
Software and Services Group

Beyond Hive: Standard SQL on Hadoop

‹#›
Software and Services Group

Agenda

Introduce of “Project Panthera ASE”

Design and Architecture

Performance

Test Suite

Summary

2

‹#›
Software and Services Group

SQL in Hadoop Eco-system

Hive

Impala

Presto

Phoenix

Shark

…

3

‹#›
Software and Services Group

Full Analytic SQL Support for Hadoop Needed

Full SQL support for OLAP
• Required in modern business application environment

– Business users
– Enterprise analytics applications
– Third-party tools (such as query builders and BI applications)

Hive – THE Data Warehouse for Hadoop
• HiveQL: a SQL-like query language (subset of SQL with extensions)

– Significantly lowers the barrier to MapReduce

• Still large gaps with full analytic SQL support
– Multiple-table SELECT statement, subquery in WHERE and HAVING clauses, etc.
– INTERSECT, MINUS, UNION, Natural Join, etc.

4

‹#›
Software and Services Group

Project Panthera ASE

Our open source efforts to enable better analytics capabilities on
Hadoop

• Built on top of Hive
• Provide full SQL support for OLAP
• Better integration with existing infrastructure using SQL
• Etc.

5

‹#›
Software and Services Group

Agenda

Introduce of “Project Panthera ASE”

Design and Architecture

Performance

Test Suite

Summary

6

‹#›
Software and Services Group

Hive Architecture

7

‹#›
Software and Services Group

An analytical SQL engine for MapReduce

The anatomy of a query processing engine

8

Parser Semantic Analyzer
(Optimizer) ExecutionQuery

AST (Abstract
Syntax Tree) Execution Plan

Hive
Parser

Hive-AST

HiveQL

DriverQuery

Our SQL engine for MapReduce

*https://github.com/porcelli/plsql-parser

(Open
Source)

SQL
Parser*

SQL-
AST

SQL-AST
Transformer &

Translator
Multi-Table

SELECT
Subquery
Unnesting

…

Hive Semantic

Analyzer
Hadoop

MR
SQL

Hive-
AST

‹#›
Software and Services Group

Overall Architecture

SQL-AST

SQL-AST

1. Query Transformation

Hive-AST

2. Query Translation

1. Query Transformation
• Syntax Transformations

– Multiple-table Selection Transformation
– Subquery Unnesting

• Build Filter Block Tree
• AST Transformation

– Other Transformations

• Alias Fixing

2. Query Translation Stage
• Do nearly node-to-node mapping from SQL-AST to

Hive-AST

Parsing

Semantic Analysis

SQL -> Hive AST
Translator

‹#›
Software and Services Group

Multiple Table Selection

Example Query
• SELECT * FROM t1, t2, t3;
• SELECT COUNT(*) FROM STAFF1,WORKS1,PROJ1 WHERE

STAFF1.EMPNUM = 'E9' AND STAFF1.EMPNUM = WORKS1.EMPNUM
AND PROJ1.PNUM = WORKS1.PNUM;

Solution: In general , translate multi-table selection to cross
JOIN. If condition is equal expressions, optimized it to inner
join e.g.

• SELECT * FROM t1 CROSS JOIN t2 CROSS JOIN t3;
• SELECT COUNT(*) FROM STAFF1 JOIN WORKS1 ON

STAFF1.EMPNUM = WORKS1.EMPNUM JOIN PROJ1 ON PROJ1.PNUM
= WORKS1.PNUM WHERE STAFF1.EMPNUM = 'E9';

‹#›
Software and Services Group

SubQ Unnesting - Filter Definition
Filters are SQL conditions used in WHERE/HAVING clauses. Each filter returns TRUE or
FALSE on an input row and it determines whether or not the input row is qualified for
further processing. Filter is defined as below:

• Filter := SimpleFilter | Filter AND Filter | Filter OR Filter | NOT Filter

• SimpleFilter := SimpleNormalFilter | SimpleSubQueryFilter

• SimpleNormalFilter :=
– SimpleExpression [>|<|>=|<=|!=|=] SimpleExpression
– | SimpleExpression IS NULL | SimpleExpression IS NOT NULL
– | SimpleExpression IN (SimpleExpression List) | SimpleExpression NOT IN (SimpleExpression List)
– | All other expressions that returns Boolean (e.g. Pattern matching condition (LIKE…ESCAPE clause), range

condition (BETWEEN…AND clause), case condition (CASE…WHEN clause), etc.)
– SimpleNormalFilter which refers to column that does not belongs to the direct enclosing query, is called

CorrelatedSimpleNormalFilter, otherwise it is called UncorrelatedSimpleNormalFilter

• SimpleSubQueryFilter :=
– SimpleExpression [>|<|>=|<=|!=|=] SubQuery
– | SubQuery [>|<|>=|<=|!=|=] SimpleExpression
– | ISNULL (SubQ) | ISNOTNULL (SimpleExpression)
– | SimpleExpression IN (SubQuery) | SimpleExpression NOT IN (SubQuery)
– | SimpleExpression [>|<|>=|<=|!=|=] [ALL|SOME|ANY] (SubQuery)
– | Exists (SubQuery)

• SimpleExpression :=
– Literal (e.g. 1,2, “abc”)
– |ColumnRef (e.g a, t1.b,db.t2.c)
– | UDF/UDAF of SimpleExpression (e.g. substr(a,1,2), sin(), regex_replace(substr(…)), etc.)

‹#›
Software and Services Group

SubQ Unnesting - Filter Definition

• UncorrelatedNormalFilter :=
UncorrelatedSimpleNormalFilter
| NOT UncorrelatedNormalFilter
| UncorrelatedNormalFilter AND UncorrelatedNormalFilter
| UncorrelatedNormalFilter OR UncorrelatedNormalFilter

• CorrelatedNormalFilter :=
CorrelatedSimpleNormalFilter
| NOT CorrelatedNormalFilter
| CorrelatedNormalFilter AND CorrelatedNormalFilter
| CorrelatedNormalFilter OR CorrelatedNormalFilter

‹#›
Software and Services Group

SubQ Unnesting Specification

EXISTS:
• W/ Correlated Filter: Select a from t1 where exists (select b from t2

where t2.c = t1.c) à select a from t1 left semi join (select b as col0,
c as col1 from t2) subq1 on subq1.col1=t1.c

• W/O Correlated Filter: Select a from t1 where exists (select b from
t2 where t2.c > 100) à select a from t1 left semi join (select b from
t2 where t2.c > 100) subq1

13

‹#›
Software and Services Group

Exists Case Study

14

select s_grade from staff where exists (select w_hours
from works where s_empnum=w_empnum);

‹#›
Software and Services Group

Exists Case Study

15

select panthera_0.panthera_1 as s_grade from (select s_grade as panthera_1,
s_empnum as panthera_4, s_empnum from staff) panthera_0 left semi join (select
w_hours, w_empnum as panthera_3 from works) panthera_2 on
panthera_0.panthera_4 = panthera_2.panthera_3 where true ;

‹#›
Software and Services Group

SubQ Unnesting Specification

16

NOT EXISTS:
• W/ Correlated Filter: Select a from t1 where not exists (select b from

t2 where t2.c = t1.c) à select a from ((select t1._rowid, a from t1)
subq2 MINUS (select distinct t1._rowid, a from t1 join (select b as
col1, c as col2 from t2) subq1 on subq1.col2 = t1.c) subq3) subq4

• W/O Correlated Filter: Select a from t1 where not exists (select b
from t2 where t2.c > 100) à select a from t1 join (select count(*)
as count from (select b from t2 where t2.c > 100) subq1) subq2 on
subq2=0;

‹#›
Software and Services Group

SubQ Unnesting Specification

IN:
• W/ Correlated Filter: Select a from t1 where b in (select b from t2

where t2.c = t1.c) à select subq2.col1 from (select t1._rowid as
col0, t1.a as col1, t1.b as col2 from t1 left semi join (select b as
col1, c as col2 from t2) subq1 where subq1.col2 = t1.c) subq2

• W/O Correlated Filter: Select a from t1 where b in (select b from t2
where t2.c > 100) à select a from t1 left semi join (select b as col0
from t2 where t2.c > 100) subq1 on subq1.col0=t1.b

17

‹#›
Software and Services Group

SubQ Unnesting Specification

NOT IN:
• W/ Correlated Filter: Select a from t1 where b not in (select b from

t2 where t2.c = t1.c) à select a from (select t1._rowid, a from t1
MINUS (select t1_rowid, a from t1 where b in (select b from t2
where t2.c = t1.c)subq1)subq2)subq3

• W/O Correlated Filter: Select a from t1 where b not in (select b from
t2 where t2.c > 100) à select a from t1 from t1 cross join (select
collect_set(b) as b1 from t2 where t2.c > 100) subq1 where not
array_contains(subq1.b1, t1.b);

18

‹#›
Software and Services Group

SubQ Unnesting Case Study

19

select s_grade from staff where s_city not in (select p_city
from proj where s_empname=p_pname) à

select panthera_10.panthera_1 as s_grade from (select panthera_1, panthera_4, panthera_6, s_empname,
s_city from (select s_grade as panthera_1, s_city as panthera_4, s_empname as panthera_6, s_empname as
s_empname, s_city as s_city from staff) panthera_14 left outer join (select panthera_16.panthera_7 as
panthera_7, panthera_16.panthera_8 as panthera_8, panthera_16.panthera_9 as panthera_9,
panthera_16.panthera_12 as panthera_12, panthera_16.panthera_13 as panthera_13 from (select
panthera_0.panthera_1 as panthera_7, panthera_0.panthera_4 as panthera_8, panthera_0.panthera_6 as
panthera_9, panthera_0.s_empname as panthera_12, panthera_0.s_city as panthera_13 from (select s_grade
as panthera_1, s_city as panthera_4, s_empname as panthera_6, s_empname, s_city from staff) panthera_0
left semi join (select p_city as panthera_3, p_pname as panthera_5 from proj) panthera_2 on
(panthera_0.panthera_4 = panthera_2.panthera_3) and (panthera_0.panthera_6 = panthera_2.panthera_5)
where true) panthera_16 group by panthera_16.panthera_7, panthera_16.panthera_8,
panthera_16.panthera_9, panthera_16.panthera_12, panthera_16.panthera_13) panthera_15 on
((((panthera_14.panthera_1 <=> panthera_15.panthera_7) and (panthera_14.panthera_4 <=>
panthera_15.panthera_8)) and (panthera_14.panthera_6 <=> panthera_15.panthera_9)) and
(panthera_14.s_empname <=> panthera_15.panthera_12)) and (panthera_14.s_city <=>
panthera_15.panthera_13) where ((((panthera_15.panthera_7 is null) and (panthera_15.panthera_8 is null))
and (panthera_15.panthera_9 is null)) and (panthera_15.panthera_12 is null)) and
(panthera_15.panthera_13 is null)) panthera_10 ;

‹#›
Software and Services Group

SubQ Unnesting Case Study

20

Before Transform:

After Transform:

‹#›
Software and Services Group

Translater

SQL AST à HIVE AST:

21

‹#›
Software and Services Group

Agenda

Introduce of “Project Panthera ASE”

Design and Architecture

Case study

Performance

Test Suite

Summary

22

‹#›
Software and Services Group

Panthera ASE performance

HIVE-600 (https://issues.apache.org/jira/browse/HIVE-600)
– Facebook manually transformed TPC-H queries
– Can run directly on HIVE

23

‹#›
Software and Services Group

Agenda

Introduce of “Project Panthera ASE”

Design and Architecture

Case study

Performance

Test Suite

Summary

24

‹#›
Software and Services Group

Test suite

Consists of 1048 DQL queries

• 1026 NIST SQL queries (http://www.itl.nist.gov/div897/ctg/sql_form.htm)
─ A SQL test suite developed jointly by U.S. National Institute of Standards and Technology, National

Computing Centre Limited (NCC) in the U.K, and Computer Logic R&D in Greece
─ Help evaluate SQL implementation's conformance, as specified in ANSI X3.135-1992 and ISO/IEC

9075:1992
─ Used among RDBMS (e.g. Oracle, Derby)

• All 22 TPC-H queries (http://www.tpc.org/tpch/)
─ A decision support benchmark. It consists of a suite of business oriented ad-hoc queries and concurrent

data modifications.
─ The queries and the data populating the database have been chosen to have broad industry-wide relevance.
─ Used by Hive, Impala and etc.

‹#›
Software and Services Group

NIST Test

NIST SQL Test Suite Version 6.0
• http://www.itl.nist.gov/div897/ctg/sql_form.htm
• A widely used SQL-92 conformance test suite
• Ported to run under both Hive and the SQL engine

– SELECT statements only
– Run against Hive/SQL engine and a RDBMS to verify the results

26

Ported Query#
From NIST

Hive 0.9 Panthera AES
Passed
Query#

Pass Rate
Passed
Query#

Pass Rate

All queries 1026 777 75.7% 973 94.8%
Subquery related
queries

87 0 0% 78 89.7%

Multiple-table
select queries

31 0 0% 27 87.1%

‹#›
Software and Services Group

Nightly Test Report Sample (Panthera ASE)

Test Group Tests Failures Errors Success rate Time (s)

NIST(TPC-H) 22 0 0 100.00% 2451.706

NIST(SubQuery) 87 9 0 89.66% 1543.257

NIST(Multi Table
Query)

31 4 0 87.10% 480.142

NIST(All) 1048 53 0 94.94% 9619.403

Hive-SQL92 424 15 0 96.46% 12362.811

Hive 2745 (+882 878 4) 57 0 97.92% 39660.275

The following result is compared against Last Nightly Report
JUnit Test Summary

detailed info... compare results...

Platform CentOS 6.2

Build Result Complete

Tests 125/4217 Failed

Git Repository ssh://git-ccr-1.devtools.intel.com:29418/sotc_cloud-hive

Branch team-dev

Revision de628310937fab40e411bcfad3e1127785d1e506

NIST Failures 42 compile errors

‹#›
Software and Services Group

Summary

Panther ASE can perfectly support standard SQL

Nearly no performance loss

Integrated into IDH 2.5, 2.6, 3.1

Open source URL: https://github.com/intel-hadoop/project-panthera-ase

28

‹#›
Software and Services Group

29

Thank You!
Q&A

