Course #10

An Interactive Introduction to OpenGL
Programming
Ed Angel

Dave Shreiner
Vicki Shreiner

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

OpenGL is the most widely available graphics programming library, and is used
for almost every discipline of computer graphics: research, scientific visualization,
entertainment and visual effects, computer-aided design, interactive gaming, and
many more. This course provides an accelerated introduction to creating
applications using OpenGL.

The course takes a beginning OpenGL programmer from the basics of what's
required for OpenGL operation, through geometric modeling and transformations,
thoroughly discusses topics such as lighting, depth buffering, alpha blending, and
texture mapping, and concludes with a brief introduction to advanced study
topics such as the stencil and accumulation buffers, and display lists.

Course Prerequisites

Our only prerequisite is that students should be able to read simple computer
programs written in the C computer language.

The course does present a few concepts from linear algebra (vector notation and
matrix multiplication), but knowledge of those subjects is not required for the
student to successfully understand the material. Additionally, although not a
course on computer graphics, we generally do introduce and define most major
concepts (e.g., depth buffering, simulated lighting, etc.)

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Table of Contents

L= P PP 1
WEICOMIE ... ettt e e e e et et e e e e e e e eeeenes 2
Downloading Our TULONAISeee e e e e e 3
What Is OpenGL, and What Can It DO for Me7?oovvveiiiiiiiiiiiiiieiiee e 4
OpenGL and Its Related APISuuiiie e 5
REIALEA APIS....ceeeee et e et a e e aaaae 6
General Structure of an OpenGL Programccoovveiiiiiiieieeeeeeeeiciee e 7
AN OPENGL PrOGIam .. .ccuei et e e e et e e e et e e e e e e e eerna e eeeee 8
AN OpenGL Program (CONTO.)cooeeeeeeeeeeeeeeeeeeeeeeeee e 9
An OpenGL Program (CONT'A.)cccooiiiiiiiiiiee e e eeeens 10
OpenGL Command FOIMALSuuuuuimmiiiiiiiiiiiiiiiiiiie e 11
What's Required in YOUr Programsuuuiiiiieeeiiiiiiiiiieie e 12
(] U I 7= 1o P 13
GLUT Callback FUNCHIONS.......uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiriiieneniseeneanesneenennnseeenneeeenne 14
What can OpPenGL DIaW?ccooiiiieieeeeeeeeeeeeee e 15
OpenGL Geometric PrIMItIVESiiii e 16
Specifying Geometric PriMItIVESuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeieeeeeenees 17
How OpenGL Works: The Conceptual Model............cccooeeeeiiiiiiiiiiiiieeeeeeeeens 18
Controlling OPenGL’S DIaWiNgcceeviiiiiiiiiiiiiiiiiieieieeeeeeeeee et 19
The Power of Setting OpenGL Stateccoiiiieeeiiiiieicee e 20
Setting OPENGL STALEuuuiiiiiiiiiiiiiiiiiiii e 21
Setting OpenGL State (CONT'A.)........uuuiiiiii e e 22
OPENGL AN COIOT ...ttt 23
Shapes TULONAlcooeiiiii e 24
TraNSTOIMALIONS ..o 25
CamEra ANAIOQYcouuriiiie e 26
Camera Analogy and TranSformationseeeeeeeeeieieeeeeeiiiieiieeieieeeeeeeeeeee 27
Coordinate Systems and Transformationscccccevvvviiiiiii e, 28
HOomMogeneous COOrdiNALESccooviiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 29
3D TranSTOrMEALIONSuuuiieiiiiiiiiiiiiiiii e snsnennnnnnne 30
Specifying TranSfOrMAtIONSuuuuuuiiiiiiiiiiiiiiiiiiieie e 31
Programming Transformationseiiiiii i 32
Transformation PIpeline...........oooi i 33
MaAtriX OPEFALIONScceiiieiiiice eeeeeenne 34
Projection TransSformMationccovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 35
Applying Projection Transformationscccooeeeiiiiiiiiiiiiii e 36
Viewing TransformationScooovee oo 37
Projection TULOFIal............ouuuiiiiii e e e e e e eanaes 38
Modeling TransSformMatioNScovvviiiiiiiiiiiiiiieeeeeeeee e 39

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Transformation TULOTIAlevvueiii i 40
Connection: Viewing and Modelingccoooviiiiiiiiiceiiieeece e 41
Compositing Modeling Transformationsceevvvieiiiiieiiiiiiiieiiiiieeeeeeeeeeeee 42
Compositing Modeling Transformations (cont’d.)ccoevviiiiiiieeeieeeeeiinnnnnn. 43
Additional Clipping Plan@s.........ooo oo 44
Animation and Depth BUfEringuuiiiii e 45
Double BUFTEING......coiiiiiiiiiiiiiiee e 46
Animation Using Double BUffering........cccoooioeoiiiiiiiiii i, a7
Depth Buffering and Hidden Surface Removal...........cccccooviviiiiiiiiiiinnnnn. 48
Depth Buffering Using OPeNnGLuuiiiiiiiiiiieeeie e 49
[T | o 1 81 o U 50
Lighting PriNCIPIES .. .o e e e e eeaaens 51
OPENGL SNAAING ...ttt 52
The Modified Phong MOdEel...........coooi oo 53
How OpenGL Simulates Lights...........ccooiieeee 54
10 7= Lot NN o] 4 = 1P 55
Material PrOPEITIESoooiiiiiiiiiiieee e 56
[0 0 AT T [o = PRSPPI 57
Light SOUICES (CONT'D.) ..eiviiiiiiiiiiiiiiiiiieeeeeeeeee ettt 58
TYPES Of LIGNLS .o 59
Turning oN the LIGhTS ... 60
Light Material TUtorialcoooiiieiiiiic e e 61
Controlling a Light'sS POSITIONovviiiiiiiiiiiiiiiiieiiieieeee et 62
Light POSItioN TULOFAluveiiii e e e e e 63
Tips for Better LIGNTiNGccoooeeeeeeeeeeeeeeeee e 64
Imaging and Raster PrimitiVeS. ... 65
Pixel-based PrimitiVes.............oiii i 66
[DG I T o T=1 11 = SRR 67
Positioning IMage PrMItIVES.cooviiiiiiiiiiee e 68
ReNdering IMAQJEScovveviiiiiiii et e et e e e e e e e e e e e e e e eeeannes 69
REAAING PIXIS... .o eeeeeeees 70
Texture Mapping: Part L........coiiiiiiiiiiie e e e e e e e eeanans 71
LT =T o] o1 o TP 72
Texture Mapping and the OpenGL Pipelingccoovvviiiiiiiiiieeeceee 73
TEXIUIE EXAMPIE .oeeiii e 74
APPIYING TEXIUIES ...t e et s e e e e e e e eaat s e e e e e eeennnnes 75
TEXIUIE ODJECIS ..t 76
Texture ODJeCtS (CONT'A.) coviieiiiiiie e 77
Specifying @ TexXture IMageouuuuuiiiiii e 78
Y= o] o1 o = T =t [| SRR 79
Generating Texture COOIdINALEScooeeeiiiiiiiiiiiie et 80
TeXTUIE TULOTIAl ..o 81

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Texture Mapping: PaArt 2. e e e e e e e e e eennees 82
APPIYING TEXIUIES ... e e e e e aenaeas 83
Texture Application Methods ... 84
(1L =T 1Y (oo =S PP 85
MIPMAPPEA TEXIUMESceiiiiiiiiiiiiiieie ettt 86
LAY =V] 1T LY, o o = 87
=)0 (= U g od 1 o] o P 88

AdVaNCed OPENGL TOPICS wuuuiiiiieiiiiiiiiiie ettt e et e e e e e eaeaaaa s 89
Immediate Mode versus Display Listed Rendering.............cccooeeveeiiiiiiiiieeens 90
Immediate Mode versus Display LiStSccooeeeeiiiiiiiiiiiiie e, 91
DISPIAY LISES ... 92
Display LiStS (CONTA.) .oevvriiiiiiiii e e e e e e e eeanaees 93
Display Lists and HierarChycccccciiiiiiiiiieeeeeeee 94
Advanced PriMItIVESccoooe i 95
Alpha: the 4™ Color COMPONENtcvovieieieeeeeeeeeeee e, 96
2] =T o 1o Vo PRSPPI 97
FOg e e 98
oo TR V) (o] = | SRR 99
Multi-pass RENAEING........coooiiiiiiiii 100
N gL (= L=] T o SR 101
OpenGL Pipeling ReVISITEd............uuuiiiiiiiiiiiiiiiiiiieiiieiieee e 102
GEOMELIY PrOCESSING ...vvuiiieeeeeiieieiie e e e ettt e e e e e e e et e e e e e e e e aeeeaannas 103
[EE LS (= 7] SRR 104
Fragment PrOCESSINGcouvuiiiiiiiieeeeeeeei e e e e e e e e e e e e e e e e eeeees 105
S 106
Vertex Shader EXECULION ..., 107
SIMPIe VerteX SNAUENcooi i 108
Vertex Shader APPlICALIONSiviiiiiiiieeici e 109
Example: Vertex Shader TWIStING...........ucoiiiiiiiiiiiiiiiiie e 110
Fragment Shader EXECULIONccoviviiiiiiie e e e 111
Simple Fragment Shader.........ooooiiiiiiiiii e 112
Fragment Shader AppliCAtiONSuuiiiiiiiiiiieiiee e e e e 113
Example: Per Fragment Shading............uuoiiiiiiiiiiiiiiiiii e 114
Linking with APPICALIONvuiiie e e e 115
AccumMUIALION BUFTET ... 116
Accumulation Buffer AppliCatioNSuviiiiiieiiiiiecr e 117
SEENCH BUTTEI ... 118
Getting to the Framebuffer ... 119
AlPNA TS .. e 120
GPUS @NA GLSL ...ttt bbsbnbbebnnnnee 121
SUMMANY [Q & A 122
ON-LiNE RESOUITES. .. uuuuitiiiiiiiiiiiiiiiiiiitibabiaaabbesbeabeb bbb babsaennnnnnnannees 123
BOOKS ... eaaee 124
L= 1 TR o] g @] 211 o 125

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

-vVi-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Introduction to

An Interactive ’

OpenGL SIGGRAPH2007
Programming

Ed Angel
Dave Shreiner
Vicki Shreiner

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Welcome

e Today’s Goals and Agenda

— Describe OpenGL and its uses

— Demonstrate and describe OpenGL’s capabilities
and features

— Enable you to write an interactive, 3D computer
graphics program in OpenGL

OpenGL makes creating interactive, 3D computer-graphics programs simple
and fast. By the end of today’s course, you'll have al the skills and techniques to
make interactive games, drawing programs, or anything else you might imagine
drawing on a computer screen.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Downloading Our Tutorials

http://www.opengdl-redbook.com/s2007/
e Executables and Source Code available
— Linux
—Mac OS X

— Microsoft Windows

The programs we use in the course are freely available for your use and
experimentation. The programs are available pre-compiled for the major operating
systems, and we provide the source code as well, so you can see how OpenGL’s
used in practice.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

What Is OpenGL, and What Can It
Do for Me?

* OpenGL is a computer graphics rendering API

— Generate high-quality color images by rendering with
geometric and image primitives

— Create interactive applications with 3D graphics
— OpenGL is
* operating system independent

* window system independent

OpenGL isalibrary for doing computer graphics. By using it, you can create
interactive applications that render high-quality color images composed of 3D
geometric objects and images.

OpenGL iswindow and operating system independent. As such, the part of your
application which does rendering is platform independent. However, in order for
OpenGL to be able to render, it needs awindow to draw into. Generally, thisis
controlled by the windowing system on whatever platform you are working on.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

OpenGL and Its Related APIs

application program
N N T

OpenGL Motif
widget or similar

software and/or hardware

The above diagram illustrates the rel ationships of the various libraries and
window system components.

Generally, applications which require more user interface support will use a
library designed to support those types of features (i.e., buttons, menu and scroll
bars, etc.) such as Motif or the Win32 API.

Prototype applications, or ones which do not require al the bells and whistles of
afull GUI, may chooseto use GLUT instead because of its simplified programming
model and window system independence.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Related APIs

* GLU (OpenGL Utility Library)

— part of OpenGL

— NURBS, tessellators, quadric shapes, etc.
* AGL, GLX, WGL

— glue between OpenGL and windowing systems
e GLUT (OpenGL Utility Toolkit)

— portable windowing API

— not officially part of OpenGL

GrontL.

As mentioned, OpenGL iswindow and operating system independent. To
integrate it into various window systems, additional libraries are used to modify a
native window into an OpenGL capable window. Every window system hasits own
unique library and functions to do this. Some examples are:

* GLX for the X Windows system, common on Unix platforms
* Cocoa, AGL, and CGL for the Apple Macintosh
* WGL for Microsoft Windows

OpenGL also includes a utility library, GLU, to ssmplify common tasks such as:
rendering quadric surfaces (i.e., spheres, cones, cylinders, etc.), working with
NURBS and curves, and concave polygon tessellation.

Finally to ssimplify programming and window system dependence, we will be
using the freeware library, GLUT. GLUT, written by Mark Kilgard, isapublic
domain window system independent toolkit for making simple OpenGL
applications. It simplifies the process of creating windows, working with eventsin
the window system and handling animation.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

General Structure of an OpenGL
Program

S

Configure

®

and open a e
: Initialize

State Process user
events

OpenGL was primarily designed to be able to draw high-quality images fast
enough so that an application could draw many of them a second, and provide the
user with an interactive application, where each frame could be customized by input
from the user.

The general flow of an interactive application, including OpenGL applications
is:
1. Configure and open awindow suitable for drawing OpenGL into.
2. Initialize any OpenGL state that you will need to use throughout the application.

3. Process any events that the user might have entered. These could include
pressing a key on the keyboard, moving the mouse, or even moving or resizing the
application’s window.

4. Draw your 3D image using OpenGL with values that may have been entered
from the user’s actions, or other data that the program has available to it.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

An OpenGL Program

#include <GL/glut.h>
#include "cube.h"

void main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_ RGBA |
GLUT_ DEPTH);

glutCreateWindow(argv[0]):; Themain part of

init(); the program.
GLUT isused to

glutDisplayFunc(display); open the OpenGL

glutReshapeFunc(reshape); window, and handle

glutMainLoop () ; input from the user.

This dlide contains the program statements for themain () routine of aC
program that uses OpenGL and GLUT. For the most part, all of the programs you
will seetoday, and indeed may of the programs available as examples of OpenGL
programming that use GLUT will look very similar to this program.

All GLUT-based OpenGL programs begin with configuring the GLUT window
that gets opened.

Next, intheroutine init () (detailed on the following slide), “global”
OpenGL stateis configured. By “global”, we mean state that will be left on for the
duration of the application. By setting that state once, we can make our OpenGL
applications run as efficiently as possible.

After initialization, we set up our GLUT callback functions, which are routines
that you write to have OpenGL draw objects and other operations. Callback
functions, if you're not familiar with them, make it easy to have a generic library
(like GLUT), that can easily be configured by providing afew routines of your own
construction.

Finally, as with all interactive programs, the event loop is entered. For GLUT-
based programs, thisis done by calling glutMainLoop (). AS
glutMainLop () never exits (it is essentialy an infinite loop), any program
statements that follow glutMainLoop () will never be executed.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

An OpenGL Program (cont'd.)

void init(void)

{
glClearColor(0, O, 0, 1); ...
gluLookat(2, 2, 2, 0, 0, 0, 0, 1, 0); Set up someinitial
glEnable(GL_DEPTH_TEST); OpenGL state

}

void reshape(int width, int height)
{
glviewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); Handle when the
luPerspective(60, (GLfloat) width / height, .
g P . e (10 o),) g user resizesthe
glMatrixMode (GL_MODELVIEW) ; window

First onthisdlideisthe init () routine, which as mentioned, is where we set
up the “global” OpenGL state. Inthiscase, init () setsthe color that the
background of the window should be painted to when the window is cleared, as well
as configuring where the eye should be located and enabling the depth test.
Although you may not know what these mean at the moment, we will discuss each
of those topics. What isimportant to noticeisthat what we set in init ()
remains in affect for the rest of the program’s execution. There is nothing that says
we can not turn these features off |ater; the separation of these routinesin this
manner is purely for clarity in the program’s structure.

Thereshape () routineis called when the user of a program resizes the
application’swindow. We do a number of thingsin this routine, al of which will
be explained in detail in the Transformations section later today.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

An OpenGL Program (cont'd.)

void display(void)
{

int i, j;
glClear(GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER_BIT);

glBegin(GL_QUADS);

for (i = 0; i < NUM_CUBE_FACES; ++i) { Have OpenGL
glColor3fv(faceColor[il); draw a cube
for (j = 0; j < NUM_VERTICES_PER FACE; ++j) {

glvertex3fv(vertex[facelil [j]1]): from S_Ome

} 3D points

} (vertices)

glEnd();

glFlush();

Finally, we seethedisplay () routine whichisused by GLUT to call our

OpenGL callsto make our image. Almost al of your OpenGL drawing code should
be called fromdisplay () (or routinesthat display () cals).

Aswith most display () -like functions, a number of common things occur in
the following order:

1. Thewindow iscleared withacal to glclear (). Thiswill color al of the
pixelsin the window with the color set with glClearColor () (seethe previous
slideand look inthe init () routine). Any image that wasin the window is
overwritten.

2. Next, wedo al of our OpenGL rendering. In this case, we draw a cube, setting
the color of each facewithacall to glColor3fv (), and specify where the
vertices of the cube should be positioned by calling glvertex3fv ().

3. Finally, when all of the OpenGL rendering is completed, we either call
glFlush () orglutSwapBuffers () to"“swap the buffers,” which will be
discussed in the Animation and Depth Buffering section.

-10 -

SIGGRAPH 2007
Course #10

An Interactive Introduction to OpenGL Programming

OpenGL Command Formats

Number of
components

2 - (x,v)

3 - (x%,¥,2)
4 - (x,¥,2,wW)

GrentL.

glVertex3fv(v

Vector

byte

unsigned byte
short
unsigned short
int

unsigned int
float

double

omit “v” for
scalar form

glvertex2f(x, v)

The OpenGL API calls are designed to accept amost any basic data type, which
isreflected in the calls name. Knowing how the calls are structured makes it easy to
determine which call should be used for a particular data format and size.

For instance, vertices from most commercial models are stored as three
component floating point vectors. As such, the appropriate OpenGL command to
useisglvVertex3fv(coords).

As mentioned before, OpenGL uses homogenous coordinates to specify vertices.
For glvertex* () calswhich do not specify al the coordinates
(i.e, glvertex2f ()), OpenGL will default z= 0.0,andw= 1.0.

-11 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

What's Required in Your Programs

* Headers Files
#include <GL/gl.h>
#include <GL/glu.h>

#include <GL/glut.h>
e Libraries

 Enumerated Types

— OpenGL defines numerous types for compatibility

¢ GlLfloat, GLint, GLenum, etc.

GrontL.

All of our discussions today will be presented in the C computer language.
For C, there are afew required elements which an application must do:

» Header files describe all of the function calls, their parameters and defined
constant values to the compiler. OpenGL has header filesfor GL (the core
library), GLU (the utility library), and GLUT (freeware windowing toolKkit).

Note: glut.hincludesgl.h and glu.h. On Microsoft Windows,
including only glut . his recommended to avoid warnings about
redefining Windows macros.

* Libraries are the operating system dependent implementation of OpenGL
on the system you are using. Each operating system has its own set of
libraries. For Unix systems, the OpenGL library is commonly named
1ibGL. so (whichisusually specified as - 1GL on the compile line) and
for Microsoft Windows, it isnamed opengl32.11ib.

* Finally, enumerated types are definitions for the basic types (i.e., float,
double, int, etc.) which your program uses to store variables. To simplify
platform independence for OpenGL programs, a complete set of enumerated
types are defined. Use them to simplify transferring your programs to other
operating systems.

-12 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

GLUT Basics

* Application Structure:

— Configure and open window
— Initialize OpenGL state
— Register input callback functions

— Enter event processing loop

Hereisthe basic structure that we will be using in our applications. Thisis generally
what you would do in your own OpenGL applications.

The steps are:

1. Choose the type of window that you need for your application and

initidizeit.

2. Initialize any OpenGL state that you do not need to change every frame of your

program. This might include things like the background color, light positions and
texture maps.

3. Register the callback functions that you will need. Callbacks are routines you
write that GLUT calls when a certain sequence of events occurs, like the window
needing to be refreshed, or the user moving the mouse. The most important callback
function is the one to render your scene, which we will discussin afew dslides.

4. Enter the main event processing loop. Thisiswhere your application receives
events, and schedules when callback functions are called.

-13-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

GLUT Callback Functions

* Routine to call when something happens
— window resize or redraw
— user input
— animation
* “Register” callbacks with GLUT
glutDisplayFunc(display):;
glutIdleFunc(idle);

glutKeyboardFunc(keyboard) ;

GrontL.

GLUT uses a callback mechanismto do its event processing. Callbacks simplify
event processing for the application developer. As compared to more traditional
event driven programming, where the author must receive and process each event,
and call whatever actions are necessary, callbacks simplify the process by defining
what actions are supported, and automatically handling the user events. All the
author must do isfill in what should happen when.

GLUT supports many different callback actions, including:

* glutDisplayFunc () - caled when pixelsin the window need to be
refreshed.

* glutReshapeFunc () - caled when the window changes size

* glutKeyboardFunc () - caled when akey is struck on the keyboard

* glutMouseFunc () - caled when the user presses a mouse button on the
mouse

e glutMotionFunc () - caled when the user moves the mouse while a
mouse button is pressed

e glutPassiveMouseFunc () - caled when the mouse is moved
regardless of mouse button state

* glutIdleFunc () - acalback function called when nothing elseis
going on. Very useful for animations.

-14 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

What can OpenGL Draw?

e Geometric primitives
— points, lines and polygons
* Image Primitives
— images and bitmaps
— separate pipeline for images and geometry
¢ linked through texture mapping
* Rendering depends on state

— colors, materials, light sources, etc.

GrontL.

As mentioned, OpenGL isalibrary for rendering computer graphics. Generaly,
there are two operations that you do with OpenGL.:

* draw something
* change the state of how OpenGL draws

OpenGL has two types of things that it can render: geometric primitives and
image primitives. Geometric primitives are points, lines and polygons. Image
primitives are bitmaps and graphics images (i.e., the pixels that you might extract
from a JPEG image after you have read it into your program.) Additionally,
OpenGL links image and geometric primitives together using texture mapping,
which is an advanced topic we will discuss this afternoon.

The other common operation that you do with OpenGL is setting state. “ Setting
state” is the process of initializing the internal data that OpenGL uses to render your

primitives. It can be as simple as setting up the size of points and the color that you
want a vertex to be, to initializing multiple mipmap levels for texture mapping.

-15-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

OpenGL Geometric Primitives

» All geometric primitives are specified by

vertices %
GL_POINTS / \

GL_POLYGON
GL _LINES ©L_LINE STRIP

GL_TRIANGLES .
% GL_QUAD STRIP

GL_TRIANGLE_ STRIP

GL_LINE_ LOOP

GL_TRIANGLE_ FAN

@GL GL_QUADS [~]

Every OpenGL geometric primitive is specified by its vertices, which are
homogenous coordinates. Homogenous coordinates are of the form
(%Y, z, w). Depending on how vertices are organized, OpenGL can render any of
the shown primitives.

-16 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Specifying Geometric Primitives

* Primitives are specified using
glBegin(primType);
glEnd () ;

* primType determines how vertices are combined

glBegin(primType);

for (i =0; 1 < n; ++i) {
glColor3f(red[i], green[i], blueli]);
glVertex3fv(coords[i]);

}

glEnd () ;

OpenGL organizes vertices into primitives based upon which type is passed into
glBegin (). The possibletypes are:

GL_POINTS GL_LINE_STRIP
GL_LINES GL_LINE_LOOP
GL_POLYGON GL_TRIANGLE_STRIP
GL_TRIANGLES GL_TRIANGLE_FAN
GL_QUADS GL_QUAD_STRIP

We also see an example of setting OpenGL’ s state, which is the topic of the next
few dlides, and most of the course. In this case, the color that our primitiveis going
tobedrawnisset usingtheglCcolor () call.

217 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

How OpenGL Works:
The Conceptual Model

Configure
how OpenGL
should draw

stuff

Conceptually, OpenGL allows you, the application designer, to do two things:

1. Control how the next items you draw will be processed. Thisis done by setting
the OpenGL’s state. OpenGL’s state includes the current drawing color, parameters
that control the color and location of lights, texture maps, and many other
configurable settings.

2. Draw, or using the technical term, render graphical objects
called primitives.

Y our application will consist of cycles of setting state, and rendering using the
state that you just set.

-18-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Controlling OpenGL's Drawing

e Set OpenGL’s rendering state
— State controls how things are drawn
* shading — lighting
* texture maps — line styles (stipples)

* polygon patterns — transparency

Most of programming OpenGL is controlling its internal configuration, called
state. Stateisjust the set of values that OpenGL uses when it draws something. For
example, if you wanted to draw a blue triangle, you would first tell OpenGL to set
the current vertex color to blue, usingthe glColor () function. Then you passthe
geometry to draw thetriangleusing theglvertex () calsyou just saw.

OpenGL has over 400 function callsin it, most of which are concerned with
setting the rendering state. Among the things that state controls are:

* current rendering color

» parameters used for ssimulating lighting

* processing datato be used as texture maps

» patterns (called stipples, in OpenGL) for lines and polygons

-19-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

The Power of Setting OpenGL State

Appearance is
controlled by
setting
OpenGL's
state.

By only changing different parts of OpenGL’s state, the same geometry (in the
case of theimage in the dide, a sphere) can be used to generate drastically different
images.

Going across the top row, the first sphere is merely a wire-frame rendering of
the sphere. The middle image was made by drawing the sphere twice, once solid in
black, and a second time as a white wire-frame sphere over the solid black one. The
right-most image shows a flat-shaded sphere, under the influence of OpenGL
lighting. Flat-shading means that each geometric primitive has the same color.

For the bottom row, the first image is the same sphere, only thistime, gouraud-
(or smooth-) shaded. The only difference in the programs between the top-row
right, and bottom-row left isa single line of OpenGL code. The middle sphere was
generated using texture mapping. The final image is the smooth-shaded sphere,
with texture-mapped lines over the solid sphere.

-20-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Setting OpenGL State

 Three ways to set OpenGL state:

1. Set values to be used for processing vertices
* most common methods of setting state

— glColor () /glIndex()
— glNormal ()
— glTexCoord ()

* state must be set before calling glvertex()

GrontL.

The most common state setting operation is that of modifying attributes
associated with vertices. While we'll discuss setting vertex colors, lighting
normals, and texture coordinates, that’s only a small part—but the most common set—
of the state associated with vertices.

-21 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Setting OpenGL State (cont'd.)

2. Turning on a rendering mode
glEnable() / glDisable()

3. Configuring the specifics of a particular rendering
mode

* Each mode has unigue commands for setting its values

glMaterialfv ()

There are two actions that are required to control how OpenGL renders.

1.Thefirst isturning on or off arendering feature. Thisis done using the
OpenGL callsglEnable () andglDisable (). WhenglEnable () is
called for a particular feature, all OpenGL rendering after that point in the
program will use that feature until it is turned off with glDisable ().

2.Almost all OpenGL features have configurable values that you can set.
Whether it isthe color of the next thing you draw, or specifying an image that
OpenGL should use as a texture map, there will be some calls unique to that
feature that control all of its state. Most of the OpenGL API, and most of what
you will seetoday, is concerned with setting the state of the individual features.

Every OpenGL feature has a default set of values so that even without setting
any state, you can still have OpenGL render things. Theinitial state is pretty
boring; it renders most things in white.

It's important to note that initial state isidentical for every OpenGL
implementation, regardless of which operating system, or which hardware
system you are working on.

-22 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

OpenGL and Color

* The OpenGL Color Model
— OpenGL uses the RGB color space

e There is also a color-index mode, but we do not discuss it

» Colors are specified as floating-point
numbers in the range [0.0, 1.0]

— for example, to set a window’s background color,
you would call

glClearColor(1.0, 0.3, 0.6, 1.0);

GrontL.

Since computer graphics are all about color, it isimportant to know how to
specify colors when using OpenGL. Conceptually, OpenGL uses the RGB (red,
green, and blue) color space. Each of the three colorsis a component of the color.
The value of each color component isareal (floating-point) number between 0.0
and 1.0. Valuesoutside of that range are clamped.

As an example, the call to set awindow’ s background color in OpenGL is
glClearColor (), asdemonstrated on the slide. The colors specified for the
background color are (1.0, 0.3, 0.6), for red, green, and blue, respectively. The
fourthvalueinglCclearColor () isnamed alphaand is discussed later in the
course. Generaly, whenyou call glClearColor (), you want to set the apha
component to 1.0.

OpenGL also supports color-index mode rendering, but as RGB based rendering
is the most common, and there are some features that require RGB (most notably,
texture mapping), we do not discuss color-index mode rendering in the scope of this
class.

.23-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Shapes Tutorial

i Shapes

Screen-space view Cammand manipulation window
glBegin (GL_TRIANGLE_STRIP);
glColor3f (1.00 ,0.00 ,1.00)
glVertex2f (0.0 ,25.0);
glColor3f (0.00 ,1.00 ,1.00)
glVertex2f (50.0 , 150.0);
glColor3f (0.00 ,1.00 ,0.00)
glvVertex2f (125.0, 100.0);
glColor3f (1.00 ,1.00 ,0.00)
glvVertex2f (175.0, 200.0);
glEnd();

Thisisthefirst of the series of Nate Robins' tutorials. This tutorial illustrates the
principles of rendering geometry, specifying both colors and vertices.

The shapestutorial has two views: a screen-space window and a command
mani pul ation window.

In the command manipul ation window, pressing the LEFT mouse while the
pointer is over the green parameter numbers allows you to move the mouse in the y-
direction (up and down) and change their values. With this action, you can change
the appearance of the geometric primitive in the other window. With the RIGHT
mouse button, you can bring up a pop-up menu to change the primitive you are
rendering. (Note that the parameters have minimum and maximum valuesin the
tutorials, sometimes to prevent you from wandering too far. In an application, you
probably do not want to have floating-point color values less than 0.0 or greater
than 1.0, but you are likely to want to position vertices at coordinates outside the
boundaries of thistutorial.)

In the screen-space window, the RIGHT mouse button brings up a different pop-
up menu, which has menu choices to change the appearance of the geometry in
different ways.

The left and right mouse buttons will do similar operations in the other tutorials.

-24-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

_25.

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Camera Analogy

e 3D is just like taking a photograph (lots of
photographs!)

viewing

Thismodel has become know as the synthetic camera model.

Note that both the objects to be viewed and the camera are three-dimensional
while the resulting image is two dimensional.

- 26 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Camera Analogy and
Transformations

* Projection transformations

— adjust the lens of the camera

* Viewing transformations

— tripod—define position and orientation of the viewing volume
in the world

* Modeling transformations
— moving the model

* Viewport transformations

— enlarge or reduce the physical photograph

GrontL.

Note that human vision and a camera lens have cone-shaped viewing volumes.
OpenGL (and almost all computer graphics APIs) describe a pyramid-shaped
viewing volume. Therefore, the computer will “see” differently from the natural
viewpoints, especially along the edges of viewing volumes. Thisis particularly
pronounced for wide-angle “fish-eye” camera lenses.

-27-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Coordinate Systems and
Transformations

e Steps in forming an image
1. specify geometry (world coordinates)
2. specify camera (camera coordinates)
3. project (window coordinates)

4. map to viewport (screen coordinates)
* Each step uses transformations

e Every transformation is equivalent to a change in
coordinate systems (frames)

GrontL.

Every transformation can be thought of as changing the representation of a
vertex from one coordinate system or frame to another. Thus, initialy vertices are
specified in world or application coordinates. However, to view them, OpenGL
must convert these representations to ones in the reference system of the camera.
This change of representations is described by a transformation matrix (the model-
view matrix). Similarly, the projection matrix converts from camera coordinates to
window coordinates.

.28 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Homogeneous Coordinates

each vertex is a column vector

w is usually 1.0
all operations are matrix multiplications

directions (directed line segments) can be represented
with w = 0.0

A 3D vertex isrepresented by a 4-tuple vector (homogeneous coordinate
system).

Why is a4-tuple vector used for a 3D (X, Y, 2) vertex? To ensure that all matrix
operations are multiplications.

If wischanged from 1.0, we can recover X, y and z by division by w. Generally,
only perspective transformations change w and require this perspective division in
the pipeline.

-29-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

3D Transformations

* A vertex is transformed by 4 x 4 matrices
— all affine operations are matrix multiplications
— all matrices are stored column-major in OpenGL
* this is opposite of what “C” programmers expect
— matrices are always post-multiplied
— product of matrix and vector is MV

m, my
m; My
m

m, my

By using 4x4 matrices, OpenGL can represent al geometric transformations
using one matrix format. Perspective projections and translations require the 4"
row and column. Otherwise, these operations would require an vector-addition
operation, in addition to the matrix multiplication.

While OpenGL specifies matrices in column-major order, thisis often confusing
for “C” programmers who are used to row-major ordering for two-dimensional
arrays. OpenGL provides routines for loading both column- and row-major
matrices. However, for standard OpenGL transformations, there are functions that
automatically generate the matrices for you, so you don’t generally need to be
concerned about this until you start doing more advanced operations.

For operations other than perspective projection, the fourth row is always
(O, 0, 0, 1) which leaves the w-coordinate unchanged..

Because OpenGL only multiplies a matrix on the right, the programmer should
remember that the last matrix specified is the first applied.

-30-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Specifying Transformations

* Programmer has two styles of specifying
transformations

— specify matrices (glLoadMatrix, glMultMatrix)
— specify operation (glRotate, glOrtho)

* Programmer does not have to remember the
exact matrices

— see appendix of the OpenGL Programming Guide

GrontL.

Generally, aprogrammer can obtain the desired matrix by a sequence of simple
transformations that can be concatenated together, e.g., glRotate (),
glTranslate(),andglScale().

For the basic viewing transformations, OpenGL and the Utility library have
supporting functions.

-31-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Programming Transformations

* Prior to rendering, view, locate, and orient:
— eye/camera position
— 3D geometry

* Manage the matrices

— including matrix stack

e Combine (composite) transformations

GrontL.

Because transformation matrices are part of the state, they must be defined prior
to any verticesto which they are to apply.

In modeling, we often have objects specified in their own coordinate systems
and must use OpenGL transformations to bring the objects into the scene.

OpenGL provides matrix stacks for each type of supported matrix (model-view,
projection, texture) to store matrices.

-32-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Transformation Pipeline

normalized
device

Modelview| |Projection | |Perspectiveg | Viewport
Matrix Matrix Division Transform

Projection | « other calculations here
— material =& color
— shade model (flat)
— polygon rendering mode
— polygon culling

— clipping

iew

The depth of matrix stacks are implementation-dependent, but the Modelview
matrix stack is guaranteed to be at least 32 matrices deep, and the Projection matrix
stack is guaranteed to be at least 2 matrices deep.

The material-to-color, flat-shading, and clipping cal culations take place after the
Modelview matrix calculations, but before the Projection matrix. The polygon
culling and rendering mode operations take place after the Viewport operations.

Thereis aso atexture matrix stack, which is outside the scope of this course. It
is an advanced texture mapping topic.

-33-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Matrix Operations

* Specify Current Matrix Stack
glMatrixMode (GL_MODELVIEW or GL_PROJECTION)
* Other Matrix or Stack Operations
glLoadIdentity () glPushMatrix()
glPopMatrix()
* Viewport
— usually same as window size

— viewport aspect ratio should be same as projection
transformation or resulting image may be distorted

glviewport(x, y, width, height)

GrentL.

glLoadMatrix* () replacesthe matrix on the top of the current matrix stack.
glMultMatrix* (), post-multiplesthe matrix on the top of the current matrix stack.
The matrix argument is a column-major 4 x 4 double or single precision floating
point matrix.

Matrix stacks are used because it is more efficient to save and restore matrices
than to calculate and multiply new matrices. Popping a matrix stack can be said to
“jump back” to a previous location or orientation.

glviewport () clipsthe vertex or raster position. For geometric primitives, a
new vertex may be created. For raster primitives, the raster position is completely
clipped.

Thereis a per-fragment operation, the scissor test, which works in situations
where viewport clipping does not. The scissor operation is particularly good for fine
clipping raster (bitmap or image) primitives.

-34-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Projection Transformation

* Shape of viewing frustum
* Perspective projection
gluPerspective(fovy, aspect, zNear, zFar)

glFrustum(left, right, bottom, top, zNear, zFar)

e Orthographic parallel projection
glortho(left, right, bottom, top, zNear, zFar)
gluOrtho2D(left, right, bottom, top)

¢ calls glortho with z values near zero

For perspective projections, the viewing volume is shaped like a truncated
pyramid (frustum). Thereis adistinct camera (eye) position, and vertexes of objects
are “projected” to camera. Objects which are further from the camera appear
smaller. The default camera position at (O, O, 0), looks down the z-axis, although the
camera can be moved by other transformations.

For gluPerspective (), fovy istheangleof field of view (in degrees)
inthey direction. fovy must be between 0.0 and 180.0, exclusive. aspect iSxly
and should be the same as the viewport to avoid distortion. zNear and zFar
define the distance to the near and far clipping planes.

TheglFrustum() cal israrely used in practice.

Warning: for gluPerspective () or glFrustum (), do not use zero

for zNear!

For glortho (), the viewing volume is shaped like a rectangular
paralelepiped (abox). Vertices of an object are “projected” towards infinity, and as
such, distance does not change the apparent size of an object, as happens under
perspective projection. Orthographic projection is used for drafting, and design
(such as blueprints).

-35-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Applying Projection
Transformations

* Typical use (orthographic projection)
glMatrixMode (GL_PROJECTION);
glLoadIdentity();

glOortho(left, right, bottom, top, zNear, zFar);

N

Many users would follow the demonstrated sequence of commands with a
glMatrixMode (GL_MODELVIEW) call to returnto modelview stack.

In this example, the red line segment isinside the view volume and is projected
(with parallel projectors) to the green line on the view surface. The blueline
segment lies outside the volume specified by g1ortho () andisclipped.

-36-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming

Course #10

Viewing Transformations

* Position the camera/eye in the scene
— place the tripod down; aim camera

* To “fly through” a scene

— change viewing transformation and
redraw scene

gluLookAt (eve,, eye,, eye,,
aim,, aim, aim,
up,, up,, up,)

— up vector determines unique orientation
— careful of degenerate positions

GrontL.

gluLookat () multipliesitself onto the current matrix, so it usually comes
after glMatrixMode (GL_MODELVIEW) and glLoadIdentity () .

Because of degenerate positions, gluLookAt () isnot recommended for most

animated fly-over applications.

An alternative is to specify a sequence of rotations and transations that are

concatenated with an initial identity matrix.

Note: that the name modelview matrix is appropriate since moving objectsin the
model front of the camerais equivalent to moving the camerato view a set of

objects.

-37-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Projection Tutorial

World-space view Screen-space view

Command manipulation swindosw
fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ,1.0 ,10.0);
gluLookAt(0.00 ,0.00 ,200 , <-eye
0.00 ,000 ,000 , <«-center
0.00 ,1.00 ,0.00) <-up

Click on the arguments and move the mouse to modify values.

The RIGHT mouse button controls different menus. The screen-space view
menu allows you to choose different models. The command-manipulation menu
allows you to select different projection commands (including glOrtho and
glFrustum).

-38-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Modeling Transformations

* Move object
glTranslate{fd}(x, y, z)

* Rotate object around arbitrary axis (x y 2
glRotate{fd} (angle, x, v, Zz)
— angle is in degrees

* Dilate (stretch or shrink) or mirror object
glScale{fd}(x, v, =z)

GrontL.

glTranslate(),glRotate(),andglScale () multipliesitself onto the
current matrix, so it usually comes after glMatrixMode (GL_MODELVIEW).
There are many situations where the modeling transformation is multiplied onto a
non-identity matrix.

A vertex’ s distance from the origin changes the effect of g1Rotate () or
glscale (). These operations have afixed point for the origin. Generally, the
further from the origin, the more pronounced the effect. To rotate (or scale) with a
different fixed point, we must first translate, then rotate (or scale) and then undo the
trandation with another trandation.

-39-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Transformation Tutorial

Screen-space view

Command manipulation window

glTranslatef(0.00 , 0.00 ,0.00);
glRotatef(-52.0,0.00 ,1.00 ,0.00);
glScalef(1.00 ,1.00 ,1.00);

glBegin(...);

Click on the arguments and move the mouse to modify values.

For right now, concentrate on changing the effect of one command at atime.
After each time that you change one command, you may want to reset the values
before continuing on to the next command.

The RIGHT mouse button controls different menus. The screen-space view
menu allows you to choose different models. The command-manipulation menu
allows you to change the order of theglTranslatef () andglRotatef ()
commands. Later, we will see the effect of changing the order of modeling
commands.

- 40 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Connection: Viewing and Modeling

* Moving camera is equivalent to moving every
object in the world towards a stationary
camera

* Viewing transformations are equivalent to
several modeling transformations

— gluLookAt () has its own command

— can make your own polar view or pilot view

Instead of gluLookAt (), one can use the following combinations of
glTranslate() andglRotate () toachieveaviewing transformation. Like
gluLookAt (), these transformations should be multiplied onto the Model View
matrix, which should have an initial identity matrix.

To create a viewing transformation in which the viewer orbits an object, use this
sequence (which is known as “polar view”):

glTranslated (0, 0, -distance)
glRotated(-twist, 0, 0, 1)
glRotated(-incidence, 1, 0, 0)
glRotated(azimuth, 0, 0, 1)

To create a viewing transformation which orients the viewer (roll, pitch, and
heading) at position (X, Y, 2), use this sequence (known as “pilot view”):

glRotated(roll, 0, 0, 1)
glRotated (pitch, 0, 1, 0)
glRotated (heading, 1, 0, 0)
glTranslated(-x, -y, -2)

-41 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Compositing Modeling
Transformations

* Problem: hierarchical objects
— one position depends upon a previous position
— robot arm or hand; sub-assemblies
e Solution: moving local coordinate system
— modeling transformations move coordinate system
— post-multiply column-major matrices

— OpenGL post-multiplies matrices

GrontL.

The order in which modeling transformations are performed is important
because each modeling transformation is represented by a matrix, and matrix
multiplication is not commutative. So arotate followed by atrandate is different
from atranslate followed by arotate.

-42 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Compositing Modeling
Transformations (cont’d.)

* Problem: objects move relative to absolute world origin
— my object rotates around the wrong origin
* make it spin around its center or something else
e Solution: fixed coordinate system

modeling transformations move objects around fixed coordinate
system

pre-multiply column-major matrices
OpenGL post-multiplies matrices
must reverse order of operations to achieve desired effect

GrontL.

Y ou will adjust to reading alot of code backwards!
Typical sequence
glTranslatef (x,vy,z);
glRotatef (theta, ax, ay, az);
glTranslatef (-x,-v,-2);
object () ;

Here (X, y, 2) isthe fixed point. We first (last transformation in code) move it to
the origin. Then we rotate about the axis (ax, ay, az) and finally move fixed point
back.

-43-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Additional Clipping Planes

* At least 6 more clipping planes available
e Good for cross-sections
* Modelview matrix moves clipping plane

* Ax+By+Cz+D <0 clipped
glEnable(GL CLIP PLANEi)

glClipPlane(GL CLIP PLANEi, GLdouble* coeff)

GrontL.

Additional clipping planes, usually called user-clip planes, are very useful for
“cutting away” part of a 3D model to allow a cross section view.

The clipping planes you defineusing glClipPlane () are described using the
equation of aplane, with the (A, B, C) coefficients describing the orientation (think
of aplane normal), and D representing the distance from the origin.

When you specify aclipping plane, the plane coefficients you provide are
transformed by the current modelview matrix. This enables you to transform the
plane using the standard modelview matrix stack operations, as compared to doing a
bunch of vector math to transform the clipping plane itself.

-44 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

- 45 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Double Buffering

Double buffer is atechnique for tricking the eye into seeing smooth animation
of rendered scenes. The color buffer isusually divided into two equal halves, called
the front buffer and the back buffer.

The front buffer is displayed while the application renders into the back buffer.
When the application completes rendering to the back buffer, it requests the
graphics display hardware to swap the roles of the buffers, causing the back buffer
to now be displayed, and the previous front buffer to become the new back buffer.

- 46 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Animation Using Double Buffering

Request a double buffered color buffer

glutInitDisplayMode (GLUT RGB | GLUT DOUBLE);

Clear color buffer
glClear(GL COLOR BUFFER BIT);

Render scene

Request swap of front and back buffers
glutSwapBuffers();

Repeat steps 2 - 4 for animation
— Use a glutIdleFunc () callback

GrentL.

Reguesting double buffering in GLUT issimple. Adding GLUT_DOUBLE to
your glutInitDisplayMode () cal will cause your window to be double
buffered.

When your application is finished rendering its current frame, and wants to
swap the front and back buffers, the glut SwapBuffers () cal will request the
windowing system to update the window’ s color buffers.

_47 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Depth Buffering and
Hidden Surface Removal

Depth buffering is a technique to determine which primitivesin your scene are
occluded by other primitives. As each pixel in aprimitiveis rasterized, its distance
from the eyepoint (depth value), is compared with the values stored in the depth
buffer. If the pixel’s depth value is less than the stored value, the pixel’ s depth
value is written to the depth buffer, and its color is written to the color buffer.

The depth buffer algorithmis:
i1f (pixel->z < depthBuffer(x,y)->z) {
depthBuffer (x,y)->z = pixel->z;
colorBuffer(x,y)->color = pixel->color;

}

OpenGL depth values range from [0.0, 1.0], with 1.0 being essentially infinitely
far from the eyepoint. Generally, the depth buffer is cleared to 1.0 at the start of a
frame.

-48 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Depth Buffering Using OpenGL

1. Request a depth buffer

glutInitDisplayMode(GLUT RGB | GLUT DOUBLE |
GLUT _DEPTH) ;

Enable depth buffering

glEnable(GL_DEPTH TEST);

Clear color and depth buffers

glClear(GL COLOR BUFFER _BIT |
GL DEPTH BUFFER BIT);

Render scene
5. Swap color buffers

GrentL.

Enabling depth testing in OpenGL is very straightforward.

A depth buffer must be requested for your window, once again using the
glutInitDisplayMode (), and the GLUT_DEPTH bit.

Once the window is created, the depth test is enabled using
glEnable(GL_DEPTH_TEST).

- 49 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

-50-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Lighting Principles

 Lighting simulates how objects reflect light
— material composition of object
— light’s color and position
— global lighting parameters
* ambient light
* two sided lighting

— available in both color index
and RGBA mode

GrontL.

Lighting is an important technique in computer graphics. Without lighting,
objectstend to look like they are made out of plastic.

OpenGL divides lighting into three parts. material properties, light properties
and global lighting parameters.

Lighting isavailable in both RGBA mode and color index mode. RGBA is more
flexible and |less restrictive than color index mode lighting.

-51-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

OpenGL Shading

* OpenGL computes a color or shade for each vertex
using a lighting model (the modified Phong model)
that takes into account

— Diffuse reflections
— Specular reflections
— Ambient light

— Emision

* Vertex shades are interpolated across polygons by
the rasterizer

GrontL.

OpenGL can use the shade at one vertex to shade an entire polygon (constant
shading) or interpolated the shades at the vertices across the polygon (smooth
shading), the default.

-52-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

The Modified Phong Model

* The model is a balance between simple
computation and physical realism
e The model uses
— Light positions and intensities
— Surface orientation (normals)
— Material properties (reflectivity)

— Viewer location

e Computed for each source and each color

Component

The orientation of a surface is specified by the normal at each point. For aflat
polygon the normal is constant over the polygon. Because normals are specified by
the application program and can be changed between the specification of vertices,
when we shade a polygon it can appear to be curved.

-53-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

How OpenGL Simulates Lights

* Phong lighting model
— Computed at vertices
* Lighting contributors
— Surface material properties
— Light properties
— Lighting model properties

GrontL.

OpenGL lighting is based on the Phong lighting model. At each vertex in the
primitive, a color is computed using that primitives material properties along with
the light settings.

The color for the vertex is computed by adding four computed colors for the
final vertex color. The four contributors to the vertex color are:

» Ambient is color of the object from all the undirected light in a scene.

* Diffuse is the base color of the object under current lighting. There must be
alight shining on the object to get a diffuse contribution.

» Specular isthe contribution of the shiny highlights on the object.
» Emission is the contribution added in if the object emitslight (i.e., glows)

-54 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Surface Normals

* Normals define how a surface reflects light
glNormal3f(x, v, =z)
— Current normal is used to compute vertex’s color
— Use unit normals for proper lighting

e scaling affects a normal’s length

glEnable(GL_NORMALIZE)
or
glEnable(GL_RESCALE NORMAL)

The lighting normal tells OpenGL how the object reflects light around a vertex.
If you imagine that thereisasmall mirror at the vertex, the lighting normal
describes how the mirror is oriented, and consequently how light is reflected.

glNormal* () setsthe current normal, which isused in the lighting
computation for al vertices until anew normal is provided.

Lighting normals should be normalized to unit length for correct lighting results.
glscale* () affectsnormalsaswell as vertices, which can change the normal’s
length, and cause it to no longer be normalized. OpenGL can automatically
normalize normals, by enabling g1Enable (GL_NORMALIZE) . Or
glEnable (GL_RESCALE_NORMAL) . GL_RESCALE_NORMAL isaspecia
mode for when your normals are uniformly scaled. If not, use GL,_NORMALIZE
which handles all normalization situations, but requires the computation of a square
root, which can potentially lower performance

OpenGL evauators and NURBS can provide lighting normals for generated
vertices automatically.

-55-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Material Properties

* Define the surface properties of a primitive

glMaterialfv(face, property, value);

— separate materials for front and back

GrontL.

Material properties describe the color and surface properties of a materia (dull,
shiny, etc.). OpenGL supports material properties for both the front and back of
objects, as described by their vertex winding.

The OpenGL material properties are:
* GL_DIFFUSE - base color of object
* GL_SPECULAR - color of highlights on object
* GL_AMBIENT - color of object when not directly illuminated
* GL_EMISSION - color emitted from the object (think of afirefly)

* GL_SHININESS - concentration of highlights on objects. Values
range from O (very rough surface - no highlight) to 128 (very shiny)

Material properties can be set for each face separately by specifying either
GL_FRONT oOr GL_BACK, or for both faces simultaneously using
GL_FRONT_AND_BACK.

-56 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Light Sources

glLightfv(light, property, value);
— 1ight specifies which light
* multiple lights, starting with GL_LIGHTO
glGetIntegerv(GL MAX LIGHTS, &n);
— properties
* colors

* position and type

e attenuation

GrontL.

TheglLight () call isused to set the parameters for alight. OpenGL
implementations must support at least eight lights, which are named GI._L.IGHTO
through GL_LIGHTN, where n is one less than the maximum number supported by
an implementation.

OpenGL lights have a number of characteristics which can be changed from
their default values. Color properties allow separate interactions with the different
material properties. Position properties control the location and type of the light and
attenuation controls the natural tendency of light to decay over distance.

-57-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Light Sources (cont'd.)

* Light color properties
— GL_AMBIENT
— GL_DIFFUSE

— GL_SPECULAR

OpenGL lights can emit different colors for each of a materials properties. For
example, alight' sGL_AMBIENT color is combined with amaterial’s GI,_ AMBTIENT
color to produce the ambient contribution to the color - Likewise for the diffuse and
specular colors.

.58 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Types of Lights

* OpenGL supports two types of Lights
— Local (Point) light sources
— Infinite (Directional) light sources

 Type of light controlled by w coordinate

w=0 Infinite Light directed along (x y 2z)
w=0 Local Light positioned at (%, % %)

OpenGL supports two types of lights: infinite (directional) and local (point) light
sources. The type of light is determined by the w coordinate of the light’s position.

w=0 defineaninfinitelightat(x y 2)

I
y
A light's S|t|on|stran olr%e Iy(%ﬁea(lzllrllgnqtl\%d \WewAﬁtrix}/ enitis

specified. As such, you can achieve different effects by when you specify the
position.

-59-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Turning on the Lights

* Flip each light's switch

glEnable(GL_LIGHTN);

e Turn on the power

glEnable(GL_LIGHTING);

Each OpenGL light is controllable separately, using g1Enable () and the
respective light constant GL_LIGHTN. Additionally, global control over whether

lighting will be used to compute primitive colorsis controlled by passing
GL_LIGHTINGtoglEnable () . Thisprovidesahandy way to enable and

disable lighting without turning on or off all of the separate components.

-60 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Light Material Tutorial

Click on the arguments and move the mouse to modify values.

In thistutorial, concentrate on noticing the affects of different material and light
properties. Additionally, compare the results of using alocal light versus using an
infinite light.

In particular, experiment with the GL_SHININESS parameter to seeits affects
on highlights.

-61 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Controlling a Light's Position

* Modelview matrix affects a light’s position

— Different effects based on when position is
specified
* eye coordinates
» world coordinates
* model coordinates

— Push and pop matrices to uniquely control a light’s
position

GrontL.

As mentioned previously, alight’s position is transformed by the current
ModelView matrix when it is specified. As such, depending on when you specify
thelight’s position, and what values are in the Model View matrix, you can obtain
different lighting effects.

In genera, there are three coordinate systems where you can specify alight’s
position/direction

1) Eye coordinates - which is represented by an identity matrix in the
ModelView. In this case, when the light’ s position/direction is specified, it
remains fixed to the imaging plane. As such, regardless of how the objects
are manipulated, the highlights remain in the same location relative to the

eye.
2) World Coordinates - when only the viewing transformation isin the

ModelView matrix. In this case, alight’s position/direction appears fixed in
the scene, asif the light were on alamppost.

3) Model Coordinates - any combination of viewing and modeling
transformationsis in the ModelView matrix. This method allows arbitrary,
and even animated, position of alight using modeling transformations.

-62 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Light Position Tutorial

Screen-space view

Command manipulation window
Glfloat pos[4] = { 1.50 ,1.00 , 1. ,0.00 }
gluLookAt(0.00 ,0.00 ,2 , <-eye
0.00 ,000 ,000 , <- center
0.00 ,1.00 ,000), <-up
glLightfv(GL_LIGHTO, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values.

This tutorial demonstrates the different lighting affects of specifying alight’s
position in eye and world coordinates. Experiment with how highlights and
illuminated areas change under the different lighting position specifications.

-63-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Tips for Better Lighting

* Recall lighting computed only at vertices

— model tessellation heavily affects lighting results

* better results but more geometry to process

* Use a single infinite light for fastest lighting

— minimal computation per vertex

Aswith all of computing, time versus space is the continual tradeoff. To get the
best results from OpenGL lighting, your models should be finely tessellated to get
the best specular highlights and diffuse color boundaries. Thisyields better results,
but usually at a cost of more geometric primitives, which could slow application
performance.

To achieve maximum performance for lighting in your applications, use asingle
infinite light source. This minimizes the amount of work that OpenGL hasto do to
light every vertex.

Note that with programmable shaders (see advanced topics) we can do lighting
calculations for each pixel.

-64 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

- 65 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Pixel-based primitives

* Bitmaps
— 2D array of bit masks for pixels
 update pixel color based on current color
* Images

— 2D array of pixel color information

* complete color information for each pixel

* OpenGL does not understand image formats

GrentL.

In addition to geometric primitives, OpenGL also supports pixel-based
primitives. These primitives contain explicit color information for each pixel that
they contain. They come in two types.

Bitmaps are single bit images, which are used as a mask to determine which
pixelsto update. The current color, set with glColor ()isused to
determine the new pixel color.

Images are blocks of pixels with complete color information for each pixel.

OpenGL, however, does not understand image formats, like JPEG, PNG or
GIFs. In order for OpenGL to use the information contained in those file formats,
the file must be read and decoded to obtain the color information, at which point,
OpenGL can rasterize the color values.

- 66 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Pixel Pipeline

* Programmable pixel storage
and transfer operations

glBitmap (), glDrawPixels()

Pixel Pixel—Traﬁsfer Ra_sterizgtion Per Fragment Frame
Storage Operatlons (_|nc|ud|ng Operations Buffer
Modes (and Pixel Map) Pixel Zoom)

glCopyTex*Image() ;

Memory

glReadPixels (), glCopyPixels()

Just asthere is a pipeline that geometric primitives go through when they are
processed, so do pixels. The pixels are read from main storage, processed to obtain
the internal format which OpenGL uses, which may include color tranglations or
byte-swapping. After this, each pixel is rasterized into the framebuffer.

In addition to rendering into the framebuffer, pixels can be copied from the
framebuffer back into host memory, or transferred into texture mapping memory.

For best performance, the internal representation of a pixel array should match
the hardware. For example, with a 24 bit frame buffer, 8-8-8 RGB would probably
be a good match, but 10-10-10 RGB could be bad. Warning: non-default values for
pixel storage and transfer can be very slow.

-67 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Positioning Image Primitives

glRasterPos3f(x, v, 2)
glwWwindosPos3f(x, v, 2)

— raster position transformed like geometry

— discarded if raster position
Is outside of viewport
* may need to fine tune

viewport for desired
results

Raster Position

Images are positioned by specifying the raster position, which maps the lower
left corner of an image primitive to apoint in space. Raster positions are
transformed and clipped the same as vertices. If araster position fails the clip check,
no fragments are rasterized.

-68 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Rendering Images

glDrawPixels(width, height, format,
type, pixels)

* render pixels with lower left of
image at current raster position

* numerous formats and data types
for specifying storage in memory

— best performance by using format and type that
matches hardware

GrentL.

Rendering images is done with the g1 DrawPixels () command. A block of
pixels from host CPU memory is passed into OpenGL with aformat and data type
specified. For each pixel in the image, a fragment is generated using the color
retrieved from the image, and further processed.

OpenGL supports many different formats for images including:
* RGB images with an RGB triplet for every pixel

* intensity images which contain only intensity for each pixel. These images
are converted into greyscale RGB imagesinternaly.

* depth images which are depth values written to the depth buffer, as
compared to the color framebuffer. Thisis useful in loading the depth buffer

with values and then rendering a matching color images with depth testing
enabled.

« stencil images which copy stencil masksin the stencil buffer. This provides
an easy way to load a complicated per pixel mask.

The type of the image describes the format that the pixels stored in host
memory. This could be primitive types like GL_FLOAT or GL_INT, or pixels
with al color components packed into a primitive type, like
GL_UNSIGNED_SHORT_ 5_6_5.

-69-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Reading Pixels

glReadPixels(x, y, width, height,
format, type, pixels)

— read pixels from specified (x, y) position in
framebuffer

— pixels automatically converted from framebuffer
format into requested format and type

* Framebuffer pixel copy

glCopyPixels(x, y, width,
height, type)

GrentL.

Just as you can send pixels to the framebuffer, you can read the pixel values
back from the framebuffer to host memory for doing storage or image processing.

Pixels read from the framebuffer are processed by the pixel storage and transfer
modes, as well as converting them into the format and type requested, and placing
them in host memory.

Additionally, pixels can be copied from the framebuffer from one location to
another using glCopyPixels (). Pixels are processed by the pixel storage and
transfer modes before being returned to the framebuffer.

-70 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

-71-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Texture Mapping

geometry

Textures are images that can be thought of as continuous and be one, two, three,
or four dimensional. By convention, the coordinates of theimage are s, t, r and q.
Thus for the two dimensional image above, a point in the imageis given by its (s, t)
values with (0, 0) in the lower-left corner and (1, 1) in the top-right corner.

A texture map for atwo-dimensional geometric object in (X, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the screen.

-72-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Texture Mapping and the OpenGL
Pipeline
* Images and geometry flow through separate

pipelines that join at the rasterizer

— “complex” textures do not affect geometric
complexity

vertices geometry pipeline \

image ——| pixel pipeline

rasterizer

GrontL.

The advantage of texture mapping is that visual detail isin theimage, not in the
geometry. Thus, the complexity of an image does not affect the geometric pipeline
(transformations, clipping) in OpenGL. Texture is added during rasterization where
the geometric and pixel pipelines meet.

-73-

SIGGRAPH 2007

An Interactive Introduction to OpenGL Programming
Course #10

Texture Example

* The texture (below) is a
256 x 256 image that has
been mapped to a
rectangular polygon which
Is viewed in perspective

This example is from the texture mapping tutorial demo.

The size of textures must be a power of two. However, we can use image
manipulation routines to convert an image to the required size.

Texture can replace lighting and material effects or be used in combination with
them.

-74 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Applying Textures |

* Three steps to applying a texture
1. specify the texture

* read or generate image
* assign to texture
* enable texturing

2. assign texture coordinates to vertices

3. specify texture parameters

* wrapping, filtering

GrontL.

In the simplest approach, we must perform these three steps.

Textures reside in texture memory. When we assign an image to atextureitis

copied from processor memory to texture memory where pixels are formatted
differently.

Texture coordinates are actually part of the state as are other vertex attributes
such as color and normals. As with colors, OpenGL interpol ates texture inside
geometric objects.

Because textures are really discrete and of limited extent, texture mapping is
subject to aliasing errors that can be controlled through filtering.

Texture memory is alimited resource and having only asingle active texture
can lead to inefficient code.

-75-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Texture Objects

* Have OpenGL store your images
— one image per texture object

— may be shared by several graphics contexts
e Generate texture names

glGenTextures(n, *texIds);

The first step in creating texture objects is to have OpenGL reserve some indices
for your objects. glGenTextures () will request n texture ids and return those
valuesback toyou in texIds.

To begin defining atexture object, you call g1BindTexture () withtheid of
the object you want to create. Thetarget isone of GL,_TEXTURE_ {123}D (). All
texturing calls become part of the object until the next g1BindTexture () IS
called.

To have OpenGL use a particular texture object, call g1BindTexture () with
the target and id of the object you want to be active.

To delete texture objects, use glDeleteTextures (n, *texIds),
where texIds isan array of texture object identifiers to be deleted.

-76 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Texture Objects (cont'd.)

* Create texture objects with texture data and state

glBindTexture(target, id);

* Bind textures before using

glBindTexture(target, id);

-77-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Specifying a Texture Image

e Define a texture image from an array of
texels in CPU memory

glTexImage2D(target, level, components,
w, h, border, format, type, *texels);

* Texel colors are processed by pixel pipeline

— pixel scales, biases and lookups can be
done

GrontL.

Specifying the texels for atextureis done using the g1l TexImage{123}D()
call. Thiswill transfer the texelsin CPU memory to OpenGL, where they will be
processed and converted into an internal format.

The array of texels can be any sizeif you're using OpenGL 2.0 or greater (or the
GL_ARB_texture non_power_of two extension is supported); otherwise, the width
and height of the pixel rectangle must be a power-of-two in size. An optional one
texel wide border may be added around the image. Thisis useful for certain
wrapping modes.

The level parameter is used for defining how OpenGL should use thisimage
when mapping texels to pixels. Generally, you'll set the level to O, unlessyou are
using atexturing technique called mipmapping, which we will discuss in the next
section.

.78 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Mapping a Texture

* Based on parametric texture coordinates

» glTexCoord* () specified at each vertex

Texture Space Object Space
(s, t) =(0.2,0.8)

When you want to map a texture onto a geometric primitive, you need to
provide texture coordinates. The glTexCoord* () call setsthe current texture
coordinates. Valid texture coordinates are between 0 and 1, for each texture
dimension, and the default texture coordinateis (0, 0, 0, 1). If you pass fewer
texture coordinates than the currently active texture mode (for example, using
glTexCoordld () whileGL_TEXTURE_2D isenabled), the additionally
required texture coordinates take on default values.

-79-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Generating Texture Coordinates

* Automatically generate texture coords
glTexGen{ifd} [v] ()
 specify a plane AX+By+Cz+D =0

— generate texture coordinates based upon distance from
plane

* generation modes
— GL_OBJECT_LINEAR
— GL_EYE_LINEAR

— GL_SPHERE_MAP

GrontL.

Y ou can have OpenGL automatically generate texture coordinates for vertices
by using the g1TexGen () and glEnable (GL_TEXTURE_GEN_{STRQ}).
The coordinates are computed by determining the vertex’s distance from each of the
enabled generation planes.

Aswith lighting positions, texture generation planes are transformed by the
ModelView matrix, which allows different results based upon when the
glTexGen () isissued.

There are three ways in which texture coordinates are generated:
GL_OBJECT_LINEAR - texturesare fixed to the object (like wallpaper)

GL_EYE_LINEAR - texturefixed in space, and object move through
texture (like underwater light shining on a swimming fish)

GL_SPHERE_MAP - object reflects environment, asif it were made of
mirrors (like the shiny guy in Terminator 2)

-80-

SIGGRAPH 2007
Course #10

Texture Tutorial

BCrEn-SPACE view

Gt

Command manipulaBion window
GLfloat border_color] = {

Glfloat env_color[] = {

Terdure=-space view
jol o

A R

glColordf(0
glBegin(GL_POL

penGL:@

-81-

An Interactive Introduction to OpenGL Programming

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

-82-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Applying Textures Il

specify textures in texture objects

set texture filter

set texture function

set texture wrap mode

set optional perspective correction hint
bind texture object

enable texturing

supply texture coordinates for vertex

* coordinates can also be generated

GrentL.

The general steps to enable texturing are listed above. Some steps are optional,
and due to the number of combinations, complete coverage of the topic is outside
the scope of this course.

Here we use the texture object approach. Using texture objects may enable your
OpenGL implementation to make some optimizations behind the scenes.

Aswith any other OpenGL state, texture mapping requiresthat g1 Enable ()
be called. The tokensfor texturing are:

GL_TEXTURE_1D - one dimensional texturing
GL_TEXTURE_2D - two dimensional texturing
GL_TEXTURE_ 3D - three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for applying
contours to objects (like altitude contours to mountains). 3D texturing is useful for
volume rendering.

-83-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Texture Application Methods

* Filter Modes

— minification or magnification

— special mipmap minification filters
* Wrap Modes

— clamping or repeating
e Texture Functions

— how to mix primitive’s color with texture’s color

* blend, modulate or replace texels

GrontL.

Textures and the objects being textured are rarely the same size (in pixels).
Filter modes determine the methods used by how texels should be expanded
(' magnification), or shrunk (minification) to match a pixel’s size. An additional
technique, called mipmapping is a special instance of a minification filter.

Wrap modes determine how to process texture coordinates outside of the [0,1]
range. The available modes are:

GL_CLAMP - clamp any values outside the range to closest valid value,
causing the edges of the texture to be “smeared” across the primitive

GL_REPEAT - use only the fractional part of the texture coordinate,
causing the texture to repeat across an object

Finally, the texture environment describes how a primitives fragment colors and
texel colors should be combined to produce the final framebuffer color. Depending
upon the type of texture (i.e,, intensity texture vs. RGBA texture) and the mode,
pixels and texels may be simply multiplied, linearly combined, or the texel may
replace the fragment’s color altogether.

-84 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Filter Modes

Example:
glTexParameteri(target, type, mode);

Texture Texture Polygon
Magnification Minification

GrontL.

Filter modes control how pixels are minified or magnified. Generally acolor is
computed using the nearest texel or by alinear average of several texels.

Thefilter type, aboveisone of GL,_TEXTURE_MIN_FILTER Of
GL_TEXTURE_MAG_FILTER.

The modeisone of GI._NEAREST, GL_LINEAR, or specia modes for
mipmapping. Mipmapping modes are used for minification only, and can have

values of:
GL_NEAREST MIPMAP NEAREST

GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_LINEAR

Full coverage of mipmap texture filtersis outside the scope of this course.

-85 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Mipmapped Textures

Mipmap allows for prefiltered texture maps of decreasing
resolutions

Lessens interpolation errors for smaller textured objects
Declare mipmap level during texture definition
glTexImage*D(GL TEXTURE *D, level, ..

GLU mipmap builder routines

gluBuild*DMipmaps(..)

OpenGL 1.2 introduces advanced LOD controls

GrontL.

As primitives become smaller in screen space, a texture may appear to shimmer
as the minification filters creates rougher approximations. Mipmapping isan
attempt to reduce the shimmer effect by creating several approximations of the
original image at lower resolutions.

Each mipmap level should have an image which is one-half the height and
width of the previous level, to a minimum of onetexel in either dimension. For
example, level 0 could be 32 x 8 texels. Then level 1 would be 16 x 4; level 2
wouldbe 8 x 2; level 3,4 x 1; level 4, 2x 1, and findlly, level 5, 1 x 1.

ThegluBuild*Dmipmaps () routineswill automatically generate each
mipmap image, and call glTexImage*D () with the appropriate level value.

OpenGL 1.2 introduces control over the minimum and maximum mipmap
levels, so you do not have to specify every mipmap level (and also add more levels,
on the fly).

-86 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Wrapping Mode

e Example:

glTexParameteri(GL_TEXTURE_ 2D,
GL_TEXTURE WRAP S, GL_CLAMP)

glTexParameteri(GL_TEXTURE 2D,
GL_TEXTURE WRAP T, GL_REPEAT)

GL_REPEAT GL_CLAMP
wrapping wrapping

Wrap mode determines what should happen if atexture coordinate lies outside
of the[0,1] range. If the GL_REPEAT wrap mode isused, for texture coordinate

values less than zero or greater than one, the integer isignored and only the
fractional valueis used.

If theGL_CLAMP wrap mode is used, the texture value at the extreme (either O
or 1) isused.

-87-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Texture Functions

e Controls how texture is applied

glTexEnv{£fi} [v] (GL_TEXTURE_ENV, prop, param)
e GL_TEXTURE_ENV_MODE modes

— GL_MODULATE

— GL_BLEND

— GL_REPLACE

e Set blend color with GL._ TEXTURE ENV COLOR

GrontL.

The texture mode determines how texels and fragment colors are combined.
The most common modes are:

GL_MODULATE - multiply texel and fragment color
GL_BLEND - linearly blend texel, fragment, env color
GL_REPLACE - replace fragment’s color with texel

If prop isGL_TEXTURE_ENV_COLOR, param isan array of four floating point
values representing the color to be used with the GL,_BLEND texture function.

-88 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

-89 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Immediate Mode versus Display
Listed Rendering

* Immediate Mode Graphics
— Primitives are sent to pipeline and display right away
— No memory of graphical entities
* Display Listed Graphics
— Primitives placed in display lists
— Display lists kept on graphics server
— Can be redisplayed with different state

— Can be shared among OpenGL graphics contexts

GrentL.

If display lists are shared, texture objects are also shared.

To share display lists among graphics contexts in the X Window System, use the
glXCreateContext () routine.

-90 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Immediate Mode versus
Display Lists

Immediate Mode

Per Vertex
Polynomial Operations &
Evaluator Primitive

Assembly

Display . Per Fragment Frame
CPU List Operations Buffer

Display

Texture
Memory
Pixel
Operations

GrentL.

In immediate mode, primitives (vertices, pixels) flow through the system and
produce images. These data are lost. New images are created by reexecuting the
display function and regenerating the primitives.

In retained mode, the primitives are stored in adisplay list (in “compiled” form).
Images can be recreated by “executing” the display list. Even without a network
between the server and client, display lists should be more efficient than repeated
executions of the display function.

-01 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Display Lists

* Creating a display list

GLuint id;

void init(void)

{
id = glGenLists(1);
glNewList (id, GL_COMPILE);
/* other OpenGL routines */
glEndList () ;

}

e Call a created list

void display(wvoid)

{
glCallList(id);

Instead of GL._COMPILE, glNewList aSo accepts the constant
GL_COMPILE_AND_EXECUTE, which both creates and executes a display list.

If anew list is created with the same identifying number as an existing display
list, the old list is replaced with the new calls. No error occurs.

-92-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Display Lists (cont’'d.)

Not all OpenGL routines can be stored in display
lists

State changes persist, even after a display list is
finished

Display lists can call other display lists
Display lists are not editable, but you can fake it
— make a list (A) which calls other lists (B, C, and D)

— delete and replace B, C, and D, as needed

GrentL.

Some routines cannot be stored in adisplay list. Here are some of them:

al glGet* routines

glIs* routines (e.g., glIsEnabled, glIsList, glIsTexture)
glGenLists glDeletelLists glFeedbackBuffer
glSelectBuffer glRenderMode glVertexPointer

glNormalPointer glColorPointer glIndexPointer

glReadPixels glPixelStore glGenTextures
glTexCoordPointer glEdgeFlagPointer
glEnableClientState glDisableClientState
glDeleteTextures glAreTexturesResident
glFlush glFinish

If there is an attempt to store any of these routinesin adisplay list, the routine is executed in
immediate mode. NO error occurs.

-03-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Display Lists and Hierarchy

e Consider model of a car
— Create display list for chassis

— Create display list for wheel

glNewList (CAR, GL_COMPILE);
glCallList (CHASSIS);
glTranslatef(..);

glCallList(WHEEL); v
glTranslatef(..);
glCallList(WHEEL);

glEndList () ;

GrentL.

-94 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Advanced Primitives

* Vertex Arrays

* Bernstein Polynomial Evaluators
— basis for GLU NURBS
* NURBS (Non-Uniform Rational B-Splines)
e GLU Quadric Objects
— sphere
— cylinder (or cone)

— disk (circle)

GrentL.

In addition to specifying verticesone at atime using glvertex* (), OpenGL
supports the use of arrays, which allows you to pass an array of vertices, lighting
normals, colors, edge flags, or texture coordinates. Thisis very useful for systems
where function calls are computationally expensive. Additionally, the OpenGL
implementation may be able to optimize the processing of arrays.

OpenGL evaluators, which automate the evaluation of the Bernstein
polynomials, allow curves and surfaces to be expressed algebraically. They are the

underlying implementation of the OpenGL Utility Library’sNURBS
implementation.

Finally, the OpenGL Utility Library also has calls for generating polygonal
representation of quadric objects. The calls can aso generate lighting normals and
texture coordinates for the quadric objects.

-905-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Alpha: the 4t Color Component

* Measure of Opacity

— simulate translucent objects
* glass, water, etc.
— composite images
— antialiasing
— ignored if blending is not enabled

glEnable(GL BLEND)

GrontL.

The alpha component for a color is a measure of the fragment’ s opacity. Aswith
other OpenGL color components, its value ranges from 0.0 (which represents
completely transparent) to 1.0 (completely opaque).

Alphavalues are important for a number of uses:
» simulating translucent objects like glass, water, etc.
* blending and compositing images
* antialiasing geometric primitives
Blending can be enabled using g1Enable (GL_BLEND) .

-06 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Blending

* Combine fragments with pixel values that are
already in the framebuffer

glBlendFunc(src, dst)

C. =srcC, +dsth

Blending
Equation
Fragment
(src)
Framebuffer
Pixel

@GL (dst)

Blending combines fragments with pixels to produce a new pixel color. If a
fragment makes it to the blending stage, the pixel is read from the framebuffer’s
position, combined with the fragment’ s color and then written back to the position.

The fragment and pixel each have afactor which controls their contribution to
the final pixel color. These blending factors are set using g1BlendFunc (), which
sets the source factor, which is used to scale the incoming fragment color, and the
destination blending factor, which scales the pixel read from the framebuffer.
Common OpenGL blending factors are:

GL_ONE GL_ZERO
GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

They are then combined using the blending equation, which is addition by
default.

Blending is enabled using g1Enable (GL_BLEND)

Note: If your OpenGL implementation supportsthe GI,_ARB_ imaging
extension, you can modify the blending equation as well.

-97-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

glFog{if} (property, value)
e Depth Cueing

— Specify a range for a linear fog ramp
e GL_FOG_LINEAR

* Environmental effects

— Simulate more realistic fog
e GL_FOG_EXP
e GL_FOG_EXP2

GrontL.

Fog works in two modes:

Linear fog mode is used for depth cueing affects. In this mode, you provide
OpenGL with a starting and ending distance from the eye, and between those
distances, the fog color is blended into the primitive in alinear manner based on
distance from the eye.

In this mode, the fog coefficient is computed as ¢ __2-dart

Here's a code snippet for setting up linear fog: end - start
glFogf (GL_FOG_MODE, GL_FOG_LINEAR) ;

glFogf (GL_FOG_START, fogStart);

glFogf (GL_FOG_END, fogEnd) ;

glFogfv (GL_FOG_COLOR, fogColor) ;

glEnable (GL_FOG) ;

Exponential fog mode is used for more natural environmental affects like fog,
smog and smoke. In this mode, the fog’ s density increases exponentially with the
distance from the eye. For these modes, the coefficient is computed as

=<
edenstyz

(_)e® ¥ aL Foe_Exp
GL_FOG_EXP2

-08 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Fog Tutorial

i Fog

Fog eguation Screen-space view

end - z
end - start

Command manipulation window

Glfloat color[4] ={ 0.70 ,0.70 ,0.70 ,1.00 };
glFogfv(GL_FOG_COLOR, color);
glFogf(GL_FOG_START, 0.50);
glFogf(GL_FOG_END, z.00)
glFogi(GL_FOG_MODE, GL_LINEARY);

Click on the arguments and move the mouse to modify values.

In thistutorial, experiment with the different fog modes, and in particular, the
parameters which control either the fog density (for exponential mode) and the start
and end distances (for linear mode).

-99-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Multi-pass Rendering

* Blending allows results from multiple drawing
passes to be combined together

— enables more complex rendering algorithms

Example of bump-mapping
done with a multi-pass
OpenGL agorithm

OpenGL blending enables techniques which may require accumulating multiple
images of the same geometry with different rendering parameters to be done.

-100 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Antialiasing

* Removing the Jaggies
glEnable(mode)

e GL_POINT SMOOTH
e GL_LINE SMOOTH

e GL_POLYGON_SMOOTH

— alpha value computed by computing
sub-pixel coverage

— available in both RGBA and colormap modes

GrontL.

Antialiasing is a process to remove the jaggies which is the common name for
jagged edges of rasterized geometric primitives. OpenGL supports antialiasing of all
geometric primitives by enabling both GL._BLEND and one of the constants listed
above.

Antialiasing is accomplished in RGBA mode by computing an alpha value for
each pixel that the primitive touches. This value is computed by subdividing the
pixel into subpixels and determining the ratio used subpixels to total subpixels for
that pixel. Using the computed alpha value, the fragment’s colors are blended into
the existing color in the framebuffer for that pixel.

Color index mode requires aramp of colorsin the colormap to simulate the
different values for each of the pixel coverage ratios.

In certain cases, GL,_POLYGON_SMOOTH may not provide sufficient results,
particularly if polygons share edges. As such, using the accumulation buffer for full
scene antialising may be a better solution.

-101 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

OpenGL Pipeline Revisited

Texture
Memory

vertices vertices fragments

Geometry Fragment
Processing Processing

There are three types of memory that can be accessed: normal CPU memory,
texture memory, and the frame buffer.

At the present, geometry processing and fragment processing can be altered by
writing programs called shaders whereas the rasterizer is fixed.

-102 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Geometry Processing

e Coordinate Transformations
Primitive Assembly
Clipping
Per-vertex lighting

Programmable through a vertex program or
vertex shader

GrontL.

Geometry processing works on vertices represented in four dimensional
homogeneous coordinates.

In the fixed function pipeline (which is the default if no shader isloaded by the
application), the geometric processing includes:

The modelview and projection transformations

The assembly of groups of vertices between a glBegin and aglEnd into
primitives such as lines, points, and ploygons.

Clipping these primitives against the volume defined by glOrtho,
gluPerspective, or glFrustum.

Computing the modified Phong model (if lighting is enabled) at each vertex to
determine a vertex color.

-103 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Rasterizer

e QOutputs fragments (“potential pixels”) that
are interior to primitives

* Interpolates colors, depth, texture
coordinates, and other per vertex variables
to obtain values for each fragment

* Not programmable

GrontL.

Each fragment corresponds to a location in the frame buffer and has attributes
such as color, depth, and textures coordinates that are obtained by interpolating the
corresponding values as the vertices. However, the final color of apixel is
determined by the color from the rasterizer, and other factors including hidden
surface removal, compositing, and texture mapping which are done as part of
fragment processing.

-104 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Fragment Processing

* Assigns color to each fragment and updates
frame buffer

* Handles hidden surface removal, texture
mapping, and blending

* Programmable through fragment program or
fragment shader

GrontL.

Note that many of the operation that are carried out on a per vertex basis such as
shading can be carried out on a per fragment basis through a fragment shader. For
example, rather than using the vertex colors computed by the modified Phong
model and then interpolating them across a primitive, the same model can be
computed for each fragment because the rasterizer will interpolate normals and
other quantities across each primitive. This method is called Gouraud or
interpolated shading.

- 105 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

* OpenGL Shading Language

C like language for writing both vertex and
fragment shaders

Adds matrix and vector data types +
overloading of operators

OpenGL state variables available to shaders

Variables can be passed among shaders
and applications

GrontL.

Supported as aextension in earlier versions of OpenGL but is now part of the
OpenGL standard.

Matrix and vector types are 2, 3, and 4 dimensional.

Although there are no pointers, we can pass matrices, vectors, and C-structs
back and forth.

Although the language is the same for vertex and fragment shaders, each has a
different execution model. Vertex shaders are invoked for each vertex produced by
the application; fragment shaders for each fragment that is produced by the
rasterizer. GLSL has type qualifiersto identify variables that may be local to a
shader, pass from avertex shader to afragment shader, and to identify input and
output variables.

- 106 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Vertex Shader Execution

App|icc|’rinn

glColor Program

glOrho
g||.-::|c|-::| Matrix

'

CpenGL
State

. — g Primitive -
AEEumHy

| Wertax
g|_ Mm:ﬂﬁ"’iawﬁ'ﬂ friz g|_Fi'n|F5|tC_c:|nr
gl_Fosition

gl_ProjectionMartrix

The vertex shader is executed for each vertex defined in the application.
Minimally every vertex shader must output a vertex position (gl_Position) to the
rasterizer. A user defined vertex shader must do all the functions that the fixed
geometric processor does. Hence, most vertex shaders must do the coordinate
system changes usually done by the modelview and projection matrices on the
application on the input vertex position (gl_Vertex). Since OpenGL state variables
are available to the shader, we often see lines of code such as

gl_Position = gl_ProjectionMatrix*gl_ModeViewMatrix*gl_Vertex;

in the shader. Most shaders aso produce an output color (gl_FrontColor,
gl_BackColor) for each vertex. Hereis atrival vertex shader that colors every
vertex red and does the standard coordinate changes.

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);

void main(void)

{
gl_Position =
gl_ModelViewProjectionMatrix*gl_Vertex;
gl_FrontColor =red,;

}

-107 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Simple Vertex Shader

uniform float time;

void main()
{

gl _Position = gl ModelViewProjectionMatrix *
gl _Vertex;

gl _Position.xyz = (1.0+0.1*sin(0.001*time)) *
gl Position.xyz;

gl FrontColor = gl Color;
}

GrontL.

In this simple shader, avariable timeis provided by the application. The product
of the model-view and projection matrices (gl_ModelViewProjectionMatrix) is
provided by the state and is used to convert the position each vertex from object
coordinates (gl_Vertex) to clip coordinates (gl_Position). Thetime variable is used
to sinsusoidally vary the y component of the vertex. Finally the color set by the
application (gl_Color) is sent as the front color (gl_FrontColor) along with the new
position to the rasterizer.

-108 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Vertex Shader Applications

e General Vertex Lighting
Off loading CPU
Dynamic Meshes
Morphing

Additional Application Specific Vertex
Attributes

GrontL.

Some basic fragment shader applications include:

Vertex Lighting: Use models that either more physically realistic than the
modified Phong model or are non photorealistic such as cartoon shading.

Many operations can be done either in the CPU or the GPU. Often we can
offload the CPU by pushing operations to the GPU. One example is creating waves
on amesh by sending a time parameter to the shader which controls mesh vertex
heights sinusoidally thus creating waves. Particle system calcul ations are another
example.

Morphing involves interpolation between two sets of vertices. The interpolation
can be done on the GPU.

We can pass additional information on a per vertex basis to the GPU. For
example, in asimulation we might have temperature or flow data at each vertex.

-109 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Example: Vertex Shader Twisting

In this example each vertex isrotated in the about the y axis by an angle
dependent on its distance from the axis (twisting).

Although we could do this operation in the application, by doing it in the shader
we offload the CPU.

-110 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Fragment Shader Execution

Apﬁicu’rian
Pregram

Y

varticas Frclgrnanrs Fragment pixa-|5

- Frame
—® [asterizer —— Shadar i Buffer —

|_F'Ds iticin

g|_Frc:an:-| or g|_Frug mentCaler
linterpolated)

The fragment shader is executed for each fragment output from the rasterizer.
Every fragment program must produce a fragment color (gl_FragmentColor). Since
each fragment has alocation in the frame buffer, fragment locations cannot be
altered. Vertex attributes, either bultin (gl_FrontColor) or application defined are
available to the fragment shader with values that have been interpolated across the
primitive. Tests such as depth are done after the fragment shader.

Below is asimple fragment shader that passes through a color defined and
output by the vertex shader (color_out) for each vertex that is interpolated across the
primitive.

varying vec3 color_out;
void main(void)

{

gl_FragColor = color_out;

}

-111 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Simple Fragment Shader

uniform float time;
void main()
{
float d = length(gl_FragCoord.xy) ;

gl FragColor.r = 0.5*(1.0+sin(0.001*time)) *
gl FragCoord.x/d;

gl_FragColor.g = 0.5*(1.0+cos(0.001*time)) *
gl FragCoord.y/d;

gl FragColor.b = gl FragCoord.z;
gl FragColor.a = 1.0;

In this simple fragment shader the time variable provided by the application is
used to vary the red and green components of each fragment’s color sinusoidally.
The location each fragment in the frame buffer (gl_FragCoord) is available from the
state. Every fragment program must output a fragment color (gl_FragColor).

-112 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Fragment Shader
Applications

e Per Fragment Lighting
Bump Maps
Environment Maps
Texture Manipulation

Shadow Maps

GrontL.

Fragment shaders are more powerful than vertex shaders. With afragment
shader you can apply the lighting model to each fragment generated by the
rasterizer rather than using interpolated values from each vertex. One exampleis
bump mapping where the normal is altered at each fragment allowing the rendering
of surfaces that are not smooth. Fragment shader also have access to textures so that
multipass techniques such as environment maps can be carried out in real time.

-113 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Example: Per Fragment Shading

In this example, a diffuse color was computed for each fragment by using the
interpolating normals and light vectors ouput by the rasterizer.

A texture was also applied to each fragment. Per fragment lighting using the
same model as a vertex shader or the default modified Phong model should result in
amuch smoother image.

-114 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Linking with Application

* In OpenGL application, we must:
— Read shaders
— Compile shaders
— Define variables
— Link everything together

* OpenGL 2.0 contains a set of functions for
each of these steps

GrontL.

Similar to the initialization of other OpenGL application programs, a set of
operations must be carried out to set up user written shaders and link them with an
OpenGL application program. Shaders are placed in program objects. A program
object can contain multiple shaders of each type. Just as with any program, a shader
must be compiled and linked with other program entities. The linking stage sets up
internal tables that allow the application to tie together variables in the shaders with
variables in the application program.

-115-

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Accumulation Buffer

* Problems of compositing into color buffers
— limited color resolution
e clamping
* loss of accuracy
— Accumulation buffer acts as a “floating point” color buffer
e accumulate into accumulation buffer

e transfer results to frame buffer

Since most graphics hardware represents colorsin the framebuffer as integer
numbers, we can run into problemsif we want to accumulate multiple images
together.

Suppose the framebuffer has 8 bits per color component. If we want to prevent
any possible overflow adding 256 8 bit per color images, we would have to divide
each color component by 256 thus reducing us to O bits of resolution.

Many OpenGL implementations support the accumulation in software only, and
as such, using the accumulation buffer may cause some slowness in rendering.

High end graphics cards now use floating point frame buffers which allow usto
do many of the operations such as compositing without and faster without 10ss of
accuracy directly in the frame buffer and without use of an accumulation buffer.

-116 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Accumulation Buffer Applications

e Compositing
Full Scene Antialiasing
Depth of Field
Filtering

Motion Blur

Compositing, which combines several images into a single image, done with the
accumulation buffer generally gives better results than blending multiple passes into
the framebuffer.

Full scene antialiasing utilizes compositing in the accumulation buffer to
smooth the jagged edges of all objectsin the scene. Depth of field, ssmulates how a
cameralens can focus on a single object while other objects in the view may be out
of focus.

Filtering techniques, such as convolutions and blurs (from image processing)
can be done easily in the accumulation buffer by rendering the same image multiple
times with slight pixel offsets.

Motion blur, atechnique often used in Saturday morning cartoons, simulates
motion in a stationary object. We can do with the accumulation buffer by rendering
the same scene multiple times, and varying the position of the object we want to
appear as moving for each render pass. Compositing the results will give the
impression of the object moving.

-117 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Stencil Buffer

* Used to control drawing based on values in
the stencil buffer

— Fragments that fail the stencil test are not drawn

— Example: create a mask in stencil buffer and draw
only objects not in mask area

Unlike other buffers, we do not draw into the stencil buffer. We set its values
with the stencil functions. However, the rendering can alter the valuesin the stencil
buffer depending on whether a fragment passes or fails the stencil test.

-118 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Getting to the Framebuffer

Depth : . Logical
Blending Dithering Operations

GrontL.

ko
5
3
g
LT

In order for afragment to make it to the frame buffer, it has a number of testing
stages and pixel combination modes to go through.

The tests that a fragment must pass are:
* SCissor test - an additional clipping test
« alpha test - afiltering test based on the apha color component
* stencil test - a pixel mask test
* depth test - fragment occlusion test
Each of these testsis controlled by aglEnable () capability.

If afragment passes all enabled tests, it is then blended, dithered and/or
logically combined with pixelsin the framebuffer. Each of these operations can be
enabled and disabled.

-119 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Alpha Test

* Reject pixels based on their alpha value
glAlphaFunc(func, value)
glEnable(GL ALPHA TEST)

— use alpha as a mask in textures

Alphavalues can also be used for fragment testing. glA1phaFunc () setsa
value which, if glEnable (GL_ALPHA_TEST) hasbeen called, will test every
fragment’ s alpha against the value set, and if the test fails, the fragment is discarded.

The functionswhich glAlphaFunc () can useare:

GL_NEVER GL_LESS
GL_EQUAL GL_LEQUAL
GL_GREATER GL_NOTEQUAL
GL_GEUQAL GL_ALWAYS

The default is GL_ALWAYS, which always passes fragments.

Alphatesting is particularly useful when combined with texture mapping with
textures which have an alpha component. This allows your texture map to act asa
localized pixel mask. This technique is commonly used for objects like trees or
fences, where modeling the objects (and all of its holes) becomes prohibitive.

-120 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

GPUs and GLSL

e Over the past few years, graphical
processing units (GPUs) have become more
powerful and now are programmable

e Support first through OpenGL extensions
and OpenGL Shading Language (GLSL)

* Incorporated in OpenGL 2.0

GrontL.

By most measures, GPUs are more powerful than the CPUs in workstations.
However, the architecture of a GPU isthat of a stream processor.

GPUs can aso be programmed using Nvidia' s Cg (C for Graphics) language
which isamost identical to Microsoft’s High Level Shading Language (HLSL).
Hence shaders written in Cg will run under both OpenGL and DirectX on Windows
platforms. Cg and GLSL are very similar. However, the advantage of GLSL isthat,
like the rest of OpenGL, it is platform independent. In addition, because GLSL is
tied to OpenGL it iseasier for the programmer to access OpenGL state variables.

-121 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

-122 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

On-Line Resources

— http://www.opengl.org
 start here; up to date specification and lots of sample code
* online “man pages” for all OpenGL functions

— http://www.mesa3d.org/
* Brian Paul's Mesa 3D

— http://www.cs.utah.edu/~narobins/opengl.html
 very special thanks to Nate Robins for the OpenGL Tutors

* source code for tutors available here!

-123 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

OpenGL Programming Guide, 6! Edition
The OpenGL Shading Language, 2"d Edition
Interactive Computer Graphics: A top-down

approach with OpenGL, 4t Edition

OpenGL Programming for the X Window
System

OpenGL: A Primer 3 Edition
OpenGL Distilled

GrontL.

The OpenGL Programming Guide — often referred to as the “Red Book” dueto
the color of its cover —discusses all aspects of OpenGL programming, discussing all
of the features of OpenGL in detail.

Mark Kilgard' s OpenGL Programming for the X Window System, is the “ Green
Book”, and Ron Fosner’s OpenGL Programming for Microsoft Windows, which has
awhite cover is sometimes called the “ Alpha Book.” The OpenGL Shading
Language, by Randi Rost, Barthold Litchenbelt, and John Kessenich, is the “Orange
Book.”

All of the OpenGL programming series books, along with Interactive Computer
Graphics: A top-down approach with OpenGL, OpenGL: A Primer, and OpenGL
Distilled are published by Addison Wesley Publishers.

-124 -

SIGGRAPH 2007 An Interactive Introduction to OpenGL Programming
Course #10

Thanks for Coming

Questions and Answers
Ed Angel angel@cs.unm.edu
Dave Shreiner shreiner@siggraph.org

Vicki Shreiner vshreiner@sgi.com

-125 -

