
13 | 编译期能做些什么？一个完整的计算世界
2019-12-25 吴咏炜

现代C++实战30讲 进入课程

讲述：吴咏炜
时长 12:49 大小 8.81M



你好，我是吴咏炜。

上一讲我们简单介绍了模板的基本用法及其在泛型编程中的应用。这一讲我们来看一下模板

的另外一种重要用途——编译期计算，也称作“模板元编程”。

编译期计算

首先，我们给出一个已经被证明的结论：C++ 模板是图灵完全的 [1]。这句话的意思是，使

用 C++ 模板，你可以在编译期间模拟一个完整的图灵机，也就是说，可以完成任何的计算

任务。



 下载APP 

当然，这只是理论上的结论。从实际的角度，我们并不想、也不可能在编译期完成所有的计

算，更不用说编译期的编程是很容易让人看不懂的——因为这并不是语言设计的初衷。即

便如此，我们也还是需要了解一下模板元编程的基本概念：它仍然有一些实用的场景，并且

在实际的工程中你也可能会遇到这样的代码。虽然我们在开篇就说过不要炫技，但使用模板

元编程写出的代码仍然是可理解的，尤其是如果你对递归不发怵的话。

好，闲话少叙，我们仍然拿代码说话：

上面定义了一个递归的阶乘函数。可以看出，它完全符合阶乘的递归定义：

除了顺序有特定的要求——先定义，才能特化——再加语法有点特别，代码基本上就是这

个数学定义的简单映射了。

那我们怎么知道这个计算是不是在编译时做的呢？我们可以直接看编译输出。下面直接贴出

对上面这样的代码加输出（printf("%d\n", factorial<10>::value);）在 x86-64

下的编译结果：

复制代码
1

2

3

4

5

6

7

8

9

10

template <int n>
struct factorial {
 static const int value =
 n * factorial<n - 1>::value;
};

template <>
struct factorial<0> {
 static const int value = 1;
};

0!

n!

= 1

= n× (n− 1)!

复制代码
1

2

3

4

.LC0:
 .string "%d\n"
main:
 push rbp

我们可以明确看到，编译结果里明明白白直接出现了常量 3628800。上面那些递归什么

的，完全都没有了踪影。

如果我们传递一个负数给 factorial 呢？这时的结果就应该是编译期间的递归溢出。如

GCC 会报告：

fatal error: template instantiation depth exceeds maximum of 900 (use -

ftemplate-depth= to increase the maximum)

如果把 int 改成 unsigned，不同的编译器和不同的标准选项会导致不同的结果。有些情

况下错误信息完全不变，有些情况下则会报负数不能转换到 unsigned。通用的解决方案

是使用 static_assert，确保参数永远不会是负数。

这样，当 factorial 接收到一个负数作为参数时，就会得到一个干脆的错误信息：

error: static assertion failed: Arg must be non-negative

5

6

7

8

9

10

11

12

 mov rbp, rsp
 mov esi, 3628800
 mov edi, OFFSET FLAT:.LC0
 mov eax, 0
 call printf
 mov eax, 0
 pop rbp
 ret

复制代码
1

2

3

4

5

6

7

8

template <int n>
struct factorial {
 static_assert(
 n >= 0,
 "Arg must be non-negative");
 static const int value =
 n * factorial<n - 1>::value;
};

下面我们看一些更复杂的例子。这些例子不是为了让你真的去写这样的代码，而是帮助你充

分理解编译期编程的强大威力。如果这些例子你都完全掌握了，那以后碰到小的模板问题，

你一定可以轻松解决，完全不在话下。

回想上面的例子，我们可以看到，要进行编译期编程，最主要的一点，是需要把计算转变成

类型推导。比如，下面的模板可以代表条件语句：

If 模板有三个参数，第一个是布尔值，后面两个则是代表不同分支计算的类型，这个类型

可以是我们上面定义的任何一个模板实例，包括 If 和 factorial。第一个 struct 声明规

定了模板的形式，然后我们不提供通用定义，而是提供了两个特化。第一个特化是真的情

况，定义结果 type 为 Then 分支；第二个特化是假的情况，定义结果 type 为 Else 分

支。

我们一般也需要循环：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

template <bool cond,
 typename Then,
 typename Else>
struct If;

template <typename Then,
 typename Else>
struct If<true, Then, Else> {
 typedef Then type;
};

template <typename Then,
 typename Else>
struct If<false, Then, Else> {
 typedef Else type;
};

复制代码
1

2

3

4

5

6

7

template <bool condition,
 typename Body>
struct WhileLoop;

template <typename Body>
struct WhileLoop<true, Body> {
 typedef typename WhileLoop<

这个循环的模板定义稍复杂点。首先，我们对循环体类型有一个约定，它必须提供一个静态

数据成员，cond_value，及两个子类型定义，res_type 和 next_type：

这里面比较绕的地方是用类型来代表执行状态。如果之前你没有接触过函数式编程的话，这

个在初学时有困难是正常的。把例子多看两遍，自己编译、修改、把玩一下，就会渐渐理解

的。

排除这个抽象性，模板的定义和 If 是类似的，虽然我们为方便使用，定义了两个模板。

WhileLoop 模板有两个模板参数，同样用特化来决定走递归分支还是退出循环分支。

While 模板则只需要循环体一个参数，方便使用。

如果你之前模板用得不多的话，还有一个需要了解的细节，就是用 :: 取一个成员类型、并

且 :: 左边有模板参数的话，得额外加上 typename 关键字来标明结果是一个类型。上面

循环模板的定义里就出现了多次这样的语法。MSVC 在这方面往往比较宽松，不写

typename 也不会报错，但这是不符合 C++ 标准的用法。

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 Body::cond_value,
 typename Body::next_type>::type
 type;
};

template <typename Body>
struct WhileLoop<false, Body> {
 typedef
 typename Body::res_type type;
};

template <typename Body>
struct While {
 typedef typename WhileLoop<
 Body::cond_value, Body>::type
 type;
};

cond_value 代表循环的条件（真或假）

res_type 代表退出循环时的状态

next_type 代表下面循环执行一次时的状态

为了进行计算，我们还需要通用的代表数值的类型。下面这个模板可以通用地代表一个整数

常数：

integral_constant 模板同时包含了整数的类型和数值，而通过这个类型的 value 成

员我们又可以重新取回这个数值。有了这个模板的帮忙，我们就可以进行一些更通用的计算

了。下面这个模板展示了如何使用循环模板来完成从 1 加到 n 的计算：

然后你使用 While<Sum<10>::type>::type::value 就可以得到 1 加到 10 的结果。

虽然有点绕，但代码实质就是在编译期间进行了以下的计算：

复制代码
1

2

3

4

5

6

template <class T, T v>
struct integral_constant {
 static const T value = v;
 typedef T value_type;
 typedef integral_constant type;
};

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

template <int result, int n>
struct SumLoop {
 static const bool cond_value =
 n != 0;
 static const int res_value =
 result;
 typedef integral_constant<
 int, res_value>
 res_type;
 typedef SumLoop<result + n, n - 1>
 next_type;
};

template <int n>
struct Sum {
 typedef SumLoop<0, n> type;
};

复制代码
1

2

3

int result = 0;
while (n != 0) {
 result = result + n;

估计现在你的头已经很晕了。但我保证，这一讲最难的部分已经过去了。实际上，到现在为

止，我们讲的东西还没有离开 C++98。而我们下面几讲里很快就会讲到，如何在现代

C++ 里不使用这种麻烦的方式也能达到同样的效果。

编译期类型推导

C++ 标准库在 <type_traits> 头文件里定义了很多工具类模板，用来提取某个类型

（type）在某方面的特点（trait）[2]。和上一节给出的例子相似，这些特点既是类型，又

是常值。

为了方便地在值和类型之间转换，标准库定义了一些经常需要用到的工具类。上面描述的

integral_constant 就是其中一个（我的定义有所简化）。为了方便使用，针对布尔值

有两个额外的类型定义：

这两个标准类型 true_type 和 false_type 经常可以在函数重载中见到。有一个工具函

数常常会写成下面这个样子：

4

5
 n = n - 1;
}

复制代码
1

2

3

4

typedef std::integral_constant<
 bool, true> true_type;
typedef std::integral_constant<
 bool, false> false_type;

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

template <typename T>
class SomeContainer {
public:
 …
 static void destroy(T* ptr)
 {
 _destroy(ptr,
 is_trivially_destructible<
 T>());
 }

private:

类似上面，很多容器类里会有一个 destroy 函数，通过指针来析构某个对象。为了确保最

大程度的优化，常用的一个技巧就是用 is_trivially_destructible 模板来判断类是

否是可平凡析构的——也就是说，不调用析构函数，不会造成任何资源泄漏问题。模板返

回的结果还是一个类，要么是 true_type，要么是 false_type。如果要得到布尔值的

话，当然使用 is_trivially_destructible<T>::value 就可以，但此处不需要。我

们需要的是，使用 () 调用该类型的构造函数，让编译器根据数值类型来选择合适的重载。

这样，在优化编译的情况下，编译器可以把不需要的析构操作彻底全部删除。

像 is_trivially_destructible 这样的 trait 类有很多，可以用来在模板里决定所需

的特殊行为：

这些特殊行为判断可以是像上面这样用于决定不同的重载，也可以是直接用在模板参数甚至

代码里（记得我们是可以直接得到布尔值的）。

13

14

15

16

17

18

19

20

21

 static void _destroy(T* ptr,
 true_type)
 {}
 static void _destroy(T* ptr,
 false_type)
 {
 ptr->~T();
 }
};

is_array

is_enum

is_function

is_pointer

is_reference

is_const

has_virtual_destructor

…

除了得到布尔值和相对应的类型的 trait 模板，我们还有另外一些模板，可以用来做一些类

型的转换。以一个常见的模板 remove_const 为例（用来去除类型里的 const 修饰），它

的定义大致如下：

同样，它也是利用模板的特化，针对 const 类型去掉相应的修饰。比如，如果我们对

const string& 应用 remove_const，就会得到 string&，即，

remove_const<const string&>::type 等价于 string&。

这里有一个细节你要注意一下，如果对 const char* 应用 remove_const 的话，结果还

是 const char*。原因是，const char* 是指向 const char 的指针，而不是指向

char 的 const 指针。如果我们对 char * const 应用 remove_const 的话，还是可以

得到 char* 的。

简易写法

如果你觉得写 is_trivially_destructible<T>::value 和

remove_const<T>::type 非常啰嗦的话，那你绝不是一个人。在当前的 C++ 标准里，

前者有增加 _v 的编译时常量，后者有增加 _t 的类型别名：

复制代码
1

2

3

4

5

6

7

8

template <class T>
struct remove_const {
 typedef T type;
};
template <class T>
struct remove_const<const T> {
 typedef T type;
};

复制代码
1

2

3

4

5

template <class T>
inline constexpr bool
 is_trivially_destructible_v =
 is_trivially_destructible<
 T>::value;

至于什么是 constexpr，我们会单独讲。using 是现代 C++ 的新语法，功能大致与

typedef 相似，但 typedef 只能针对某个特定的类型，而 using 可以生成别名模板。目

前我们只需要知道，在你需要 trait 模板的结果数值和类型时，使用带 _v 和 _t 后缀的模

板可能会更方便，尤其是带 _t 后缀的类型转换模板。

通用的 fmap 函数模板

你应当多多少少听到过 map-reduce。抛开其目前在大数据应用中的具体方式不谈，从概

念本源来看，map [3] 和 reduce [4] 都来自函数式编程。下面我们演示一个 map 函数

（当然，在 C++ 里它的名字就不能叫 map 了），其中用到了目前为止我们学到的多个知

识点：

我们：

复制代码1

2

3

template <class T>
using remove_const_t =
 typename remove_const<T>::type;

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

template <
 template <typename, typename>
 class OutContainer = vector,
 typename F, class R>
auto fmap(F&& f, R&& inputs)
{
 typedef decay_t<decltype(
 f(*inputs.begin()))>
 result_type;
 OutContainer<
 result_type,
 allocator<result_type>>
 result;
 for (auto&& item : inputs) {
 result.push_back(f(item));
 }
 return result;
}

用 decltype 来获得用 f 来调用 inputs 元素的类型（参考第 8 讲）；

下面的代码可以验证其功能：

在 fmap 执行之后，我们会在 result 里得到一个新容器，其内容是 2, 3, 4, 5, 6。

内容小结

本讲我们介绍了模板元编程的基本概念和例子，其本质是把计算过程用编译期的类型推导和

类型匹配表达出来；然后介绍 type traits 及其基本用法；最后我们演示了一个简单的高阶

函数 map，其实现中用到了我们目前已经讨论过的一些知识点。

课后思考

这一讲的内容可能有点烧脑，请你自行实验一下例子，并找一两个简单的算法用模板元编程

的方法实现一下，看看能不能写出来。

如果有什么特别想法的话，欢迎留言和我分享交流。

参考资料

[1] Todd L. Veldhuizen, “C++ templates are Turing complete”.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.3670

用 decay_t 来把获得的类型变成一个普通的值类型；

缺省使用 vector 作为返回值的容器，但可以通过模板参数改为其他容器；

使用基于范围的 for 循环来遍历 inputs，对其类型不作其他要求（参考第 7 讲）；

存放结果的容器需要支持 push_back 成员函数（参考第 4 讲）。

复制代码
1

2

3

4

5

6

7

vector<int> v{1, 2, 3, 4, 5};
int add_1(int x)
{
 return x + 1;
}

auto result = fmap(add_1, v);

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

[2] cppreference.com, “Standard library header <type_traits>”.

https://en.cppreference.com/w/cpp/header/type_traits

[2a] cppreference.com, “标准库头文件 <type_traits>”.

https://zh.cppreference.com/w/cpp/header/type_traits

[3] Wikipedia, “Map (higher-order function)”.

https://en.wikipedia.org/wiki/Map_(higher-order_function)

[4] Wikipedia, “Fold (higher-order function)”.

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

上一篇 12 | 编译期多态：泛型编程和模板入门

下一篇 14 | SFINAE：不是错误的替换失败是怎么回事?

精选留言 (11)  写留言

三味
2019-12-30

这个课后思考题真不是盖得。。。还看到了5分钟编译期堆排序的段子。。。看得我心惊胆
战。。。
不过还是一堆百度写出了一个，针对int型，写出从[0, N)的编译期生成数组的例子。。。
兼容其他类型还要再额外写好多代码。。偷懒直接写了int型。。。
我在msvc下测试了，应该没问题。。。用到了模板不定参数，其他不知道什么技巧的方…
展开

 

总统老唐
2019-12-27

吴老师，关于最后这个例子，有两个小问题：
1，我们平时定义一个 vector 的时候，一般并不会写成 vector<int, allocator<int>> vec
这种形式，为什么模板函数里面定义返回值 result 时，需要多一个 allocator？
2，fmap函数的入参和for循环，全都用的右值引用，有什么特殊考量么？

展开

作者回复: 1. 因为模板的定义就是这个样子，虽然我们平时第二个参数用的都是默认模板参数。

2. 不是右值引用，是转发引用。复习一下第 3 讲结尾部分吧。

 

总统老唐
2019-12-27

吴老师，看了你的While模板，试着想把这个计算累加的功能扩展一下，输入任意两个数，
可以求他们之间的数的累加和，代码如下：
template <int from, int to, int sum>
struct SumAnyTwo_A
{ …
展开

作者回复: 我真是自作自受，得看这样的代码。😜

1. 我给的这些模板只是说明能力的，肯定不是让你真的这么写代码的。比如你这种累加，可以考

虑这样写（只考虑了正向）：

template <int from, int to, int sum, bool ending>

struct sum_two_op;

template <int from, int to, int sum>

struct sum_two_op<from, to, sum, false> {

 static const int value = sum;

};

template <int from, int to, int sum>

struct sum_two_op<from, to, sum, true> {

 static const int value =

 sum_two_op<from + 1, to, sum + from, (from < to)>::value;

};

template <int from, int to>

struct sum_two {

 static const int value = sum_two_op<from, to, 0, (from <= to)>::value;

};

2. 你已经很靠近了，只犯了一个小错误，SumTwo 里的方向。应该是：

template <int from, int to>

struct SumTwo {

 typedef SumAnyTwo<(from < to), from, to> type;

};

另外，你目前的处理对于 from==to 的情况有点问题。可参考我上面的写法，那是可以正确处理

的。

 3 

zhang
2019-12-26

您好，我想问一个mutex相关的问题，虽然这部分内容以后会讲，但我现在工作中有一个
疑问，麻烦您看一下，谢谢。
代码简写如下：
class Mutex {
public: …
展开

作者回复: 对你的业务场景不熟悉，随便评论几句。

・C++11 里有现成的 mutex、condition_variable 和 unique_lock。

・Client::Lock 和 Client::Unlock 似乎没有用处。

・变量 pending 的命名让人困惑：收到数据了，“挂起”标志被设为真，然后发送数据就能继续

往下执行了？连续两次 sendData 中间必须有一次 recvData 才行，而且 sendData 里的等待是

在发送之后？这块感觉有问题。

・inter_mutex 和 inter_protect 本身目前没有看出问题。

 2 

安静的雨
2019-12-25

模版编程很有趣，期待老师的更新。

展开

作者回复: 觉得有趣就好，这个我们要讲上好几讲的。

 

总统老唐
2019-12-25

记得吴老师之前预告过，这一节可能会比较难，确实被难住了。在第一个 If 模板这里就被
卡住了，老师能给个简单的例子来说明这个 If 模板该如何使用么？

展开

作者回复: 下面的函数和模板是基本等价的：

int foo(int n)

{

 if (n == 2 || n == 3 || n == 5) {

 return 1;

 } else {

 return 2;

 }

}

template <int n>

struct Foo {

 typedef typename If<

 (n == 2 || n == 3 || n == 5),

 integral_constant<int, 1>,

 integral_constant<int, 2>>::type

 type;

};

你可以输出 foo(3)，也可以输出 Foo<3>::type::value。

 

禾桃
2019-12-25

脑壳儿疼的兄弟姐妹们，我这有个小偏方， 哈哈

While< Sum<2>::type >::type::value 实例化(instantiation)过程
--> While< SumLoop<0, 2> >::type::value
--> WhileLoop<SumLoop<0, 2>::cond_value, SumLoop<0, 2>>::type::value …
展开

作者回复: 对，对于模板，就是要在脑子里或纸上、电脑上把它展开……☺

 

小一日一
2019-12-25

#include <iostream>
#include <vector>
#include <type_traits>

using namespace std; …
展开

作者回复: 试试 c++1y、c++14 等标准选项了。这个 GCC 太老了……我要求 C++17、GCC 7

的。

 2 

李义盛
2019-12-25

一到模板就处于看不懂状态了。

展开

作者回复: 拿纸笔来展开试试？实际上就是一种展开而已。

 

禾桃
2019-12-25

“常用的一个技巧就是用 is_trivially_destructible 模板来判断类是否是可平凡析构的——
也就是说，不调用析构函数，不会造成任何资源泄漏问题。”

麻烦解释一下，
#1 这个类模版是如何识别“，不调用析构函数，不会造成任何资源泄漏问题”？ 这的资…
展开

作者回复: 1 是有点编译器魔法的。如果你有析构函数，或者你没有析构函数但有个非 POD 数据

成员，is_trivially_destructible 就不成立了。

2 trivial 是很常见的数学术语，没什么特别的。见：

https://baike.baidu.com/item/%E5%B9%B3%E5%87%A1/16739977

https://zh.wikipedia.org/wiki/%E5%B9%B3%E5%87%A1_(%E6%95%B8%E5%AD%B8)

https://en.wikipedia.org/wiki/Triviality_(mathematics)

 

hello world
2019-12-25

一直对模板元编程感兴趣，但总是搞不明白，今天学习很有收获，特别是最后的fmap，感
谢老师，记得模板编程还有policy之类的东西，老师之后在编译期这方面还会更详细讲解
吗

作者回复: 编译期要连续讲到第 18 讲，甚至之后还会有提到的机会。你喜欢那是最好了。我是怕

很多人会被编译期编程吓退呢。😅

policy 这个概念不单独讲，但我觉得在讨论了使用常数来对模板进行特化之后，这个概念应该没

有特别之处。我们的例子倒是会有标准库提供的 policy。😁

 

