Leader-uszx7%l

L AKBERHRRARGILE 73

DATAGURUE IR SR X

KBS HXNRERPISEE #IH Leader-us

IEIATH%ELIH_LJ

B

[FER] ZMRIRFNLIRT A i pk & LR IERI 2 4
, FMEEHAABERENER | ASEREUINCERT
&, ERBURREREEMNEFTRIE.
2 EaE S] [P g A e =t || T

DATAGURUE N EIR ST
RKE>HARERHBIKE HIT Leader-us

http://edu.dataguru.cn/

| s RSz HTeatiH e M £

B Map-Reduce
B SERTTRIESS
B pHNITREAEES

DATAGURUEVEIE L X
RKE>HARERHBIKE HIT Leader-us

| Map-Reduce Ao

We want to count all the books in the library. You count up shelf #1, | count up shelf #2. That's map. The more
people we get, the faster it goes.

Now we get together and add our individual counts. That's reduce.

FISQLKAZkLL, map% %A (aggregate) 2 if) ' fgroup-by 4] . Reducell ¥ fulit-S group-byite K (4T 1% 4k
BB a5 o

Map Reduce AL f Wi AT #2: Mapid#fiReduceid 2, 4 — AN ARASEL Sra (A AMI N, 3 5T LA B A (1
iOEayich

MapFReduce I ZHE 7 & X AE I -

Input ==> Map ==> Mapper Output ==> Sort and shuffle ==> Reduce ==> Final Output

(input) <k1, v1>-> map -> <k2, v2>-> combine -> <k2, v2> -> reduce -> <k3, v3> (output)

How Many Maps?

The number of maps is usually driven by the total size of the inputs, that is, the total number of
blocks of the input files.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you'll end up with 82,000 maps

DATAGURUBILEIES T X

KBS HXNRERPISEE #IH Leader-us

I Map-Reduce [ﬁlﬂ%

Googeleit: 3 H AR A (ﬁ
ke

(Hfoek

(1) fork 1) fork
2)
(2) asign
_assign redude
map

T
o \V/
Slﬂ“ 0 (6) write
dboe output

i worker "
sPl“ 1 (5) remote read file O
& 3) read
split 2 ‘\{’_\ (4) local wrise
pl worker)

- R
.) ork output
split 3 S~ Q’_“/) file 1
split 4
—
worker
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

DATAGURUE W EIE DL
RKEDHARERHFIKE HIT Leader-us

| Map-Reduce

mATAEUEU

[K1,V1)

spiit1 | spit2 | spita | spiits
file
block1 block2 blockN

Mappers must
complete before
Reducers can
begin

[(K2,V2) ...}l {Reduce: [K3,V3]
..... i Las o
~ g . :
xS~ — >[N — - — _ o iFeducer
NIV
N - %
== - 3>| Shuffle |-------
N3
By
/’(A ;
-4~ -~?2 - | Shuffle | ------

part-00000

part-00001

part-O00N

directory

REZHARGERHIKE

W Uf Leader-us

DATAGURUE ViR SR

] Map-Reduce Iﬁlf%ﬁ%ﬁ%

Hadoop Yarn#ft4g

MapReduce Status ——»
Job Submission ------ -
Mode Status

Resource Request

DATAGURUE ViR SR

REDHARGERFIKRE HIT Leader-us

] Map-Reduce [ﬁlﬂﬁ%ﬁﬁ%

Ma pi% .
Input
Reduce’:
[
(Task Tracker ‘ copy PY Task Tracker\

e disk - Memory Buffer @m |

partition 4 / i)

Other task trackers merge input

% A

Spill:Sort&Combiner

I
file file

DATAGURUE ViR SR

RESHARERHIKZE W Leader-us

ATAGLIRU
| Map-Reduce _1g - Syt

o RIS HE B HTRE Fr AR R R 2 — A BRI {21R .

o AR, POVERAERAE RS .

o T REAETE, BRI T MR E 255 BT A AR ET R AT BOR .
o RETRKE HATEEEE ARSI RRE

o ABEAREITE HATduEEE ARG P 22K T A .

MapReducett: X & kB A T & I 7 — /N4 AL B R B R £ A . sEPr b, MapReducefTfd FH I H AR 22 /0

JE204E T . B R AR /N 4 1 AR R FEKitsuregawa 1 VB L B “Application of Hash to Data Base

Machine and Its Architecture”)2 fill F & f& SR — AN & e vk .

« MapReduce i Z2BAT-55 X1 43 ilimapFlreduce PN B, mapBh B2 A i A [a) 45 R EL S Rl AL, MAEX PN B2

0] 75 E b TshuffleffE. ShuffletielE 75 B MM 2 R B8N sdAT 28 $5 DL, AR RO BONFERT PR, X

& Hadoop MapReducel2 PR AR K 2 —, KERI [AFEREMNZEEIOFT M AL T1HHE. £ —2ErE it

FHsp, g @5 R HIZ R RS, MapReduce 1 8 2 2. 45 55 i1 BH 2

o fEmapPi B, A A E AR A QIR E 2 SRR . XA ER, Rod kS EE reduceSEp L 9 bEH e L
B E K EL 2 F AR 2 R (AR IZ AT« 45 Bt 21T B IE 4T I 18] B B et 18 reduce SE 7

AN F EAAE JUAERTE 1EfE fIMapReduce . REkiINATEMapReduce EREEER: BEREIKIEIE, FEEHTHAAEMFLALE, HLEFEERBMIZTMapReduceEst
Googlefs HMapReduce, & if& fiCloud Dataflow, RXETESFLRBHRIRE. —20144F

GoogleBZERHE O RN, MEERSRLE, AUMEIERKMapReduce, X FE— B AKIME S0 R ZiCloud Dataflow.

DATAGURUBILEIES T X

KBS HXNRERPISEE #IH Leader-us

| schditestEse i £
Spark

Spark L F Lt FIDAGHAT 5125, S HFeyclic data flowMI A7 THE. Klitk, ©RIEEITEE, 1EANAFH 2Hadoop
MapReduceltj100f%, fEfEHLH 2106%. EAEFIERETE AR, FHILE OB, Spark FTAPIEE yfai &, 24t 780 High
LevelftJ#eE, B UREFHISCER 4T M . B RIAPISZ #:Scala. JavafiPython, 3 H A DL 53¢ H A\)iz 4T Scalay
Python. K& & Spark4i it Word 78 27 . F&HadoopfJWord Countl ¥, HEIFHE T, HBEATIZE0

120 110 text_file = spark.textFile("hdfs://...")
80 text_file.flatMap(lambda Tine: Tline.split()) Spark Spark MLlib GraphX
B Hadoop .map(lambda word: (word, 1)) SQL Streaming (machine (graph)

® Spark .reduceBykey(lambda a, b: a+b) Iearning)

[#s]
]

Running time (s)
=)]
[

0.9 Word count in Spark's Python AP

=]

Apache Spark

DATAGURUEVEIE L X
RKEDHARERHFIKE HIT Leader-us

| celiteiEz Spark DAG 1) S

EREH, R R EREMMEERT R R e A TRl bRz, WEAEE T R4 B (DAGED

AR Y
/j\ /f //j EE Oozie workflows are actions arranged in a control dependency DAG (Direct Acyclic Graph).

An Oozie workflow may contain the following types of actions nodes: map-reduce, map-—
reduce streaming, map-reduce pipes, pig, file—system, sub-workflows, java, http (no yet
implemented), email (not yet implemented) and ssh (deprecated).

DATAGURUE W EIE DL
KBS HRNREEZHIEL HIT Leader-us

| SERHHESIESE Spark RDD Mt

RRD itk oA s 5) 2 — SEX R R B, Bkl 212 G ilas b, IF HAERA RIS E R 2 Ja] DU g, B AT LU S RDD 2 A AE A7 LIS A5, RRDAR
RPRAL T — DR KRS, BATA LR Z S A e, TR I W] DURIA O — R AL B

RDD Lineage

RDD Transformations

! words = sc.textFile(“hdfs://large/file/") HadoopRDD
.map(_.toLowerCase) MappedRDD
.flatMap(_.split(” “)) » FlatMappedRDD
: v
alpha = words.filter(_.matches(“[a-z]+")) FilteredRDD
Lineage: fault tolerance :
; ! nums = words. filter(_ .matches(“[0-9]+")) FilteredRDD
if RDD2 lost] I
tranformation action lh t() .. 3 " ikinetr?egdei
; ; i alpha.coun : uilt on river
Long Oy 555 e B 5 R SR A S W e W R A H e W S RO / by the transformations)

Action (run job on the cluster)
recompute RDD1 and produce new RDD2

DATAGURUZEWZEIIESIT#TIX
KBS HXNRERPIEE HHIT Leader-us

| opditemiEe Spark RDD M

-) o RDD K #i 5% % -

External World

RRD | “Narrow” deps: “Wide” (shuffle) deps:

RDD

RDD RDD

join with

inputs co-

partitioned join with inputs not
co-partitioned

DATAGURUE ViR SR

RKEDHARERHFIKE HIT Leader-us

I Eﬂ‘ji-l-%*Eglg Spark ZBITHELE Iﬂl@%

RDD Objects DAGScheduler TaskScheduler Worker
Cluster
manager
TaskSet Task
> | Block
-P> < == || manager
rddl.join(rdd2) split graph into launch tasks via execute tasks 8
.groupBy(..) \ \
Eiitert stages of tasks cluster manager ' :
|
_ submit each retry failed or store and serve ! '
build operator DAG stage as ready straggling tasks blocks : :
in
stage !
failed ﬁf_’

s
S R B o

b+

i
1

-

/

_’/ Stage3 ’

———————————————————— -

T —————————————————————————

- E> MappndR0D (——p| Fullapeeid :m »| P00 —»mnm---.—cmm rAGURUEﬂkﬂ?Eﬁ*ﬁHZE

3

ANZETTMIVRYTRYISKEX, VY Leaqer-us

| sceditEstEs Spark Streaming M s

Twitterutils. createstream{...)
ilter(_. getText. contains("spark"})

- countBywindow(seconds (5)) DStream ——. datafrom | _ | datafom | _| datafrom | _ | datafrom | -
timeOto 1 time 1to 2 time2to 3 time3to4

RDD @time1 RDD@time2 RDD@time3 RDD @ time4

Counting tweets on a sliding window

// Reduce last 30 seconds of data, every 10 seconds

val windowedWordCounts = pairs.reduceByKeyAndWindow(+ , Seconds (30), Seconds(10))

. \\Z\: (=
time 1 time 2 time 3 time 4 time 5 Spa rk Streamlngrﬁj—klﬂl}i
original Driver
DStream TS
] (----’2".(5".'{"1_’;“_“_‘.'-___.‘~-, ________________________
i =] lobGenerator = 1
wu::) t::.ra::ibgﬁed o=~ JoBHeaaT ™ | fnmnn BoManagutane 4
; """ DAGScheduler e
B oaowed . L eched |
window window window AddBlock : updateBlockinfo
at time 1 at time 3 attime 5 / 3
Executor Executor
input data batches of batches of P et ‘ .-
stream Spark | inputdata | Spark | processed data T S -
Streaming Engine SEE> < S
DATAGURUEWEIR St X

RKEDHARERHFIKE HIT Leader-us

| scaditEsiELe Spark SQL L1 e e

Bl Tools
S5 +abl lik@
e : .
Spark Applications (Python, Scala, Java) s TADLASY %OMDATA Person String Int Double
Machine Learning (MLIib) Person String Int Double
JDBC Person String Int Double
Person String Int Double
Spark SQL
) Person String Int Double
= : A : e : Person String Int Double
Hive Avro csv Parquet | | JDBC ! HBase ! Others !
| I |
e] SRmEn.] ERRER : RDD[Person] DataFrame
Physical Plan

Logical Plan Physical Plan

with Predicate Pushdown

Pl Relation Execusion and Column Prunin
EANY Analysis Optimization Planning Vsl Oparmtor ‘ v g
Rules Rules Strategies filter join

E i - Unrescived ’ Optimized E
{ Spark Program { Logical Plan Logicat Plan Logcal Plan Physical Plans Native RDOs !
Cencennnmnanna ! v " """""""" ! scan
T (filter

oIn
l events)

' .,/' ' > s >y
! Stoaming SOL ! U sk vt ! ‘1 Streaming Nodes | optimized optimized
N 3 Schems Catalog ! Padtormenos _' i 3 scan 'SCB'\

(events \users
............... ; scan
Legond [events f:le] Fers table J (users)
External Component

SQLHAT &Il

Ce SQL#E MLk 5] % Catalyst

DAIAGURUEW R SRR

REPHKXRERHFIZE WIH Leader-us

| schsitesiEs

Apache Storm

II_HIATH%EUEU

bolt
spout bolt
spout bolt

Storm Topologies

Nimbus

E55 R EE A%

Topology

-
———
=

KBS HXNRERPISEE #IH Leader-us

DATAGURUE &R ST X

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Worker£E i

2
o
9
R4
-

worker

executor

M Storm M Heron

SCAYITEIESE Twiter Heron

1050

700

Twitter Has Replaced Storm with Heron

Logical Plan, o _25- —. —I -

million tuples/min

350

100 200 500
Spout Parallelism

Topology Physical Plan and

Master Execution State

Logical Topology 15 Containers and 193 Instances
ZK
CLUSTER
[
: Stream B fetrics | Stream Metric: :
Manager | Manager [Manager i nager [
Aggregate topology metrics © Topology Metrics ©
3 11 12 13 Q414§ 3 11 Q12 413 414 E ' , tric o ori
: $; S Max Capacity
**sesssssnscsnsessnsssscessssssnssssssassnsnaes o Ctesassansssssnissesnsasnsansesatsansssansonse” o* Capacty @ @3min @10min @ 1hour @@ 3hours PR—
Max F.
CONTAINER CONTAINER Failures® @3min @10min @ 1hour @@ 3hours S
Max CPU
CPUD @3min @10min @ 1hour @3 hours el
. ~ . 2 2 mx mmry
We Would al Yo} 1 lke to thank the Storm community for Memory® @3min @ 10min @ 1hour @@ 3 hours oy “"““"I"““"I"I“"“"“““"I""I"“I"““"“
teaching us numerous lessons and for moving the state of GCO @3min @10min @1hour @3 hours TTaaspm 400pm 4iSpm 4a0pm
distributed real-time processing systems forward. Role @ Color instances by role

DATAGURUEVEIE L X
RKEDHARERHFIKE HIT Leader-us

http://storm.apache.org/

| SRS ESHESE LinkedIn Samza il s o

XFFSERfR, Samzack] T ANEBIE . BSE, ERERBE% DX, EAERXEREA TR MREE TIHES,
M T R4, ABTCIRAE AR 7 X BB E AT . eIy 2R AR B, wie i PLS AT BAlel Sk s i —
FHE . EFHRASEWRE. WRPXIEEN — & ENAEFE, BaRERLE EHENZVR 3.

Samza Job Partitioned Stream
Samza API H
Input .
e ~Katka -
|:| - S
YARN Kafka YARN partten® 0123465867 8 5 '\
Task Task Task partition 1 -i D %
Q @ @ 012346867 /
Wﬁ SmmZﬂl m
\ / partition 2 =
%S EE Dld012345e?3 -
Output Changelog o v
Stream Stream
Distribrled slream processing H HHH
W LD
DATAGURUE VRSt X

RKEDHARERHFIKE HIT Leader-us

| sRditESIESE Apache s4

A keyless event (EV) arrives at PE1 with quote:

QuoteSplitterPE (PE1) counts unique

VAL . words in Quote and emits events for
L each word.
R EV _ WordEvent
KEY =I -

—

WordCountPE (PE2-4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is
updated.

VAL _ word=saidcount=3

" KEY _ sortiD=9
VAL _wordsTCoountedd.

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

-
-

EV PartialTopKEv [O MergePE (PE8) combines partial
KEY _ topk=1234 - TopK lists and outputs final
VAL wO0ds S iNe0l Topk st

PE ID PE Name Key Tuple

PE1 QuoteSplitterPE null

PE2 WordCountPE word="said"

PE4 WordCountPE word="{"

PES SortPE sortiD=2

PE7 SortPE sortiD=9

PE8 MergePE topK=1234

Figure 1. Word Count Example

L
[Processing Node _

[Processing Element Container

PE1 PE2 e PEn

’ '
Event

e Dispatcher |+| Emiter |-+~

Listener

e —
[Communication Layer

Routing Load Balancing
Failover Management
Transport Protocols

Zookeeper

18RSt X

Figure 2. Processing Node

| HRHEEAEFSE Apache Mesos

What is Mesos?

IEIATAEUEU
A distributed systems kernel

Mesos is built using the same principles as the Linux kernel, only at a different level of abstraction. The Mesos kernel runs on every machine and provides
applications (e.g., Hadoop, Spark, Kafka, Elastic Search) with API’ s for resource management and scheduling across entire datacenter and cloud environments.

Apache Mesos $CPU. WAF. fH i LU ETH N BHE A ERHLEGE BN PG ok, SRR s i o A SR G, IR R SR iz T e 77 .

e Mesos Architecture

fggfﬁfg - (Executor) (Executor)

: MPI job Hadoop job

resource I T - -

— offers MPI HEE —__ Framework-
I _ scheduler sch task __specific scheduling |
] 1 1]

Mesos ‘ Mesos l Mesos ‘ Mesos '\‘ /‘ o N

i save slave slave distributed —— " Pick frameworkto
[} | |) kemel Ce \Loﬁer resources to
i i available :resources E offer
| i i |

Mesas slave

T
—_ Lavnches and
Qolates executori)

executor

| task |

DATAGURUE ViR SR

RKEDHARERHFIKE HIT Leader-us

http://mesos.apache.org/
http://mesos.apache.org/

AR

Thanks

FAQFR|g]

DATAGURU & L #4E 55 47 R Uy

