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你好，我是吴咏炜。

本讲我们将介绍函数对象，尤其是匿名函数对象——lambda 表达式。今天的内容说难不

难，但可能跟你的日常思维方式有较大的区别，建议你一定要试验一下文中的代码（使用 

xeus-cling 的同学要注意：xeus-cling 似乎不太喜欢有 lambda 的代码😓；遇到有问题

时，还是只能回到普通的编译执行方式了）。

C++98 的函数对象

函数对象（function object）[1] 自 C++98 开始就已经被标准化了。从概念上来说，函数

对象是一个可以被当作函数来用的对象。它有时也会被叫做 functor，但这个术语在范畴论



 下载APP 



里有着完全不同的含义，还是不用为妙——否则玩函数式编程的人可能会朝着你大皱眉头

的。

下面的代码定义了一个简单的加 n 的函数对象类（根据一般的惯例，我们使用了 struct 

关键字而不是 class 关键字）：

它看起来相当普通，唯一有点特别的地方就是定义了一个 operator()，这个运算符允许

我们像调用函数一样使用小括号的语法。随后，我们可以定义一个实际的函数对象，如 

C++11 形式的：

或 C++98 形式的：

得到的结果 add_2 就可以当作一个函数来用了。你如果写下 add_2(5) 的话，就会得到结

果 7。

C++98 里也定义了少数高阶函数：你可以传递一个函数对象过去，结果得到一个新的函数

对象。最典型的也许是目前已经从 C++17 标准里移除的 bind1st 和 bind2nd 了（在 

<functional> 头文件中提供）：

复制代码
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struct adder {
  adder(int n) : n_(n) {}
  int operator()(int x) const
  {
    return x + n_;
  }
private:
  int n_;
};

复制代码
1 auto add_2 = adder(2);

复制代码
1 adder add_2(2);



这样产生的 add_2 功能和前面相同，是把参数 2 当作第二个参数绑定到函数对象 

plus<int>（它的 operator() 需要两个参数）上的结果。当然，auto 在 C++98 里是

没有的，结果要赋给一个变量就有点别扭了，得写成：

因此，在 C++98 里我们通常会直接使用绑定的结果：

上面的代码会将容器里的每一项数值都加上 2（transform 函数模板在 <algorithm> 头

文件中提供）。可以验证结果：

{ 3, 4, 5, 6, 7 }

函数的指针和引用

复制代码
1 auto add_2 = bind2nd(plus<int>(), 2);

复制代码
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binder2nd<plus<int> > add_2(
  plus<int>(), 2);
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#include <algorithm>
#include <functional>
#include <vector>
using namespace std;

vector v{1, 2, 3, 4, 5};
transform(v.begin(), v.end(),
          v.begin(),
          bind2nd(plus<int>(), 2));

复制代码
1 v



除非你用一个引用模板参数来捕捉函数类型，传递给一个函数的函数实参会退化成为一个函

数指针。不管是函数指针还是函数引用，你也都可以当成函数对象来用。

假设我们有下面的函数定义：

如果我们有下面的模板声明：

当我们拿 add_2 去调用这三个函数模板时，fn 的类型将分别被推导为 int (*)(int)、

int (&)(int) 和 int (*)(int)。不管我们得到的是指针还是引用，我们都可以直接拿

它当普通的函数用。当然，在函数指针的情况下，我们直接写 *value 也可以。因而上面

三个函数拿 add_2 作为实参调用的结果都是 4。

很多接收函数对象的地方，也可以接收函数的指针或引用。但在个别情况下，需要通过函数

对象的类型来区分函数对象的时候，就不能使用函数指针或引用了——原型相同的函数，

复制代码
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int add_2(int x)
{
  return x + 2;
};

复制代码
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template <typename T>
auto test1(T fn)
{
    return fn(2);
}

template <typename T>
auto test2(T& fn)
{
    return fn(2);
}

template <typename T>
auto test3(T* fn)
{
    return (*fn)(2);
}



它们的类型也是相同的。

Lambda 表达式

Lambda 表达式 [2] 是一个源自阿隆佐·邱奇（Alonzo Church）——艾伦·图灵（Alan 

Turing）的老师——的术语。邱奇创立了 λ 演算 [3]，后来被证明和图灵机是等价的。

我们先不看数学上的 λ 表达式，看一下上一节给出的代码在使用 lambda 表达式时可以如

何简化。

显然，定义 add_2 不再需要定义一个额外的类型了，我们可以直接写出它的定义。理解它

只需要注意下面几点：

当然，我们想要定义一个通用的 adder 也不难：

复制代码
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auto add_2 = [](int x) {
  return x + 2;
};

Lambda 表达式以一对中括号开始（中括号中是可以有内容的；稍后我们再说）

跟函数定义一样，我们有参数列表

跟正常的函数定义一样，我们会有一个函数体，里面会有 return 语句

Lambda 表达式一般不需要说明返回值（相当于 auto）；有特殊情况需要说明时，则

应使用箭头语法的方式（参见 [第 8 讲]）：[] (int x) -> int { … }

每个 lambda 表达式都有一个全局唯一的类型，要精确捕捉 lambda 表达式到一个变量

中，只能通过 auto 声明的方式

复制代码
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auto adder = [](int n) {
  return [n](int x) {
    return x + n;
  };
};



这次我们直接返回了一个 lambda 表达式，并且中括号中写了 n 来捕获变量 n 的数值。这

个函数的实际效果和前面的 adder 函数对象完全一致。也就是说，捕获 n 的效果相当于在

一个函数对象中用成员变量存储其数值。

纯粹为了满足你可能有的好奇心，上面的 adder 相当于这样一个 λ 表达式：

如果你去学 Lisp 或 Scheme 的话，你就会发现这些语言和 λ 表达式几乎是一一映射了。在 

C++ 里，表达虽然稍微啰嗦一点，但也比较接近了。用我上面的 adder ，就可以得到类

似于函数式编程语言里的 currying [4] 的效果——把一个操作（此处是加法）分成几步来

完成。没见过函数式编程的，可能对下面的表达式感到奇怪吧：

不过，最常见的情况是，写匿名函数就是希望不需要起名字。以前面的把所有容器元素值加 

2 的操作为例，使用匿名函数可以得到更简洁可读的代码：

到了可以使用 ranges（已在 C++20 标准化）的时候，代码可以更短、更灵活。这个我们

就留到后面再说了。

一个 lambda 表达式除了没有名字之外，还有一个特点是你可以立即进行求值。这就使得

我们可以把一段独立的代码封装起来，达到更干净、表意的效果。

先看一个简单的例子：

adder = λn.(λx.(+ x n))

复制代码
1 auto seven = adder(2)(5);

复制代码
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transform(v.begin(), v.end(),
          v.begin(),
          [](int x) {
            return x + 2;
          });



这个表达式的结果是 3 的平方 9。即使这个看似无聊的例子，都是有意义的，因为它免去

了我们定义一个 constexpr 函数的必要。只要能满足 constexpr 函数的条件，一个 

lambda 表达式默认就是 constexpr 函数。

另外一种用途是解决多重初始化路径的问题。假设你有这样的代码：

这样的代码，实际上是调用了默认构造函数、带参数的构造函数和（移动）赋值函数：既可

能有性能损失，也对 Obj 提出了有默认构造函数的额外要求。对于这样的代码，有一种重

构意见是把这样的代码分离成独立的函数。不过，有时候更直截了当的做法是用一个 

lambda 表达式来进行改造，既可以提升性能（不需要默认函数或拷贝 / 移动），又让初始

化部分显得更清晰：

复制代码
1 [](int x) { return x * x; }(3)

复制代码
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Obj obj;
switch (init_mode) {
case init_mode1:
  obj = Obj(…);
  break;
case init_mode2;
  obj = Obj(…);
  break;
…
}

复制代码
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auto obj = [init_mode]() {
  switch (init_mode) {
  case init_mode1:
    return Obj(…);
    break;
  case init_mode2:
    return Obj(…);
    break;
  …
  }
}();



变量捕获

现在我们来细看一下 lambda 表达式中变量捕获的细节。

变量捕获的开头是可选的默认捕获符 = 或 &，表示会自动按值或按引用捕获用到的本地变

量，然后后面可以跟（逗号分隔）：

从工程的角度，大部分情况不推荐使用默认捕获符。更一般化的一条工程原则是：显式的代

码比隐式的代码更容易维护。当然，在这条原则上走多远是需要权衡的，你也不愿意写出非

常啰嗦的代码吧？否则的话，大家就全部去写 C 了。

一般而言，按值捕获是比较安全的做法。按引用捕获时则需要更小心些，必须能够确保被捕

获的变量和 lambda 表达式的生命期至少一样长，并在有下面需求之一时才使用：

本地变量名标明对其按值捕获（不能在默认捕获符 = 后出现；因其已自动按值捕获所有

本地变量）

& 加本地变量名标明对其按引用捕获（不能在默认捕获符 & 后出现；因其已自动按引用

捕获所有本地变量）

this 标明按引用捕获外围对象（针对 lambda 表达式定义出现在一个非静态类成员内

的情况）；注意默认捕获符 = 和 & 号可以自动捕获 this（并且在 C++20 之前，在 = 

后写 this 会导致出错）

*this 标明按值捕获外围对象（针对 lambda 表达式定义出现在一个非静态类成员内的

情况；C++17 新增语法）

变量名 = 表达式 标明按值捕获表达式的结果（可理解为 auto 变量名 = 表达式）

&变量名 = 表达式 标明按引用捕获表达式的结果（可理解为 auto& 变量名 = 表达

式）

需要在 lambda 表达式中修改这个变量并让外部观察到

需要看到这个变量在外部被修改的结果

这个变量的复制代价比较高



如果希望以移动的方式来捕获某个变量的话，则应考虑 变量名 = 表达式 的形式。表达式

可以返回一个 prvalue 或 xvalue，比如可以是 std::move(需移动捕获的变量)。

上一节我们已经见过简单的按值捕获。下面是一些更多的演示变量捕获的例子。

按引用捕获：

这个例子很简单。我们按引用捕获 v1 和 v2，因为我们需要修改它们的内容。

按值捕获外围对象：

复制代码
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vector<int> v1;
vector<int> v2;
…
auto push_data = [&](int n) {
  //  或使用  [&v1, &v2]  捕捉
  v1.push_back(n);
  v2.push_back(n)
};

push_data(2);
push_data(3);

复制代码
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#include <chrono>
#include <iostream>
#include <sstream>
#include <thread>

using namespace std;

int get_count()
{
  static int count = 0;
  return ++count;
}

class task {
public:
  task(int data) : data_(data) {}
  auto lazy_launch()
  {



这个例子稍复杂，演示了好几个 lambda 表达式的特性：

这样，多个线程复制了任务对象，可以独立地进行计算。请自行运行一下代码，并把 

*this 改成 this，看看输出会有什么不同。
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    return
      [*this, count = get_count()]()
      mutable {
        ostringstream oss;
        oss << "Done work " << data_
            << " (No. " << count
            << ") in thread "
            << this_thread::get_id()
            << '\n';
        msg_ = oss.str();
        calculate();
      };
  }
  void calculate()
  {
    this_thread::sleep_for(100ms);
    cout << msg_;
  }

private:
  int data_;
  string msg_;
};

int main()
{
  auto t = task{37};
  thread t1{t.lazy_launch()};
  thread t2{t.lazy_launch()};
  t1.join();
  t2.join();
}

mutable 标记使捕获的内容可更改（缺省不可更改捕获的值，相当于定义了 

operator()(…) const）；

[*this] 按值捕获外围对象（task）；

[count = get_count()] 捕获表达式可以在生成 lambda 表达式时计算并存储等号

后表达式的结果。



泛型 lambda 表达式

函数的返回值可以 auto，但参数还是要一一声明的。在 lambda 表达式里则更进一步，在

参数声明时就可以使用 auto（包括 auto&& 等形式）。不过，它的功能也不那么神秘，就

是给你自动声明了模板而已。毕竟，在 lambda 表达式的定义过程中是没法写 template 

关键字的。

还是拿例子说话：

跟上面的函数等价的 lambda 表达式是：

是不是反而更简单了？😂

你可能要问，这么写有什么用呢？问得好。简单来说，答案是可组合性。上面这个 sum，

就跟标准库里的 plus 模板一样，是可以传递给其他接受函数对象的函数的，而 + 本身则

不行。下面的例子虽然略有点无聊，也可以演示一下：

复制代码
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template <typename T1,
          typename T2>
auto sum(T1 x, T2 y)
{
  return x + y;
}

复制代码
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auto sum = [](auto x, auto y)
{
  return x + y;
}

复制代码
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#include <array>    // std::array
#include <iostream> // std::cout/endl
#include <numeric>  // std::accumulate

using namespace std;



虽然函数名字叫 accumulate——累加——但它的行为是通过第四个参数可修改的。我们

把上面的加号 + 改成星号 *，上面的计算就从从 1 加到 5 变成了算 5 的阶乘了。

bind 模板

我们上面提到了 bind1st 和 bind2nd 目前已经从 C++ 标准里移除。原因实际上有两

个：

拿我们之前给出的例子：

现在我们可以写成：
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int main()
{
  array a{1, 2, 3, 4, 5};
  auto s = accumulate(
    a.begin(), a.end(), 0,
    [](auto x, auto y) {
      return x + y;
    });
  cout << s << endl;
}

它的功能可以被 lambda 表达式替代

有了一个更强大的 bind 模板 [5]

复制代码
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transform(v.begin(), v.end(),
          v.begin(),
          bind2nd(plus<int>(), 2));

复制代码
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using namespace std::
  placeholders;  // for _1, _2...
transform(v.begin(), v.end(),
          v.begin(),
          bind(plus<>(), _1, 2));



原先我们只能把一个给定的参数绑定到第一个参数或第二个参数上，现在则可以非常自由地

适配各种更复杂的情况！当然，bind 的参数数量，必须是第一个参数（函数对象）所需的

参数数量加一。而 bind 的结果的参数数量则没有限制——你可以无聊地写出 

bind(plus<>(), _1, _3)(1, 2, 3)，而结果是 4（完全忽略第二个参数）。

你可能会问，它的功能是不是可以被 lambda 表达式替代呢。回答是“是”。对 bind 只

需要稍微了解一下就好——在 C++14 之后的年代里，已经没有什么地方必须要使用 bind 

了。

function 模板

每一个 lambda 表达式都是一个单独的类型，所以只能使用 auto 或模板参数来接收结

果。在很多情况下，我们需要使用一个更方便的通用类型来接收，这时我们就可以使用 

function 模板 [6]。function 模板的参数就是函数的类型，一个函数对象放到 

function 里之后，外界可以观察到的就只剩下它的参数、返回值类型和执行效果了。注

意 function 对象的创建还是比较耗资源的，所以请你只在用 auto 等方法解决不了问题

的时候使用这个模板。

下面是个简单的例子。

复制代码
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map<string, function<int(int, int)>>
  op_dict{
    {"+",
     [](int x, int y) {
       return x + y;
     }},
    {"-",
     [](int x, int y) {
       return x - y;
     }},
    {"*",
     [](int x, int y) {
       return x * y;
     }},
    {"/",
     [](int x, int y) {
       return x / y;
     }},
  };



这儿，由于要把函数对象存到一个 map 里，我们必须使用 function 模板。随后，我们就

可以用类似于 op_dict.at("+")(1, 6) 这样的方式来使用 function 对象。这种方式

对表达式的解析处理可能会比较有用。

内容小结

在这一讲中，我们了解了函数对象和 lambda 表达式的基本概念，并简单介绍了 bind 模

板和 function 模板。它们在泛型编程和函数式编程中都是重要的基础组成部分，你应该

熟练掌握。

课后思考

请：

欢迎留言和我分享你的想法。
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展开

作者回复: 谢谢🙏。在这儿也顺祝所有的同学们新年好！😇🎈🎊

  3

Encoded Star
2020-01-09

函数指针和引用这个模块中 
当我们拿 add_2 去调用这三个函数模板时，fn 的类型将分别被推导为 int (*)(int)、int (&)
(int) 和 int (*)(int)。 
第一个和第三个都是 int (*)(int) 第一个是不是 int (int)

展开

作者回复: 不是。你漏看了这句话： 

 

“除非你用一个引用模板参数来捕捉函数类型，传递给一个函数的函数实参会退化成为一个函数

指针。”

  1

空气
2020-01-04

吴老师，我在工作中很经常用到function。文中讲到function对象的创建比较耗资源，能
否介绍一下原因，或者可以参考哪些资料？确实要使用的话，是否有必要使用共享指针管
理来减轻复制和转移消耗？ 
如果lambda的推导类型不是function，那是什么类型呢？和function有什么区别？

展开

精选留言 (11)  写留言



作者回复: 你如果不是频繁创建 function 对象的话，关系也不大吧。我觉得多考虑移动就行了。

除非性能测试工具报告瓶颈就在这儿了，用智能指针去优化不太值（毕竟需要修改使用的代

码）。 

 

每个 lambda 都有自己的独特类型，每次定义相当于编译器帮你产生了一个函数对象（就像这一

讲里定义的那些函数对象一样）。 

 

具体如何实现，我倒没读到过相关的文章。你可以网上搜搜看，或者阅读标准库里的源码。

 

橙子888
2020-01-04

最近项目里使用到了libgo这个C++写的协程库，示例代码中用到了好多老师今天讲的知识
点： 
void foo() 
{ 
    printf("function pointer\n"); …
展开

作者回复: libgo 我没有任何使用经验，不过，看起来它和大部分库实现的协程一样，都是 stackf

ul coroutine。我第 30 讲会讲的是会进入 C++20 的 stackless coroutine。 

 

每个 libgo 的协程都有自己的独立栈空间，因此，协程唤起和休眠时都需要进行栈切换。无栈协

程则跟唤起者使用同一个栈。有栈的协程实现另外还有 libco、Boost.Coroutine2 等。

 

李亮亮
2020-01-02

Microsoft Visual Studio Community 2019 版本 16.4.2，语言标准：C++17 例子编译不
过，水平又菜，不会改。

展开

作者回复: 是说有线程的那个例子吗？我刚又试了，没问题的。 

 

你是不是没有设定语言标准为 c++17？但你评论里又说设了……不设是确实不行的。 

 

我编译的命令行是： 



 

cl /EHsc /std:c++17 test16.cpp 

 

如果你遇到错误了，又不贴出错误信息，别人也没法帮你啊……

 5 

廖熊猫
2020-01-02

老师新年快乐。 
lambda表达式大概是生成了一个匿名的struct吧，实现了operator(), 捕获的话对应struct
上的字段。

展开

作者回复: 新年快乐。 

 

对，概念上就是这样。

 

tt
2020-01-02

1、感觉lambda表达式就是C++中的闭包。 
 
2、lambda表达式可以立即进行求职，这一点和JavaScript里的立即执行函数（Imdiately
Invoked Function Expression，IIFE）一样。在JavaScript里，它是用来解决作用域缺陷
的。 …
展开

作者回复: 对，就是闭包。 

 

Stackful 协程见 Boost.Coroutine2。Stackless 协程已经进入 C++20，第 30 讲讨论。🤓 

 

新年快乐！

 

禾桃
2020-01-01



"请自行运行一下代码，并把 *this 改成 this，看看输出会有什么不同。" 
 
int get_count() 
{ 
    static int count = 0; …
展开

作者回复: 就是让你想一想的呀。提示：按引用捕获的后果。

 6 

罗乾林
2020-01-01

编译器遇到lambda 表达式时，产生一个匿名的函数对象，各种捕获相当于按值或者按引
用设置给匿名对象的成员字段。 
不对的地方，望老师指正。 
对function<int(int, int)>这货怎么实现的比较好奇，大多数模板参数都是类型，做的都是
是类型推导，这货居然是int(int, int)

展开

作者回复: lambda表达式的理解没啥问题。 

 

int(int, int) 也是一个类型：一个接受两个整数参数、返回一个整数的函数。function 的主要复杂

性，应该是需要处理函数、函数指针、函数对象等各种情况。函数对象的大小不确定，因而 funct

ion 需要在堆上分配内存。operator() 我记得相当于一个虚函数调用的复杂度。

 

hello world
2020-01-01

请问老师后续会讲关于类对象及虚函数表相关知识吗，这块比较薄弱

作者回复: 不会。谈这个的书和文章够多了。

 

viper
2020-01-01

老师，为什么上面会说用add_2去调用那三模版函数返回值都是2，不该是4吗？



作者回复: 谢谢反馈。已更正。

 1 


