
1

UVA240 Variable Radix Huffman Encoding

题目：可变基数霍夫曼编码
哈夫曼编码是一种最优编码方法。根据已知源字母表中字符出现的频率，将源字母表中

字符编码为目标字母表中字符，最优的意思是编码信息的平均长度最小。在该问题中，你需

要将 N 个大写字母（源字母 S1…SN，频率 f1…fN）转换成 R 进制数字（目标字母 T1…TR）。

当 R=2 时，编码过程分几个步骤，每个步骤中，有两个最低频率的源字符 S1、S2，合并

成一个新的“组合字母”，频率为 S1、S2 的频率之和。如果最低频率和次低频率相等，则字

母表中最早出现的字母被选中。经过一系列的步骤后，最后只剩两个字母合并，每次合并的

字母分配一个目标字符，较低频率的分配 0，另一个分配 1。（如果一个合并中，每个字母有

相同的频率，最早出现的分配 0，出于比较的目的，组合字母的值为合并中最早出现的字母

的值。）源符号的最终编码由每次形成的目标字符组成。

目标字符以相反顺序连接，最终编码序列中第一个字符为分配给组合字母的最后一个目

标字符。

下面的两个插图展示了 R = 2 的过程。

当 R>2 时，每一个步骤分配 R 个符号。由于每个步骤将 R 个字母或组合字母合并为一

个组合字母，并且最后一次合并必须合并 R 个字母和组合字母，源字母必须包含 k*(R-1)+R

个字母， k 为整数。由于 N 可能不是很大，因此必须包括适当数量具有零频率的虚拟字母。

这些虚拟的字母不包含在输出中。在进行比较时，虚拟字母晚于字母表中的任何字母。

霍夫曼编码的基本过程与 R = 2 情况相同。在每次合并中，将具有最低频率的 R 个字母

合并，形成新的组合字母，其频率等于组中包括的字母频率的总和。被合并的字母被分配目

标字母符号 0 到 R-1。0 被分配给具有最低频率的组合中的字母，1 被分配给下一个最低频

率，等等。 如果组中的几个字母具有相同的频率，则字母表中最早的字母被分配较小的目

标符号，依此类推。

下图说明了 R = 3 的过程：

输入：

输入将包含一个或多个数据集，每行一个。 每个数据集都包含一个整数值 R（2≤R≤10），

2

整数值 N（2≤R≤26）和整数频率 f1…fN，每个都在 1 到 999 之间。

整个输入的数据结束是 R 为 0; 它不被认为是单独的数据集。

输出：

对于每个数据集，在一行上显示其编号（编号从 1 开始按顺序排列）和平均目标符号长

度（四舍五入到小数点后两位）。 然后显示 N 个源字母和相应的霍夫曼代码，每行一个字

母和代码。在每个测试用例后打印一个空行。

题解：

可变基哈夫曼编码，普通的哈夫曼编码为 R=2。

举例：

3 4 5 7 8 15 // R=3，N=4，A: 5 B: 7 C: 8 D: 15

6

5

A B

5 7

12

0

补虚拟字符

C D

8 151

0 1 2

?

0

1

2 3

4 0

0

0

值

频率

算法设计：

（1） 先补充虚拟字符，使 N 满足 k*(R-1)+R，k 为整数，即(N-R)%(R-1)=0;

while((n-R)%(R-1)!=0)//补虚拟结点

 n++;

（2） 定义结点结构体，包含 3 个域：int frequency,va,id;//频率，优先值，序号

（3） 定义优先级：

bool operator <(const node &b) const {

 if(frequency==b.frequency)

 return va>b.va;

 return frequency>b.frequency;

}

（4） 将所有结点入优先队列

for(int i=0;i<n;i++)//所有结点入队

 Q.push(node(fre[i],i,i));

（5） 构建哈夫曼树

c=n;//新合成结点编号

 int rec=0;//统计所有和值

 while(Q.size()!=1)//剩余一个结点停止合并

 {

 int sum=0,minva=n;

 for(int i=0;i<R;i++)

 {

 sum+=Q.top().frequency;//统计频率和

 minva=min(Q.top().va,minva);//求最小优先值

 father[Q.top().id]=c;//记录双亲

 code[Q.top().id]=i;//记录编码

 Q.pop(); //出队

 }

 Q.push(node(sum,minva,c));//新结点入队

 c++;

 rec+=sum;

3

 }

 c--;

 printf("Set %d; average length %0.2f\n",cas,1.0*rec/total);

（6） 进行哈夫曼编码

for(int i=0;i<N;i++)

 {

 int cur=i;

 string s;

 while(cur!=c)

 {

 s.push_back(code[cur]+'0');

 cur=father[cur];

 }

 reverse(s.begin(),s.end());//翻转编码

 cout<<" "<<char('A'+i)<<": "<<s<<endl;

 }

特别注意：需要补虚拟结点，值和存储序号不同。

