
演讲者 @TimYang

微博架构与平台安全

微博架构发展

• 新浪微博从 0 ~ 50,000,000 ⽤户
• 技术架构经历了 3 个阶段

第 1 版

技术特点

• 微博本质是解决发表/订阅问题
• 第 1 版采⽤推消息模式，将发表/订
阅简化成 insert / select 问题

技术细节

• 典型 LAMP 架构
• MySQL：单库单表, MyISAM

• MPSS (Multi-Port Single Server)

快速成⻓

• ⽤户快速增⻓
• 出现发表延迟现象，尤其是明星⽤
户

架构演变
• 分发推送是造成发表延迟⾸因
• 模式改进

• 数据规模增⼤也带来⼀定延迟
• 规模增⼤：数据拆分
• 锁表问题：更改引擎
• 发表过慢：异步⽅式

第 2 版

投递模式优化

• 推模式改进，不需要推送到所有⽤
户

• 存储及发表峰值压⼒减轻
• 投递延迟减⼩

数据拆分

• 优先按时间维度拆分
• 内容和索引分开存放
• 内容使⽤ key-value ⽅式存储

(NoSQL)

• 索引由于分⻚访问，拆分有挑战

异步处理

• 发表异步化
• 发表速度及可靠性得到提⾼
• 使⽤ MemcacheQ

• 增加 stats queue，适合⼤规模运维

技术细节

• InnoDB 引进，避免锁表烦恼
• PHP 中 libmemcached 代替

memcache

• 在⾼并发下稳定性极⼤提⾼

⾼速发展
• 系统问题
• 单点故障、“雪崩”

• 访问速度，国内复杂⺴络环境
• 数据压⼒及峰值
• MySQL 复制延迟、慢查询
• 热⻔事件微博发表量，明星评论及粉丝

如何改进
• 系统⽅⾯

• 允许任意模块失败
• 静态内容 CDN 加速

• 数据压⼒及峰值
• 将数据、功能、部署尽可能拆分
• 提前容量规划

平台化需求
• Web 系统
• 有⽤户⾏为才有请求

• API 系统
• 轮询请求
• 峰值不明显
• ⽤户⾏为很难预测

• 系统规模持续增⼤
• 平台化需求

• 新的架构如何设计？

• “Break large complex systems down into
many services... google.com search
touches 100s of services (ads, web
search, books, news, spelling correction...)”

• - Jeff Dean, Google Fellow

服务化

•服务→接⼝→应⽤

第 3 版

平台服务

• 平台服务和应⽤服务分开，模块隔离
• 新微博引擎，实现 feed cache 分层
• 关系多维度索引结构，性能极⼤提⾼
• 计数服务改成基于偏移，更⾼的⼀致
性、低延迟

基础服务

• DB 冷热分离等多维度拆分
• 图⽚等存储去中⼼化
• 动态内容⽀持多 IDC 同时更新

⾼性能架构

• 50,000,000 ⽤户使⽤新浪微博
• 最⾼发表 3,000 条微博 / 秒
• 姚晨发表⼀条微博，会被 3,689,713
粉丝读到（11 ⽉ 10 ⽇数据）

问题本质

• 解决⾼访问量、海量数据规模下
• 易于扩展、低延迟
• ⾼可⽤
异地分布能⼒

• 每天数⼗亿次Web及接⼝请求
• 请求内容随时变化，结果⽆法 cache

• 如何扩展？

思路

• 去状态，可请求服务单元中任意节点
• 去中⼼化，避免单点及瓶颈
• 可线性扩展，如

• 100 万⽤户，10 台服务器

• 1000 万⽤户，100 台服务器

• 减少模块耦合

实时性

⾼性能系统具备低延迟、⾼实时性
实时性核⼼是让数据离 CPU 最近，避
免磁盘 IO

“CPU 访问 L1 就像从书桌拿⼀本书，L2 是从
书架拿⼀本书，L3 是从客厅桌⼦上拿⼀本书，
访问主存就像骑⻋去社区图书馆拿⼀本书。”

-余锋@ ecug 2010

淘宝⺴核⼼系统专家，Erlang技术专家

微博 cache 设计

⾼可⽤
• 好的架构具有⾼可⽤性
• 业界
• Amazon S3: 99.9%

• Amazon EC2: 99.95%

• Facebook: n/a

• 微博平台 ~ 99.95% (5 ⼩时 / 年)

如何达到
• 容量规划
• 图表

• 监控及 admission control...

• 接⼝及资源监控, 7x24

• 业务回环测试, 监测业务逻辑有效性
• 集成测试

图表

通过图表
了解系统容量

接⼝监控

• curl / 各地请求情况及响应时间
• 流量异常 / access log

• non-200 结果 / 失败率 / exceptions

• 将监控指标量化
• 类似 mysql seconds behind master

• “Many services are written to alert
operations on failure and to depend upon
human intervention for recovery, about
20% of the time they will make mistakes.

• Designing for automation.”
• - James Hamilton, VP of Amazon

⾃动化

• ⼤规模互联⺴系统运作需要尽可能⾃动化
• 发布及安装
• 服务启⽤、停⽌
• 故障处理
• 前提，去状态化，允许单点故障及重启

• “System administration at Google usually
have 1 week of "on call" duty, and the
other 5 weeks are spent making
improvements to make the on call
portion more optimized, automated, and
trouble-free”

• - Tom Limoncelli @ Everything Sysadmin

• Lumeta Corporation总监，⻉尔实验室专家

微博系统运转依赖⼤量⾃动化⼯具
⼯具在持续改进并增加中⋯⋯

• ⾼可⽤性还有异地分布的需求
• 在国内⺴络环境下，IDC 灾难、机
房检修维护会导致服务中断

• ⽤户就近访问可提⾼速度

• 静态内容分布采⽤ CDN 技术，成
熟

• 动态内容分布是业界难点
• 核⼼是数据的分布式存储

• 理想的分布式存储产品
• ⽀持海量规模、可扩展、⾼性能、低
延迟、⾼可⽤性

• 多机房分布，异地容灾
• 调⽤简单，具备丰富数据库特性

分布式存储
需要解决多对多的数据复制同步
及数据⼀致性

复制策略
• Master / Slave

• 实现简单，master 有单点⻛险
• Multi-Master

• 合并多处写，异步，最终⼀致性
• 需要应⽤避免冲突

• Paxos：强⼀致性，延迟⼤

• Multi-Master

• Web 应⽤多地区同步的最佳策略
• 没有现成成熟的产品

微博⽅案

• 通过消息⼲播⽅式将数据多地分
布

• 类似 Yahoo! Message Broker

• “We use YMB for replication for 2 reasons.

• 1. YMB ensure msgs are not lost before they
are applied to the db.

• 2. YMB is designed for wide-area replication.
This isolates individual PNUTS clusters from
dealing with update between regions”

• PNUTS: Yahoo!’s Hosted Data Serving Platform

新推送架构

现状
• API ⼤部分请求都是为了获取最新
数据

• 重新思考 Rest API

• ⼤部分调⽤都是空返回
• ⼤部分时间在处理不必要的询问
• ⽆法实时投递
• 存在请求数限制（rate limit）

如何解决

• 新⼀代推送接⼝(Stream API)

• 采⽤推送的⽅式
• 有新数据服务器⽴即推送给调⽤⽅
• ⽆数据则不消耗流量
• 客户端实现更简单

技术特点

• 低延迟，从发表到客户端接收1秒内完成
• ⾼并发⻓连接服务

推送架构

• 为什么先持久化
• KISS，Keep It Simple and Stupid

• 测试表明持久⼏乎不增加延迟开销
• batch insert

• cursor read

内部细节

• Stream Buffer

• 保存⽤户最近数据
• 保存客户端断线重连之间下⾏数据

平台安全

• 由于接⼝开放，需要防范各种恶意
⾏为
• 垃圾内容
• 垃圾粉丝
• 恶意⾏为

内容安全

• 微博平台需要
• 为⽤户提供安全及良好体验的应⽤
• 为开发者营造公平的环境

• 接⼝需要清晰的权限控制及安全规
则

接⼝安全

• Auth层
• 访问需要AppKey

• 需要 OAuth 授权

• 权限层
• 流量控制、权限

• 架构就是将复杂问题抽象简单并
解决

• 下⼀代微博架构，期待您的参与
• Join us! @TimYang

