
JavaParser
per	generare,	modificare e	analizzare codice Java

Federico	Tomassetti

The JavaParser family

JavaParser
a.k.a.	JP

JavaSymbolSolver
a.k.a.	JSS

Is this stuff mature?

JavaParser is	a	project	with	a	long	history,	contributions	from	over	50	
persons,	and	basically	it	works.

JavaSymbolSolver is	much	younger	and	it	works	decently	enough.	
Until	it	does	not.

Yes, it supports all of Java

Even	the	crazy	things	you	all	forgot	about…

Yes, it supports all of Java

Even	the	crazy	things	no	one	actually	used…

What JavaParser does?

JavaParser… parse	Java	code	into	a	Java	AST

package foo.bar;

class A {
int field;

}

CompilationUnit

PackageDecl ClassDecl

FieldDecl

PrimitiveType

What JavaParser does?

JavaParser unparse an	AST	into	code

package foo.bar;

class A {
int field;

}

CompilationUnit

PackageDecl ClassDecl

FieldDecl

PrimitiveType

Hello, JavaParser!

// Get a compilation unit
JavaParser.parse(myFile)
JavaParser.parse(code)

// Or an expression
JavaParser.parseExpression(”1 + 2”)

// Or a statement
JavaParser.parseStatement(”if (a) b = 1;”)

Isn’t JP enough?

int foo;

public void aMethod(int foo) {
foo = 1;

}

public void anotherMethod() {
foo = 1;

}

To	JP	these	two	statements	looks	the	same:	they	produce	the	same	
AST	nodes.

It	is	the	assignment	of	a	thing	named	”foo”,	no	idea	what	that	thing	is

Isn’t JP enough?

public	void	print1(String	foo)	{
System.out.print(foo);

}

public	void	print2(int foo)	{
System.out.print(foo);

}

To	JP	these	two	statements	looks	the	same:	they	produce	the	same	
AST	nodes.

It	is	the	call	of	a	method	named	“print”,	no	idea	which	signature	that	
has

Isn’t JP enough?

class	A	{	}

public	void	creator1()	{
new	A();

}

public	void	creator2()	{
class	A	{	}
new	A();

}

To	JP	these	two	statements	looks	the	same:	they	produce	the	same	
AST	nodes.

It	is	the	instantiation	of	a	class	named	“A”,	no	idea	where	it	is	defined

What JavaSymbolSolver does?

JavaSymbolSolver resolves	symbols	in	the	JavaParser AST

package foo.bar;

class C {
D field;

}

package foo.bar;

class D {
}

CompilationUnit

PackageDecl ClassDecl

FieldDecl

ReferenceType

Relationship JP & JSS

Certain	methods	in	the	AST	requires	additional	intelligence.

myCallExpression.calculateResolvedType();

myCallExpression.getName();

JSS	not	enabled JSS	enabled

JSS	not	enabled JSS	enabled

Hello, JavaSymbolSolver!

// 1) Prepare JavaParser
TypeSolver typeSolver = /* configure where to look */;
ParserConfiguration parserConfiguration =

new ParserConfiguration().setSymbolResolver(
new JavaSymbolSolver(typeSolver));

JavaParser parser = new JavaParser(parserConfiguration);

// 2) Parse using the advanced API
CompilationUnit compilationUnit =

parser.parse(ParseStart.COMPILATION_UNIT,
new StreamProvider(new FileInputStream(myFile)))

.getResult().get();

// 3) Use the AST… with some extra functionalities

Hello, JavaSymbolSolver!

CompilationUnit cu = /* we have an AST */

// JSS can calculate the type of any expression
myExpression.calculateResolvedType();

myExpression resolved type

1	+	2 int

2.0 *	3 double

"foo".charAt(0) char

“foo”.length() int

new	A() my.packag.A

Hello, JavaSymbolSolver!

CompilationUnit cu = /* we have an AST */

// JSS can figure out which method has been called
ResolvedMethodDeclaration methodDeclaration =

methodCall.resolveInvokedMethod();
methodDeclaration.getQualifiedSignature();

methodCall Method	declaration

System.out.print(0) java.io.PrintStream.print(int)

System.out.print(“a”) java.io.PrintStream.print(String)

"foo".charAt(0) java.lang.String.charAt(int)

“foo”.length() java.lang.String.length()

new	LinkedList<String>().size() java.util.LinkedList.size()

new	LinkedList<String>().toString() java.util.AbstractCollection.toString()

Hello, JavaSymbolSolver!

CompilationUnit cu = /* we have an AST */

// JSS knows if two types are assignables
type1 = myExpression.calculateResolvedType();
type2 = fieldDeclaration.resolve().getType();
if (type1.isAssignableBy(type2)) { … }

type1 type2 result

int double false

double int true

Collection<Int> List<Int> true

Collection<Double> List<Int> false

Collection<? extends	String> List<String> true

Comments attribution

void foo() {
// comment1
int a =

1 + 2; // comment2
}

// comment1
int a =

1 + 2;

CompilationUnit cu = JavaParser.parse(code);

ExpressionStmt expressionStmt =
cu.findFirst(ExpressionStmt.class).get() ;

System.out.println("Comment on the expression statement: "
+ expressionStmt.getComment().get().getContent());

Comments attribution

void foo() {
// comment1
int a =

1 + 2; // comment2
}

1 + 2 // comment2

VariableDeclarationExpr expr =
(VariableDeclarationExpr)expressionStmt

.getExpression();
VariableDeclarator variableDeclarator =

expr.getVariables().get(0);
Expression init = variableDeclarator

.getInitializer().get();

System.out.println("Comment on the initializer: "
+ init.getComment().get().getContent());

Can you show me the AST?
Node node = parseBodyDeclaration(

"public Class<? extends String> methodName(String arg) {}");

// If your grandpa needs the AST
System.out.println(new XmlPrinter(true).output(node));

// Because JavaScript has won
System.out.println(new JsonPrinter(true).output(node));

// Also hipsters need to see an AST
System.out.println(new YamlPrinter(true).output(node));

// To generate a diagram with Graphviz
System.out.println(new DotPrinter(true).output(node));

Can you show me the AST?

root(Type=MethodDeclaration):
body(Type=BlockStmt):
type(Type=ClassOrInterfaceType):

name(Type=SimpleName):
identifier: "Class"

typeArguments:
- typeArgument(Type=WildcardType):

extendedType(Type=ClassOrInterfaceType):
name(Type=SimpleName):

identifier: "String"
name(Type=SimpleName):

identifier: "methodName"
parameters:

- parameter(Type=Parameter):
isVarArgs: "false"
name(Type=SimpleName):

identifier: "arg"
type(Type=ClassOrInterfaceType):

name(Type=SimpleName):
identifier: "String"

Lexical preservation

JavaParser can	do	pretty	printing

String code = "class MyClass{int a;float b;void bar(){}}";
CompilationUnit cu = JavaParser.parse(code);
System.out.println(cu.toString());

class MyClass {

int a;

float b;

void bar() {
}

}

Lexical preservation

JavaParser can	do	also	do	lexical	preservation

String code = "class MyClass {int a;float b;void bar(){}}";
ParserConfiguration parserConfiguration =

new ParserConfiguration()
.setLexicalPreservationEnabled(true);

CompilationUnit cu = new JavaParser(parserConfiguration)
.parse(ParseStart.COMPILATION_UNIT,

new StringProvider(code)
).getResult().get();

System.out.println(cu.toString());

class MyClass {int a; void bar(){}}";

Configuring JavaSymbolSolver

JSS	needs	one	thing:	that	you	tell	it	where	to	look	for	classes.

• CombinedTypeSolver to	group	different	type	solvers
• AarTypeSolver look	into	an	aar package
• JarTypeSolver look	into	a	jar	package
• JavaParserTypeSolver look	into	a	directory	of	Java	files
• MemoryTypeSolver for	testing	purposes
• ReflectionTypeSolver use	reflection	(useful	to	java(x).*	classes)

Configuring JavaSymbolSolver

A	typical	usage:

CombinedTypeSolver typeSolver = new CombinedTypeSolver(
new ReflectionTypeSolver(),
new JavaParserTypeSolver(new File("src/main/java")),
new JavaParserTypeSolver(new File("src/test/java")),
new JarTypeSolver("libs/guava.jar"),
new JarTypeSolver("libs/log4j.jar"));

JavaParser to run queries

Setup:	let’s	consider	the	code	from	Hamcrest

// The directory where there is the code
File hamcrestCoreDir = new File(

"src/main/resources/JavaHamcrest-src/hamcrest-
core/src/main/java");

// Configure the Symbol Solver
CombinedTypeSolver typeSolver = new CombinedTypeSolver(

new ReflectionTypeSolver(),
new JavaParserTypeSolver(hamcrestCoreDir));

// Use our Symbol Solver while parsing
ParserConfiguration parserConfiguration =

new ParserConfiguration()
.setSymbolResolver(new JavaSymbolSolver(typeSolver));

JavaParser to run queries

Setup:	let’s	consider	the	code	from	Hamcrest

// Parse all source files
SourceRoot sourceRoot = new
SourceRoot(hamcrestCoreDir.toPath());
sourceRoot.setParserConfiguration(parserConfiguration);
List<ParseResult<CompilationUnit>> parseResults =

sourceRoot.tryToParse("");

// Now get all compilation units
List<CompilationUnit> allCus = parseResults.stream()

.filter(ParseResult::isSuccessful)

.map(r -> r.getResult().get())

.collect(Collectors.toList());

JavaParser to run queries

Question:	How	many	methods	take	more	than	3	parameters?

long n = getNodes(allCus, MethodDeclaration.class)
.stream()
.filter(m -> m.getParameters().size() > 3)

.count();
System.out.println("N of methods with 3+ params: " + n);

Answer:	11

JavaParser to run queries

Question:	What	are	the	three	top	classes	with	most	methods?

Answer:	CoreMatchers:	35	methods
BaseDescription:	13	methods
IsEqual:	9	methods

getNodes(allCus, ClassOrInterfaceDeclaration.class)
.stream()
.filter(c -> !c.isInterface())
.sorted(Comparator.comparingInt(o ->

-1 * o.getMethods().size()))
.limit(3)
.forEach(c ->

System.out.println(c.getNameAsString() + ": " +
c.getMethods().size() + " methods"));

JavaParser to run queries

Question:	What	is	the	class	with	most	ancestors?

Answer:	org.hamcrest.core.StringContains:	org.hamcrest.core.SubstringMatcher,	
org.hamcrest.TypeSafeMatcher,	org.hamcrest.BaseMatcher,	org.hamcrest.Matcher,	
org.hamcrest.SelfDescribing,	java.lang.Object

ResolvedReferenceTypeDeclaration c = getNodes(allCus,
ClassOrInterfaceDeclaration.class)

.stream()

.filter(c -> !c.isInterface())

.map(c -> c.resolve())

.sorted(Comparator.comparingInt(o ->
-1 * o.getAllAncestors().size()))

.findFirst().get();
List<String> ancestorNames = c.getAllAncestors()

.stream()

.map(a -> a.getQualifiedName())

.collect(Collectors.toList());
System.out.println(c.getQualifiedName() + ": " +

String.join(", ", ancestorNames));

JSS	at	work	here

JavaParser to identify patterns

private static boolean isClassUsingSingleton(
ClassOrInterfaceDeclaration c) {

List<VariableDeclarator> fields = c.getFields()
.stream()
.filter(f -> f.isPrivate()

&& f.isStatic())
.map(FieldDeclaration::getVariables)
.flatMap(Collection::stream)
.filter(v -> isThisClass(c, v.resolve().getType()))
.collect(Collectors.toList());

…
}

JavaParser to identify patterns

private static boolean isClassUsingSingleton(
ClassOrInterfaceDeclaration c) {

…
List<Pair<MethodDeclaration, VariableDeclarator>> pairs =

c.getMethods()
.stream()
.filter(m -> m.isPublic()

&& m.isStatic()
&& isThisClass(c, m.getType().resolve())
&& m.getBody().isPresent())

.filter(m -> fieldReturned(m, fields).isPresent())

.map(m -> new Pair<>(m, fieldReturned(m,
fields).get()))

.collect(Collectors.toList());
return !pairs.isEmpty();

}

JavaParser to identify patterns

private static boolean isThisClass(
ClassOrInterfaceDeclaration classOrInterfaceDeclaration,
ResolvedType type) {

return type.isReferenceType()
&& type.asReferenceType().getQualifiedName()

.equals(classOrInterfaceDeclaration
.resolve().getQualifiedName());

}

JavaParser to identify patterns
private static Optional<VariableDeclarator> fieldReturned(

MethodDeclaration methodDeclaration,
List<VariableDeclarator> fields) {

if (methodDeclaration.getBody().get()
.getStatements().size() != 1) {

return Optional.empty();
}
Statement statement = methodDeclaration.getBody()

.get().getStatement(0);
if (!statement.isReturnStmt() ||

!statement.asReturnStmt()
.getExpression().isPresent()) {

return Optional.empty();
}
…

}

JavaParser to identify patterns
private static Optional<VariableDeclarator> fieldReturned(

MethodDeclaration methodDeclaration,
List<VariableDeclarator> fields) {

…
Expression expression = statement.asReturnStmt()

.getExpression().get();
if (!expression.isNameExpr()) {

return Optional.empty();
}
Optional<VariableDeclarator> field = fields.stream()

.filter(f -> f.getNameAsString()
.equals(expression.asNameExpr()

.getNameAsString()))
.findFirst();

return field;
}

JavaParser to identify patterns
We	are	working	on	the	Matcher	library	to	reduce	the	complexity,	it	is	in	the	early	stages

This	gives	you	a	list	of	pairs	name-type for	all	the	properties	in	your	bean.

JavaParser for automated
refactoring

getNodes(allCus, MethodCallExpr.class)
.stream()
.filter(m -> m.resolveInvokedMethod()

.getQualifiedSignature()

.equals("foo.MyClass.oldMethod(java.lang.String,
int)"))

.forEach(m -> m.replace(replaceCallsToOldMethod(m)));

A	new	version	of	a	library	comes	up	and	a	deprecated	method	named	oldMethod is	
replaced	by	newMethod.	The	new	method	takes	3	parameters:	the	first	one	as	
oldMethod but	inverted	and	the	third	one	is	a	boolean,	which	we	want	to	be	always	
true

JavaParser for automated
refactoring

A	new	version	of	a	library	comes	up	and	a	deprecated	method	named	oldMethod is	
replaced	by	newMethod.	The	new	method	takes	3	parameters:	the	first	one	as	
oldMethod but	inverted	and	the	third	one	is	a	boolean,	which	we	want	to	be	always	
true

public MethodCallExpr replaceCallsToOldMethod(
MethodCallExpr methodCall) {

MethodCallExpr newMethodCall = new MethodCallExpr(
methodCall.getScope().get(), "newMethod");

newMethodCall.addArgument(methodCall.getArgument(1));
newMethodCall.addArgument(methodCall.getArgument(0));
newMethodCall.addArgument(new BooleanLiteralExpr(true));
return newMethodCall;

}

JavaParser to generate code

CompilationUnit cu = new CompilationUnit();
cu.setPackageDeclaration("jpexample.model");
ClassOrInterfaceDeclaration book = cu.addClass("Book");
book.addField("String", "title");
book.addField("Person", "author");

JavaParser to generate code

book.addConstructor(Modifier.PUBLIC)
.addParameter("String", "title")
.addParameter("Person", "author")
.setBody(new BlockStmt()

.addStatement(new ExpressionStmt(new AssignExpr(
new FieldAccessExpr(

new ThisExpr(), "title"),
new NameExpr("title"),
AssignExpr.Operator.ASSIGN)))

.addStatement(new ExpressionStmt(new AssignExpr(
new FieldAccessExpr(

new ThisExpr(), "author"),
new NameExpr("author"),
AssignExpr.Operator.ASSIGN))));

System.out.println(cu.toString());

JavaParser to generate code

book.addMethod("getTitle", Modifier.PUBLIC).setBody(
new BlockStmt().addStatement(

new ReturnStmt(new NameExpr("title"))));
book.addMethod("getAuthor", Modifier.PUBLIC).setBody(

new BlockStmt().addStatement(
new ReturnStmt(new NameExpr("author"))));

System.out.println(cu.toString());

JavaParser to generate code

package jpexample.model;

public class Book {
String title;
Person author;

public Book(String title, Person author) {
this.title = title;
this.author = author;

}

public void getTitle() {
return title;

}

public void getAuthor() {
return author;

}
}

JavaParser: what can we use it for?

What	we can	do Why	could	we	do	it

Generate new	Java	code Stop writing	boilerplate

Modifying existing	code Because	large refactoring	are	
boring	and	error-prone

Running	queries	on	code

So	we	can	answers	and	data	on	
which	to	take	decision.
Also, we	can	enforce	our	own	
rules

JavaParser: Visited

Book	on	JavaParser and	
JavaSymbolSolver,	from	the	core	
committers.

Avalaible	for	0+	$

Currently	900+	readers

https://leanpub.com/javaparservisited

Federico	Tomassetti

