
16 | 函数对象和lambda：进入函数式编程
2020-01-01 吴咏炜

现代C++实战30讲 进入课程

讲述：吴咏炜
时长 14:28 大小 13.26M



你好，我是吴咏炜。

本讲我们将介绍函数对象，尤其是匿名函数对象——lambda 表达式。今天的内容说难不

难，但可能跟你的日常思维方式有较大的区别，建议你一定要试验一下文中的代码（使用

xeus-cling 的同学要注意：xeus-cling 似乎不太喜欢有 lambda 的代码😓；遇到有问题

时，还是只能回到普通的编译执行方式了）。

C++98 的函数对象

函数对象（function object）[1] 自 C++98 开始就已经被标准化了。从概念上来说，函数

对象是一个可以被当作函数来用的对象。它有时也会被叫做 functor，但这个术语在范畴论



 下载APP 

里有着完全不同的含义，还是不用为妙——否则玩函数式编程的人可能会朝着你大皱眉头

的。

下面的代码定义了一个简单的加 n 的函数对象类（根据一般的惯例，我们使用了 struct

关键字而不是 class 关键字）：

它看起来相当普通，唯一有点特别的地方就是定义了一个 operator()，这个运算符允许

我们像调用函数一样使用小括号的语法。随后，我们可以定义一个实际的函数对象，如

C++11 形式的：

或 C++98 形式的：

得到的结果 add_2 就可以当作一个函数来用了。你如果写下 add_2(5) 的话，就会得到结

果 7。

C++98 里也定义了少数高阶函数：你可以传递一个函数对象过去，结果得到一个新的函数

对象。最典型的也许是目前已经从 C++17 标准里移除的 bind1st 和 bind2nd 了（在

<functional> 头文件中提供）：

复制代码
1

2

3

4

5

6

7

8

9

struct adder {
 adder(int n) : n_(n) {}
 int operator()(int x) const
 {
 return x + n_;
 }
private:
 int n_;
};

复制代码
1 auto add_2 = adder(2);

复制代码
1 adder add_2(2);

这样产生的 add_2 功能和前面相同，是把参数 2 当作第二个参数绑定到函数对象

plus<int>（它的 operator() 需要两个参数）上的结果。当然，auto 在 C++98 里是

没有的，结果要赋给一个变量就有点别扭了，得写成：

因此，在 C++98 里我们通常会直接使用绑定的结果：

上面的代码会将容器里的每一项数值都加上 2（transform 函数模板在 <algorithm> 头

文件中提供）。可以验证结果：

{ 3, 4, 5, 6, 7 }

函数的指针和引用

复制代码
1 auto add_2 = bind2nd(plus<int>(), 2);

复制代码
1

2
binder2nd<plus<int> > add_2(
 plus<int>(), 2);

复制代码
1

2

3

4

5

6

7

8

9

#include <algorithm>
#include <functional>
#include <vector>
using namespace std;

vector v{1, 2, 3, 4, 5};
transform(v.begin(), v.end(),
 v.begin(),
 bind2nd(plus<int>(), 2));

复制代码
1 v

除非你用一个引用模板参数来捕捉函数类型，传递给一个函数的函数实参会退化成为一个函

数指针。不管是函数指针还是函数引用，你也都可以当成函数对象来用。

假设我们有下面的函数定义：

如果我们有下面的模板声明：

当我们拿 add_2 去调用这三个函数模板时，fn 的类型将分别被推导为 int (*)(int)、

int (&)(int) 和 int (*)(int)。不管我们得到的是指针还是引用，我们都可以直接拿

它当普通的函数用。当然，在函数指针的情况下，我们直接写 *value 也可以。因而上面

三个函数拿 add_2 作为实参调用的结果都是 4。

很多接收函数对象的地方，也可以接收函数的指针或引用。但在个别情况下，需要通过函数

对象的类型来区分函数对象的时候，就不能使用函数指针或引用了——原型相同的函数，

复制代码
1

2

3

4

int add_2(int x)
{
 return x + 2;
};

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

template <typename T>
auto test1(T fn)
{
 return fn(2);
}

template <typename T>
auto test2(T& fn)
{
 return fn(2);
}

template <typename T>
auto test3(T* fn)
{
 return (*fn)(2);
}

它们的类型也是相同的。

Lambda 表达式

Lambda 表达式 [2] 是一个源自阿隆佐·邱奇（Alonzo Church）——艾伦·图灵（Alan

Turing）的老师——的术语。邱奇创立了 λ 演算 [3]，后来被证明和图灵机是等价的。

我们先不看数学上的 λ 表达式，看一下上一节给出的代码在使用 lambda 表达式时可以如

何简化。

显然，定义 add_2 不再需要定义一个额外的类型了，我们可以直接写出它的定义。理解它

只需要注意下面几点：

当然，我们想要定义一个通用的 adder 也不难：

复制代码
1

2

3

auto add_2 = [](int x) {
 return x + 2;
};

Lambda 表达式以一对中括号开始（中括号中是可以有内容的；稍后我们再说）

跟函数定义一样，我们有参数列表

跟正常的函数定义一样，我们会有一个函数体，里面会有 return 语句

Lambda 表达式一般不需要说明返回值（相当于 auto）；有特殊情况需要说明时，则

应使用箭头语法的方式（参见 [第 8 讲]）：[] (int x) -> int { … }

每个 lambda 表达式都有一个全局唯一的类型，要精确捕捉 lambda 表达式到一个变量

中，只能通过 auto 声明的方式

复制代码
1

2

3

4

5

auto adder = [](int n) {
 return [n](int x) {
 return x + n;
 };
};

这次我们直接返回了一个 lambda 表达式，并且中括号中写了 n 来捕获变量 n 的数值。这

个函数的实际效果和前面的 adder 函数对象完全一致。也就是说，捕获 n 的效果相当于在

一个函数对象中用成员变量存储其数值。

纯粹为了满足你可能有的好奇心，上面的 adder 相当于这样一个 λ 表达式：

如果你去学 Lisp 或 Scheme 的话，你就会发现这些语言和 λ 表达式几乎是一一映射了。在

C++ 里，表达虽然稍微啰嗦一点，但也比较接近了。用我上面的 adder ，就可以得到类

似于函数式编程语言里的 currying [4] 的效果——把一个操作（此处是加法）分成几步来

完成。没见过函数式编程的，可能对下面的表达式感到奇怪吧：

不过，最常见的情况是，写匿名函数就是希望不需要起名字。以前面的把所有容器元素值加

2 的操作为例，使用匿名函数可以得到更简洁可读的代码：

到了可以使用 ranges（已在 C++20 标准化）的时候，代码可以更短、更灵活。这个我们

就留到后面再说了。

一个 lambda 表达式除了没有名字之外，还有一个特点是你可以立即进行求值。这就使得

我们可以把一段独立的代码封装起来，达到更干净、表意的效果。

先看一个简单的例子：

adder = λn.(λx.(+ x n))

复制代码
1 auto seven = adder(2)(5);

复制代码
1

2

3

4

5

transform(v.begin(), v.end(),
 v.begin(),
 [](int x) {
 return x + 2;
 });

这个表达式的结果是 3 的平方 9。即使这个看似无聊的例子，都是有意义的，因为它免去

了我们定义一个 constexpr 函数的必要。只要能满足 constexpr 函数的条件，一个

lambda 表达式默认就是 constexpr 函数。

另外一种用途是解决多重初始化路径的问题。假设你有这样的代码：

这样的代码，实际上是调用了默认构造函数、带参数的构造函数和（移动）赋值函数：既可

能有性能损失，也对 Obj 提出了有默认构造函数的额外要求。对于这样的代码，有一种重

构意见是把这样的代码分离成独立的函数。不过，有时候更直截了当的做法是用一个

lambda 表达式来进行改造，既可以提升性能（不需要默认函数或拷贝 / 移动），又让初始

化部分显得更清晰：

复制代码
1 [](int x) { return x * x; }(3)

复制代码
1

2

3

4

5

6

7

8

9

10

Obj obj;
switch (init_mode) {
case init_mode1:
 obj = Obj(…);
 break;
case init_mode2;
 obj = Obj(…);
 break;
…
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

auto obj = [init_mode]() {
 switch (init_mode) {
 case init_mode1:
 return Obj(…);
 break;
 case init_mode2:
 return Obj(…);
 break;
 …
 }
}();

变量捕获

现在我们来细看一下 lambda 表达式中变量捕获的细节。

变量捕获的开头是可选的默认捕获符 = 或 &，表示会自动按值或按引用捕获用到的本地变

量，然后后面可以跟（逗号分隔）：

从工程的角度，大部分情况不推荐使用默认捕获符。更一般化的一条工程原则是：显式的代

码比隐式的代码更容易维护。当然，在这条原则上走多远是需要权衡的，你也不愿意写出非

常啰嗦的代码吧？否则的话，大家就全部去写 C 了。

一般而言，按值捕获是比较安全的做法。按引用捕获时则需要更小心些，必须能够确保被捕

获的变量和 lambda 表达式的生命期至少一样长，并在有下面需求之一时才使用：

本地变量名标明对其按值捕获（不能在默认捕获符 = 后出现；因其已自动按值捕获所有

本地变量）

& 加本地变量名标明对其按引用捕获（不能在默认捕获符 & 后出现；因其已自动按引用

捕获所有本地变量）

this 标明按引用捕获外围对象（针对 lambda 表达式定义出现在一个非静态类成员内

的情况）；注意默认捕获符 = 和 & 号可以自动捕获 this（并且在 C++20 之前，在 =

后写 this 会导致出错）

*this 标明按值捕获外围对象（针对 lambda 表达式定义出现在一个非静态类成员内的

情况；C++17 新增语法）

变量名 = 表达式 标明按值捕获表达式的结果（可理解为 auto 变量名 = 表达式）

&变量名 = 表达式 标明按引用捕获表达式的结果（可理解为 auto& 变量名 = 表达

式）

需要在 lambda 表达式中修改这个变量并让外部观察到

需要看到这个变量在外部被修改的结果

这个变量的复制代价比较高

如果希望以移动的方式来捕获某个变量的话，则应考虑 变量名 = 表达式 的形式。表达式

可以返回一个 prvalue 或 xvalue，比如可以是 std::move(需移动捕获的变量)。

上一节我们已经见过简单的按值捕获。下面是一些更多的演示变量捕获的例子。

按引用捕获：

这个例子很简单。我们按引用捕获 v1 和 v2，因为我们需要修改它们的内容。

按值捕获外围对象：

复制代码
1

2

3

4

5

6

7

8

9

10

11

vector<int> v1;
vector<int> v2;
…
auto push_data = [&](int n) {
 // 或使用 [&v1, &v2] 捕捉
 v1.push_back(n);
 v2.push_back(n)
};

push_data(2);
push_data(3);

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

#include <chrono>
#include <iostream>
#include <sstream>
#include <thread>

using namespace std;

int get_count()
{
 static int count = 0;
 return ++count;
}

class task {
public:
 task(int data) : data_(data) {}
 auto lazy_launch()
 {

这个例子稍复杂，演示了好几个 lambda 表达式的特性：

这样，多个线程复制了任务对象，可以独立地进行计算。请自行运行一下代码，并把

*this 改成 this，看看输出会有什么不同。

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

 return
 [*this, count = get_count()]()
 mutable {
 ostringstream oss;
 oss << "Done work " << data_
 << " (No. " << count
 << ") in thread "
 << this_thread::get_id()
 << '\n';
 msg_ = oss.str();
 calculate();
 };
 }
 void calculate()
 {
 this_thread::sleep_for(100ms);
 cout << msg_;
 }

private:
 int data_;
 string msg_;
};

int main()
{
 auto t = task{37};
 thread t1{t.lazy_launch()};
 thread t2{t.lazy_launch()};
 t1.join();
 t2.join();
}

mutable 标记使捕获的内容可更改（缺省不可更改捕获的值，相当于定义了

operator()(…) const）；

[*this] 按值捕获外围对象（task）；

[count = get_count()] 捕获表达式可以在生成 lambda 表达式时计算并存储等号

后表达式的结果。

泛型 lambda 表达式

函数的返回值可以 auto，但参数还是要一一声明的。在 lambda 表达式里则更进一步，在

参数声明时就可以使用 auto（包括 auto&& 等形式）。不过，它的功能也不那么神秘，就

是给你自动声明了模板而已。毕竟，在 lambda 表达式的定义过程中是没法写 template

关键字的。

还是拿例子说话：

跟上面的函数等价的 lambda 表达式是：

是不是反而更简单了？😂

你可能要问，这么写有什么用呢？问得好。简单来说，答案是可组合性。上面这个 sum，

就跟标准库里的 plus 模板一样，是可以传递给其他接受函数对象的函数的，而 + 本身则

不行。下面的例子虽然略有点无聊，也可以演示一下：

复制代码
1

2

3

4

5

6

template <typename T1,
 typename T2>
auto sum(T1 x, T2 y)
{
 return x + y;
}

复制代码
1

2

3

4

auto sum = [](auto x, auto y)
{
 return x + y;
}

复制代码
1

2

3

4

5

6

#include <array> // std::array
#include <iostream> // std::cout/endl
#include <numeric> // std::accumulate

using namespace std;

虽然函数名字叫 accumulate——累加——但它的行为是通过第四个参数可修改的。我们

把上面的加号 + 改成星号 *，上面的计算就从从 1 加到 5 变成了算 5 的阶乘了。

bind 模板

我们上面提到了 bind1st 和 bind2nd 目前已经从 C++ 标准里移除。原因实际上有两

个：

拿我们之前给出的例子：

现在我们可以写成：

7

8

9

10

11

12

13

14

15

16

int main()
{
 array a{1, 2, 3, 4, 5};
 auto s = accumulate(
 a.begin(), a.end(), 0,
 [](auto x, auto y) {
 return x + y;
 });
 cout << s << endl;
}

它的功能可以被 lambda 表达式替代

有了一个更强大的 bind 模板 [5]

复制代码
1

2

3

transform(v.begin(), v.end(),
 v.begin(),
 bind2nd(plus<int>(), 2));

复制代码
1

2

3

4

5

using namespace std::
 placeholders; // for _1, _2...
transform(v.begin(), v.end(),
 v.begin(),
 bind(plus<>(), _1, 2));

原先我们只能把一个给定的参数绑定到第一个参数或第二个参数上，现在则可以非常自由地

适配各种更复杂的情况！当然，bind 的参数数量，必须是第一个参数（函数对象）所需的

参数数量加一。而 bind 的结果的参数数量则没有限制——你可以无聊地写出

bind(plus<>(), _1, _3)(1, 2, 3)，而结果是 4（完全忽略第二个参数）。

你可能会问，它的功能是不是可以被 lambda 表达式替代呢。回答是“是”。对 bind 只

需要稍微了解一下就好——在 C++14 之后的年代里，已经没有什么地方必须要使用 bind

了。

function 模板

每一个 lambda 表达式都是一个单独的类型，所以只能使用 auto 或模板参数来接收结

果。在很多情况下，我们需要使用一个更方便的通用类型来接收，这时我们就可以使用

function 模板 [6]。function 模板的参数就是函数的类型，一个函数对象放到

function 里之后，外界可以观察到的就只剩下它的参数、返回值类型和执行效果了。注

意 function 对象的创建还是比较耗资源的，所以请你只在用 auto 等方法解决不了问题

的时候使用这个模板。

下面是个简单的例子。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

map<string, function<int(int, int)>>
 op_dict{
 {"+",
 [](int x, int y) {
 return x + y;
 }},
 {"-",
 [](int x, int y) {
 return x - y;
 }},
 {"*",
 [](int x, int y) {
 return x * y;
 }},
 {"/",
 [](int x, int y) {
 return x / y;
 }},
 };

这儿，由于要把函数对象存到一个 map 里，我们必须使用 function 模板。随后，我们就

可以用类似于 op_dict.at("+")(1, 6) 这样的方式来使用 function 对象。这种方式

对表达式的解析处理可能会比较有用。

内容小结

在这一讲中，我们了解了函数对象和 lambda 表达式的基本概念，并简单介绍了 bind 模

板和 function 模板。它们在泛型编程和函数式编程中都是重要的基础组成部分，你应该

熟练掌握。

课后思考

请：

欢迎留言和我分享你的想法。

参考资料

[1] Wikipedia, “Function object”. https://en.wikipedia.org/wiki/Function_object

[1a] 维基百科, “函数对象”. https://zh.wikipedia.org/zh-cn/ 函数对象

[2] Wikipedia, “Anonymous

function”.https://en.wikipedia.org/wiki/Anonymous_function

[2a] 维基百科, “匿名函数”. https://zh.wikipedia.org/zh-cn/ 匿名函数

[3] Wikipedia, “Lambda calculus”.

https://en.wikipedia.org/wiki/Lambda_calculus

尝试一下，把文章的 lambda 表达式改造成完全不使用 lambda。1.

体会一下，lambda 表达式带来了哪些表达上的好处。2.

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

[3a] 维基百科, “λ演算”. https://zh.wikipedia.org/zh-cn/Λ演算

[4] Wikipedia, “Currying”. https://en.wikipedia.org/wiki/Currying

[4a] 维基百科, “柯里化”. https://zh.wikipedia.org/zh-cn/ 柯里化

[5] cppreference.com, “std::bind”.

https://en.cppreference.com/w/cpp/utility/functional/bind

[5a] cppreference.com, “std::bind”.

https://zh.cppreference.com/w/cpp/utility/functional/bind

[6] cppreference.com, “std::function”.

https://en.cppreference.com/w/cpp/utility/functional/function

[6a] cppreference.com, “std::function”.

https://zh.cppreference.com/w/cpp/utility/functional/function

上一篇 15 | constexpr：一个常态的世界

下一篇 17 | 函数式编程：一种越来越流行的编程范式

总统老唐
2020-01-01

2020第一课，吴老师新年好

展开

作者回复: 谢谢🙏。在这儿也顺祝所有的同学们新年好！😇🎈🎊

  3

Encoded Star
2020-01-09

函数指针和引用这个模块中
当我们拿 add_2 去调用这三个函数模板时，fn 的类型将分别被推导为 int (*)(int)、int (&)
(int) 和 int (*)(int)。
第一个和第三个都是 int (*)(int) 第一个是不是 int (int)

展开

作者回复: 不是。你漏看了这句话：

“除非你用一个引用模板参数来捕捉函数类型，传递给一个函数的函数实参会退化成为一个函数

指针。”

  1

空气
2020-01-04

吴老师，我在工作中很经常用到function。文中讲到function对象的创建比较耗资源，能
否介绍一下原因，或者可以参考哪些资料？确实要使用的话，是否有必要使用共享指针管
理来减轻复制和转移消耗？
如果lambda的推导类型不是function，那是什么类型呢？和function有什么区别？

展开

精选留言 (11)  写留言

作者回复: 你如果不是频繁创建 function 对象的话，关系也不大吧。我觉得多考虑移动就行了。

除非性能测试工具报告瓶颈就在这儿了，用智能指针去优化不太值（毕竟需要修改使用的代

码）。

每个 lambda 都有自己的独特类型，每次定义相当于编译器帮你产生了一个函数对象（就像这一

讲里定义的那些函数对象一样）。

具体如何实现，我倒没读到过相关的文章。你可以网上搜搜看，或者阅读标准库里的源码。

 

橙子888
2020-01-04

最近项目里使用到了libgo这个C++写的协程库，示例代码中用到了好多老师今天讲的知识
点：
void foo()
{
 printf("function pointer\n"); …
展开

作者回复: libgo 我没有任何使用经验，不过，看起来它和大部分库实现的协程一样，都是 stackf

ul coroutine。我第 30 讲会讲的是会进入 C++20 的 stackless coroutine。

每个 libgo 的协程都有自己的独立栈空间，因此，协程唤起和休眠时都需要进行栈切换。无栈协

程则跟唤起者使用同一个栈。有栈的协程实现另外还有 libco、Boost.Coroutine2 等。

 

李亮亮
2020-01-02

Microsoft Visual Studio Community 2019 版本 16.4.2，语言标准：C++17 例子编译不
过，水平又菜，不会改。

展开

作者回复: 是说有线程的那个例子吗？我刚又试了，没问题的。

你是不是没有设定语言标准为 c++17？但你评论里又说设了……不设是确实不行的。

我编译的命令行是：

cl /EHsc /std:c++17 test16.cpp

如果你遇到错误了，又不贴出错误信息，别人也没法帮你啊……

 5 

廖熊猫
2020-01-02

老师新年快乐。
lambda表达式大概是生成了一个匿名的struct吧，实现了operator(), 捕获的话对应struct
上的字段。

展开

作者回复: 新年快乐。

对，概念上就是这样。

 

tt
2020-01-02

1、感觉lambda表达式就是C++中的闭包。

2、lambda表达式可以立即进行求职，这一点和JavaScript里的立即执行函数（Imdiately
Invoked Function Expression，IIFE）一样。在JavaScript里，它是用来解决作用域缺陷
的。 …
展开

作者回复: 对，就是闭包。

Stackful 协程见 Boost.Coroutine2。Stackless 协程已经进入 C++20，第 30 讲讨论。🤓

新年快乐！

 

禾桃
2020-01-01

"请自行运行一下代码，并把 *this 改成 this，看看输出会有什么不同。"

int get_count()
{
 static int count = 0; …
展开

作者回复: 就是让你想一想的呀。提示：按引用捕获的后果。

 6 

罗乾林
2020-01-01

编译器遇到lambda 表达式时，产生一个匿名的函数对象，各种捕获相当于按值或者按引
用设置给匿名对象的成员字段。
不对的地方，望老师指正。
对function<int(int, int)>这货怎么实现的比较好奇，大多数模板参数都是类型，做的都是
是类型推导，这货居然是int(int, int)

展开

作者回复: lambda表达式的理解没啥问题。

int(int, int) 也是一个类型：一个接受两个整数参数、返回一个整数的函数。function 的主要复杂

性，应该是需要处理函数、函数指针、函数对象等各种情况。函数对象的大小不确定，因而 funct

ion 需要在堆上分配内存。operator() 我记得相当于一个虚函数调用的复杂度。

 

hello world
2020-01-01

请问老师后续会讲关于类对象及虚函数表相关知识吗，这块比较薄弱

作者回复: 不会。谈这个的书和文章够多了。

 

viper
2020-01-01

老师，为什么上面会说用add_2去调用那三模版函数返回值都是2，不该是4吗？

作者回复: 谢谢反馈。已更正。

 1 

