JP

JavaParser

per generare, modificare e analizzare codice Java

Federico Tomassetti

STRUMENTA T

Milano

@ The JavaParser family

A

JavaParser JavaSymbolSolver

a.k.a. JP a.k.a. JSS

@ Is this stuff mature?

JavaParser is a project with a long history, contributions from over 50
persons, and basically it works.

[l javaparser / javaparser @Unwatch~ 83 sUnstar 1430 YFork 347
<> Code Issues 126 Pull requests 1 Projects 0 Wiki Insights Settings
Java 9 Parser and Abstract Syntax Tree for Java - http://javaparser.org Edit
javaparser parser java javadoc code-generation code-generator syntax-tree code-analysis abstract-syntax-tree Manage topics
D 2,797 commits P 2 branches © 70 releases 22 58 contributors

JavaSymbolSolver is much younger and it works decently enough.
Until it does not.

L] javaparser / javasymbolsolver @®Unwatch~ 22 sUnstar 195 ¥ Fork 57
<> Code Issues 61 Pull requests 3 Projects 0 Wiki Insights Settings
A Symbol Solver for Java built on top of JavaParser Edit

javaparser ast symbol-solver symbols Manage topics

D 1,157 commits I 2 branches © 16 releases 42 21 contributors s Apache-2.0

@ Yes, i1t supports all of Java

Even the crazy things you all forgot about...

@ Yes, i1t supports all of Java

Even the crazy things no one actually used...

foo(Example

foo(a);

@ What JavaParser does?

JavaParser... parse Java code into a Java AST

package foo.bar;

class A {
int field;

}

PackageDecl

CompilationUnit

ClassDecl

FieldDecl

PrimitiveType

@ What JavaParser does?

JavaParser unparse an AST into code

PackageDecl

CompilationUnit

ClassDecl

FieldDecl

PrimitiveType

package foo.bar;

) ., {

int field;
}

@ Hello, JavaParser!

// Get a compilation unit
JavaParser.parse(myFile)
JavaParser.parse(code)

// Or an expression
JavaParser.parseExpression(”1 + 2")

// Or a statement
JavaParser.parseStatement (”if (a) b = 1;")

@ Isn’t JP enough?

public void aMethod(int foo) {
|foo = 1;]

}

public void anotherMethod() ({
|foo = 1;|

}

To JP these two statements looks the same: they produce the same
AST nodes.

It is the assignment of a thing named “foo”, no idea what that thing is

@ Isn’t JP enough?

public void print1(String foo) {
|System.out.print(fooﬂ
}

public void print2(int foo) {
ISystem.out.print(foo); |

}

To JP these two statements looks the same: they produce the same
AST nodes.

It is the call of a method named “print”, no idea which signature that
has

@ Isn’t JP enough?

class A{}

public void creatorl() {
Inew A();|

}

public void creator2() {
classA{}
Inew A();|

}

To JP these two statements looks the same: they produce the same
AST nodes.

It is the instantiation of a class named “A” no idea where it is defined

@ What JavaSymbolSolver does?

JavaSymbolSolver resolves symbols in the JavaParser AST

package foo.bar;

class C {
D field;
}

package foo.bar;

class D

CompilationUnit

PackageDecl ClassDecl

FieldDecl

ReferenceType

@ Relationship JP & JSS

Certain methods in the AST requires additional intelligence.

myCallExpression.getName();

JSS not enabled JSS enabled

myCallExpression.calculateResolvedType() ;

X

JSS not enabled JSS enabled

@ Hello, JavaSymbolSolver!

// 1) Prepare JavaParser
TypeSolver typeSolver = /* configure where to look */;
ParserConfiguration parserConfiguration =
new ParserConfiguration().setSymbolResolver (
new JavaSymbolSolver (typeSolver));
JavaParser parser = new JavaParser(parserConfiguration);

// 2) Parse using the advanced API

CompilationUnit compilationUnit =
parser.parse(ParseStart.COMPILATION UNIT,
new StreamProvider (new FileInputStream(myFile)))

.getResult().get();

// 3) Use the AST.. with some extra functionalities

@ Hello, JavaSymbolSolver!

CompilationUnit cu = /* we have an AST */

// JSS can calculate the type of any expression
myExpression.calculateResolvedType();

myExpression resolved type

1+2 int
2.0%*3 double
"foo".charAt(0) char
“foo”.length() int

new A() my.packag.A

@ Hello, JavaSymbolSolver!

CompilationUnit cu = /* we have an AST */

// JSS can figure out which method has been called

ResolvedMethodDeclaration methodDeclaration =
methodCall.resolveInvokedMethod();

methodDeclaration.getQualifiedSignature();

methodCall Method declaration

System.out.print(0) java.io.PrintStream.print(int)
System.out.print(“a”) java.io.PrintStream.print(String)
"foo".charAt(0) java.lang.String.charAt(int)
“foo”.length() java.lang.String.length()

new LinkedList<String>().size() java.util.LinkedList.size()

new LinkedList<String>().toString() java.util.AbstractCollection.toString()

@ Hello, JavaSymbolSolver!

CompilationUnit cu = /* we have an AST */

// JSS knows if two types are assignables
typel = myExpression.calculateResolvedType();
type2 = fieldDeclaration.resolve().getType();
if (typel.isAssignableBy(type2)) { .. }

int double false
double int true
Collection<Int> List<Int> true
Collection<Double> List<Int> false

Collection<? extends String> List<String> true

Comments attribution

void foo() { // commentl
// commentl int a =
int a = 1 + 2;

1 + 2; // comment2

CompilationUnit cu JavaParser.parse(code);
ExpressionStmt expressionStmt =

cu.findFirst (ExpressionStmt.class).get() ;
System.out.println("Comment on the expression statement: "
+ expressionStmt.getComment().get().getContent());

Comments attribution

void foo() {

// commentl 1 + 2 // comment?
int a =
1 + 2; // comment2

VariableDeclarationExpr expr =
(VariableDeclarationExpr)expressionStmt

.getExpression();
VariableDeclarator variableDeclarator =

expr.getVariables().get(0);
Expression init = variableDeclarator
.getInitializer().get();

System.out.println("Comment on the initializer: "
+ init.getComment().get().getContent());

@ Can you show me the AST?

Node node = parseBodyDeclaration(
"public Class<? extends String> methodName(String arg) {}");

// 1f your grandpa needs the AST
System.out.println(new XmlPrinter (true).output(node));

// Because JavaScript has won
System.out.println(new JsonPrinter(true).output(node));

// Also hipsters need to see an AST
System.out.println(new YamlPrinter(true).output(node));

// To generate a diagram with Graphviz
System.out.println(new DotPrinter(true).output(node));

@ Can you show me the AST?

root (Type=MethodDeclaration):
body (Type=BlockStmt) :
type (Type=ClassOrInterfaceType):
name (Type=SimpleName) :
identifier: "Class"
typeArguments:
- typeArgument (Type=WildcardType):
extendedType (Type=ClassOrInterfaceType):
name (Type=SimpleName) :
identifier: "String"
name (Type=SimpleName) :
identifier: "methodName"

parameters:
- parameter (Type=Parameter):
isVarArgs: "false"

name (Type=SimpleName) :
identifier: "arg"
type (Type=ClassOrInterfaceType):
name (Type=SimpleName) :
identifier: "String"

@ Lexical preservation

JavaParser can do pretty printing

String code = "class MyClass{int a;float b;void bar(){}}";
CompilationUnit cu = JavaParser.parse(code);
System.out.println(cu.toString());

class MyClass {
int a;
float b;

void bar() {
}

@ Lexical preservation

JavaParser can do also do lexical preservation

String code = "class MyClass {int aj;float b;void bar(){}}";
ParserConfiguration parserConfiguration =
new ParserConfiguration()
.setLexicalPreservationEnabled(true);
CompilationUnit cu = new JavaParser (parserConfiguration)
.parse(ParseStart.COMPILATION UNIT,
new StringProvider (code)
) .getResult().get();
System.out.println(cu.toString());

class MyClass {int a; void bar(){}}";

@ Configuring JavaSymbolSolver

JSS needs one thing: that you tell it where to look for classes.

 CombinedTypeSolver to group different type solvers

* AarTypeSolver look into an aar package

* JarTypeSolver look into a jar package

* JavaParserTypeSolver look into a directory of Java files

* MemoryTypeSolver for testing purposes

* ReflectionTypeSolver use reflection (useful to java(x).* classes)

@ Configuring JavaSymbolSolver

A typical usage:

CombinedTypeSolver typeSolver = new CombinedTypeSolver (
new ReflectionTypeSolver(),
new JavaParserTypeSolver(new File("src/main/java")),
new JavaParserTypeSolver(new File("src/test/java")),
new JarTypeSolver("libs/guava.jar"),
new JarTypeSolver("libs/log4j.jar"));

@ JavaParser to run queries

Setup: let’s consider the code from Hamcrest

// The directory where there is the code
File hamcrestCoreDir = new File(
"src/main/resources/JavaHamcrest-src/hamcrest-

core/src/main/java");

// Configure the Symbol Solver

CombinedTypeSolver typeSolver = new CombinedTypeSolver (
new ReflectionTypeSolver(),
new JavaParserTypeSolver (hamcrestCoreDir));

// Use our Symbol Solver while parsing
ParserConfiguration parserConfiguration =
new ParserConfiguration()
.setSymbolResolver (new JavaSymbolSolver (typeSolver));

@ JavaParser to run queries

Setup: let’s consider the code from Hamcrest

// Parse all source files

SourceRoot sourceRoot = new

SourceRoot (hamcrestCoreDir.toPath());

sourceRoot.setParserConfiguration(parserConfiguration);

List<ParseResult<CompilationUnit>> parseResults =
sourceRoot.tryToParse("");

// Now get all compilation units
List<CompilationUnit> allCus = parseResults.stream()
.filter(ParseResult::isSuccessful)
.map(r -> r.getResult().get())
.collect(Collectors.toList());

@ JavaParser to run queries

Question: How many methods take more than 3 parameters?

long n = getNodes(allCus, MethodDeclaration.class)

.Stream()
.filter(m -> m.getParameters().size() > 3)
.count();
System.out.println("N of methods with 3+ params: " + n);

Answer: 11

@ JavaParser to run queries

Question: What are the three top classes with most methods?

getNodes(allCus, ClassOrInterfaceDeclaration.class)
.Stream()
.filter(c -> !c.isInterface())
.sorted(Comparator.comparingInt(o ->
-1 * o.getMethods().size()))
.1limit(3)
.forEach(c ->
System.out.println(c.getNameAsString() + "
c.getMethods().size() + " methods"));

Answer: CoreMatchers: 35 methods
BaseDescription: 13 methods
IsEqual: 9 methods

n +

@ JavaParser to run queries

Question: What is the class with most ancestors?

ResolvedReferenceTypeDeclaration ¢ = getNodes(allCus,
ClassOrInterfaceDeclaration.class)
.stream()
.filter(c -> !c.isInterface())
.map(c -> c.resolve()) JSS at work here
.sorted(Comparator.comparingInt(o ->
-1 * o.getAllAncestors().size()))
.findFirst().get();
List<String> ancestorNames = c.getAllAncestors()
.Stream()
.map(a -> a.getQualifiedName())
.collect(Collectors.toList());
System.out.println(c.getQualifiedName() + ": " +

String. join(", ", ancestorNames));

Answer: org.hamcrest.core.StringContains: org.hamcrest.core.SubstringMatcher,
org.hamcrest.TypeSafeMatcher, org.hamcrest.BaseMatcher, org.hamcrest.Matcher,
org.hamcrest.SelfDescribing, java.lang.Object

@ JavaParser to identify patterns

private static boolean isClassUsingSingleton(

ClassOrInterfaceDeclaration c) {

List<VariableDeclarator> fields = c.getFields()
.Stream()

.filter(f -> f.isPrivate()

&& f.isStatic())
.map(FieldDeclaration: :getVariables)
.flatMap(Collection::stream)

.filter(v -> isThisClass(c, v.resolve().getType()))
.collect(Collectors.toList());

@ JavaParser to identify patterns

private static boolean isClassUsingSingleton(
ClassOrInterfaceDeclaration c) {

List<Pair<MethodDeclaration, VariableDeclarator>> pairs =
c.getMethods ()
.Stream()
.filter(m -> m.isPublic()
&& m.isStatic()
&& 1sThisClass(c, m.getType().resolve())
&& m.getBody().isPresent())
.filter(m -> fieldReturned(m, fields).isPresent())
.map(m -> new Pair<>(m, fieldReturned(m,
fields).get()))
.collect(Collectors.toList());
return !pairs.isEmpty();

@ JavaParser to identify patterns

private static boolean isThisClass(
ClassOrInterfaceDeclaration classOrInterfaceDeclaration,
ResolvedType type) {
return type.isReferenceType/()
&& type.asReferenceType().getQualifiedName ()
.equals(classOrInterfaceDeclaration
.resolve().getQualifiedName());

@ JavaParser to identify patterns

private static Optional<VariableDeclarator> fieldReturned(
MethodDeclaration methodDeclaration,
List<VariableDeclarator> fields) {
if (methodDeclaration.getBody().get()
.getStatements().size() != 1) {
return Optional.empty();
}
Statement statement = methodDeclaration.getBody/()
.get().getStatement(0);
if (!statement.isReturnStmt() ||
!statement.asReturnStmt ()
.getExpression().isPresent()) {
return Optional.empty();

@ JavaParser to identify patterns

private static Optional<VariableDeclarator> fieldReturned(
MethodDeclaration methodDeclaration,
List<VariableDeclarator> fields) {

Expression expression = statement.asReturnStmt()
.getExpression().get();

if (!expression.isNameExpr()) {

return Optional.empty();

}

Optional<VariableDeclarator> field = fields.stream()
.filter(f -> f.getNameAsString()

.equals(expression.asNameExpr ()
.getNameAsString()))

.findFirst();

return field;

@ JavaParser to identify patterns

We are working on the Matcher library to reduce the complexity, it is in the early stages

allof(
isClass()
anyChild(Binder<>(
Binder<>(
is(FieldDeclaration.
f —> f.isPrivate()
& !f.isStatic()
&& f.getVariables().size() == 1)
f —> ((FieldDeclaration)f).getVariables().get(0)
.getName().getIdentifier())
f —> ((FieldDeclaration)f).getVariables().get(@).getType()))
anyChild(Binder<>(
Binder<>(
is(MethodDeclaration. m —> m.isPublic() && !m.isStatic()
&& m.getParameters().isEmpty())
getterNameToPropertyName)
m —> ((MethodDeclaration)m).getType()))
anyChild(Binder<>(

Binder<>(
is(MethodDeclaration. m —> m.isPublic() && !m.isStatic()
&S m.getParameters().size() ==
&& m.getType() VoidType)

setterNameToPropertyName)
m —> ((MethodDeclaration)m).getParameter() .getType()))

This gives you a list of pairs name-type for all the properties in your bean.

JavaParser for automated
refactoring

A new version of a library comes up and a deprecated method named o/ldMethod is
replaced by newMethod. The new method takes 3 parameters: the first one as

oldMethod but inverted and the third one is a boolean, which we want to be always
true

getNodes(allCus, MethodCallExpr.class)
.Stream()

.filter(m -> m.resolveInvokedMethod()
.getQualifiedSignature()
.equals("foo.MyClass.oldMethod(java.lang.String,

int) "))

.forEach(m -> m.replace(replaceCallsToOldMethod(m)));

JavaParser for automated
refactoring

A new version of a library comes up and a deprecated method named o/ldMethod is
replaced by newMethod. The new method takes 3 parameters: the first one as

oldMethod but inverted and the third one is a boolean, which we want to be always
true

public MethodCallExpr replaceCallsToOldMethod(
MethodCallExpr methodCall) {
MethodCallExpr newMethodCall = new MethodCallExpr (
methodCall.getScope().get(), "newMethod");
newMethodCall.addArgument (methodCall.getArgument(1));
newMethodCall.addArgument (methodCall.getArgument (0));

newMethodCall.addArgument (new BooleanLiteralExpr(true));
return newMethodCall;

@ JavaParser to generate code

CompilationUnit cu = new CompilationUnit();
cu.setPackageDeclaration(" jpexample.model");
ClassOrInterfaceDeclaration book = cu.addClass("Book");
book.addField("String", "title");
book.addField("Person", "author");

@ JavaParser to generate code

book.addConstructor (Modifier .PUBLIC)

System.

.addParameter("String", "title")
.addParameter("Person", "author")
.setBody(new BlockStmt ()
.addStatement (new ExpressionStmt(new AssignExpr (
new FieldAccessEXpr (
new ThisExpr(), "title"),
new NameExpr("title"),
AssignExpr.Operator.ASSIGN)))
.addStatement (new ExpressionStmt(new AssignExpr (
new FieldAccessEXpr (
new ThisExpr(), "author"),
new NameExpr("author"),
AssignExpr.Operator.ASSIGN))));

out.println(cu.toString());

@ JavaParser to generate code

book.addMethod("getTitle", Modifier.PUBLIC).setBody(
new BlockStmt ().addStatement (
new ReturnStmt(new NameExpr("title"))));
book.addMethod("getAuthor", Modifier.PUBLIC).setBody (
new BlockStmt().addStatement (
new ReturnStmt(new NameExpr("author"))));

System.out.println(cu.toString());

@ JavaParser to generate code

package jpexample.model;

public class Book {
String title;
Person author;

public Book(String title, Person author) {
this.title = title;
this.author = author;

}

public void getTitle() {
return title;

}

public void getAuthor() {
return author;

}

@ JavaParser: what can we use i1t for?

Generate new Java code Stop writing boilerplate

Because large refactoring are

Modifying existing code boring and error-prone

So we can answers and data on
which to take decision.

Also, we can enforce our own
rules

Running queries on code

@ JavaParser: Visited

Book on JavaParser and
JavaSymbolSolver, from the core
committers.

Avalaible for 0+ S

Currently 900+ readers

https://leanpub.com/javaparservisited

Federico Tomassetti ST n u M E N TA

