃圾回收线程和⽤户线程可以并发运

⾏，因此对⽤户线程的影响较⼩。Web应⽤这类对⽤户响应时间⽐较敏感的场景，适⽤CMS

垃圾回收器。

最后⼀种是 G1 垃圾回收器，它将整个堆空间分成多个⼦区域，然后在这些⼦区域上各⾃独⽴

进⾏垃圾回收，在回收过程中垃圾回收线程和⽤户线程也是并发运⾏。G1综合了以前⼏种垃

圾回收器的优势，适⽤于各种场景，是未来主要的垃圾回收器。


