
19 | thread和future：领略异步中的未来
2020-01-08 吴咏炜

现代C++实战30讲 进入课程

讲述：吴咏炜
时长 14:31 大小 13.31M



你好，我是吴咏炜。

编译期的烧脑我们先告个段落，今天我们开始讲一个全新的话题——并发

（concurrency）。

为什么要使用并发编程？

在本世纪初之前，大部分开发人员不常需要关心并发编程；用到的时候，也多半只是在单处

理器上执行一些后台任务而已。只有少数为昂贵的工作站或服务器进行开发的程序员，才会

需要为并发性能而烦恼。原因无他，程序员们享受着摩尔定律带来的免费性能提升，而高速

的 Intel 单 CPU 是性价比最高的系统架构，可到了 2003 年左右，大家骤然发现，“免费



 下载APP 

午餐”已经结束了 [1]。主频的提升停滞了：在 2001 年，Intel 已经有了主频 2.0 GHz 的

CPU，而 18 年后，我现在正在使用的电脑，主频也仍然只是 2.5 GHz，虽然从单核变成了

四核。服务器、台式机、笔记本、移动设备的处理器都转向了多核，计算要求则从单线程变

成了多线程甚至异构——不仅要使用 CPU，还得使用 GPU。

如果你不熟悉进程和线程的话，我们就先来简单介绍一下它们的关系。我们编译完执行的

C++ 程序，那在操作系统看来就是一个进程了。而每个进程里可以有一个或多个线程：

我们讲 C++ 里的并发，主要讲的就是多线程。它对开发人员的挑战是全方位的。从纯逻辑

的角度，并发的思维模式就比单线程更为困难。在其之上，我们还得加上：

即使对于专家，并发编程都是困难的，上面列举的也只是部分难点而已。对于并发的基本挑

战，Herb Sutter 在他的 Effective Concurrency 专栏给出了一个较为全面的概述 [2]。要

对 C++ 的并发编程有全面的了解，则可以阅读曼宁出版的 C++ Concurrency in

每个进程有自己的独立地址空间，不与其他进程分享；一个进程里可以有多个线程，彼

此共享同一个地址空间。

堆内存、文件、套接字等资源都归进程管理，同一个进程里的多个线程可以共享使用。

每个进程占用的内存和其他资源，会在进程退出或被杀死时返回给操作系统。

并发应用开发可以用多进程或多线程的方式。多线程由于可以共享资源，效率较高；反

之，多进程（默认）不共享地址空间和资源，开发较为麻烦，在需要共享数据时效率也

较低。但多进程安全性较好，在某一个进程出问题时，其他进程一般不受影响；而在多

线程的情况下，一个线程执行了非法操作会导致整个进程退出。

编译器和处理器的重排问题

原子操作和数据竞争

互斥锁和死锁问题

无锁算法

条件变量

信号量

……

Action（有中文版，但翻译口碑不好）[3]。而我们今天主要要介绍的，则是并发编程的基

本概念，包括传统的多线程开发，以及高层抽象 future（姑且译为未来量）的用法。

基于 thread 的多线程开发

我们先来看一个使用 thread 线程类 [4] 的简单例子：

这是某次执行的结果：

I am thread B

I am thread A

一个平台细节：在 Linux 上编译线程相关的代码都需要加上 -pthread 命令行参数。

Windows 和 macOS 上则不需要。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>

using namespace std;

mutex output_lock;

void func(const char* name)
{
 this_thread::sleep_for(100ms);
 lock_guard<mutex> guard{
 output_lock};
 cout << "I am thread " << name
 << '\n';
}

int main()
{
 thread t1{func, "A"};
 thread t2{func, "B"};
 t1.join();
 t2.join();
}

代码是相当直截了当的，执行了下列操作：

以下几个地方可能需要稍加留意一下：

建议你自己运行一下，并尝试删除 lock_guard 和 join 的后果。

thread 不能在析构时自动 join 有点不那么自然，这可以算是一个缺陷吧。在 C++20 的

jthread [5] 到来之前，我们只能自己小小封装一下了。比如：

传递参数，起两个线程1.

两个线程分别休眠 100 毫秒2.

使用互斥量（mutex）锁定 cout ，然后输出一行信息3.

主线程等待这两个线程退出后程序结束4.

thread 的构造函数的第一个参数是函数（对象），后面跟的是这个函数所需的参数。

thread 要求在析构之前要么 join（阻塞直到线程退出），要么 detach（放弃对线程

的管理），否则程序会异常退出。

sleep_for 是 this_thread 名空间下的一个自由函数，表示当前线程休眠指定的时

间。

如果没有 output_lock 的同步，输出通常会交错到一起。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

class scoped_thread {
public:
 template <typename... Arg>
 scoped_thread(Arg&&... arg)
 : thread_(
 std::forward<Arg>(arg)...)
 {}
 scoped_thread(
 scoped_thread&& other)
 : thread_(
 std::move(other.thread_))
 {}
 scoped_thread(
 const scoped_thread&) = delete;
 ~scoped_thread()

这个实现里有下面几点需要注意：

使用这个 scoped_thread 类的话，我们就可以把我们的 main 函数改写成：

这虽然是个微不足道的小例子，但我们已经可以发现：

我们下面就来讨论一下互斥量。

mutex

16

17

18

19

20

21

22

23

24

 {
 if (thread_.joinable()) {
 thread_.join();
 }
 }

private:
 thread thread_;
};

我们使用了可变模板和完美转发来构造 thread 对象。1.

thread 不能拷贝，但可以移动；我们也类似地实现了移动构造函数。2.

只有 joinable（已经 join 的、已经 detach 的或者空的线程对象都不满足 joinable）

的 thread 才可以对其调用 join 成员函数，否则会引发异常。

3.

复制代码
1

2

3

4

5

int main()
{
 scoped_thread t1{func, "A"};
 scoped_thread t2{func, "B"};
}

执行顺序不可预期，或者说不具有决定性。

如果没有互斥量的帮助，我们连完整地输出一整行信息都成问题。

互斥量的基本语义是，一个互斥量只能被一个线程锁定，用来保护某个代码块在同一时间只

能被一个线程执行。在前面那个多线程的例子里，我们就需要限制同时只有一个线程在使用

cout，否则输出就会错乱。

目前的 C++ 标准中，事实上提供了不止一个互斥量类。我们先看最简单、也最常用的

mutex 类 [6]。mutex 只可默认构造，不可拷贝（或移动），不可赋值，主要提供的方法

是：

你可能会想到，如果一个线程已经锁定了某个互斥量，再次锁定会发生什么？对于

mutex，回答是危险的未定义行为。你不应该这么做。如果有特殊需要可能在同一线程对同

一个互斥量多次加锁，就需要用到递归锁 recursive_mutex 了 [7]。除了允许同一线程

可以无阻塞地多次加锁外（也必须有对应数量的解锁操作），recursive_mutex 的其他

行为和 mutex 一致。

除了 mutex 和 recursive_mutex，C++ 标准库还提供了：

这些我们就不做讲解了，需要的请自行查看参考资料 [8]。另外，<mutex> 头文件中也定

义了锁的 RAII 包装类，如我们上面用过的 lock_guard。为了避免手动加锁、解锁的麻

烦，以及在有异常或出错返回时发生漏解锁，我们一般应当使用 lock_guard，而不是手

工调用互斥量的 lock 和 unlock 方法。C++ 里另外还有 unique_lock（C++11）和

scoped_lock（C++17），提供了更多的功能，你在有更复杂的需求时应该检查一下它们

是否合用。

lock：锁定，锁已经被其他线程获得时则阻塞执行

try_lock：尝试锁定，获得锁返回 true，在锁被其他线程获得时返回 false

unlock：解除锁定（只允许在已获得锁时调用）

timed_mutex：允许锁定超时的互斥量

recursive_timed_mutex：允许锁定超时的递归互斥量

shared_mutex：允许共享和独占两种获得方式的互斥量

shared_timed_mutex：允许共享和独占两种获得方式的、允许锁定超时的互斥量

执行任务，返回数据

如果我们要在某个线程执行一些后台任务，然后取回结果，我们该怎么做呢？

比较传统的做法是使用信号量或者条件变量。由于 C++17 还不支持信号量，我们要模拟传

统的做法，只能用条件变量了。由于我的重点并不是传统的做法，条件变量 [9] 我就不展开

讲了，而只是展示一下示例的代码。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

#include <chrono>
#include <condition_variable>
#include <functional>
#include <iostream>
#include <mutex>
#include <thread>
#include <utility>

using namespace std;

class scoped_thread {
 … // 定义同上，略
};

void work(condition_variable& cv,
 int& result)
{
 // 假装我们计算了很久
 this_thread::sleep_for(2s);
 result = 42;
 cv.notify_one();
}

int main()
{
 condition_variable cv;
 mutex cv_mut;
 int result;

 scoped_thread th{work, ref(cv),
 ref(result)};
 // 干一些其他事
 cout << "I am waiting now\n";
 unique_lock lock{cv_mut};
 cv.wait(lock);
 cout << "Answer: " << result
 << '\n';
}

可以看到，为了这个小小的“计算”，我们居然需要定义 5 个变量：线程、条件变量、互

斥量、单一锁和结果变量。我们也需要用 ref 模板来告诉 thread 的构造函数，我们需要

传递条件变量和结果变量的引用，因为 thread 默认复制或移动所有的参数作为线程函数

的参数。这种复杂性并非逻辑上的复杂性，而只是实现导致的，不是我们希望的写代码的方

式

下面，我们就看看更高层的抽象，未来量 future [10]，可以如何为我们简化代码。

future

我们先把上面的代码直接翻译成使用 async [11]（它会返回一个 future）：

完全同样的结果，代码大大简化，变量减到了只剩一个未来量，还不赖吧？

我们稍稍分析一下：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include <chrono>
#include <future>
#include <iostream>
#include <thread>

using namespace std;

int work()
{
 // 假装我们计算了很久
 this_thread::sleep_for(2s);
 return 42;
}

int main()
{
 auto fut = async(launch::async, work);
 // 干一些其他事
 cout << "I am waiting now\n";
 cout << "Answer: " << fut.get()
 << '\n';
}

这里有两个要点，从代码里看不出来，我特别说明一下：

上面的第 1 点是 future 的设计，需要在使用时注意一下。第 2 点则是可以解决的。要么

直接拿 future 来移动构造一个 shared_future [12]，要么调用 future 的 share 方

法来生成一个 shared_future，结果就可以在多个线程里用了——当然，每个

shared_future 上仍然还是只能调用一次 get 函数。

promise

我们上面用 async 函数生成了未来量，但这不是唯一的方式。另外有一种常用的方式是

promise [13]，我称之为“承诺量”。我们同样看一眼上面的例子用 promise 该怎么

写：

work 函数现在不需要考虑条件变量之类的实现细节了，专心干好自己的计算活、老老实

实返回结果就可以了。

调用 async 可以获得一个未来量，launch::async 是运行策略，告诉函数模板

async 应当在新线程里异步调用目标函数。在一些老版本的 GCC 里，不指定运行策

略，默认不会起新线程。

async 函数模板可以根据参数来推导出返回类型，在我们的例子里，返回类型是

future<int>。

在未来量上调用 get 成员函数可以获得其结果。这个结果可以是返回值，也可以是异

常，即，如果 work 抛出了异常，那 main 里在执行 fut.get() 时也会得到同样的异

常，需要有相应的异常处理代码程序才能正常工作。

一个 future 上只能调用一次 get 函数，第二次调用为未定义行为，通常导致程序崩

溃。

1.

这样一来，自然一个 future 是不能直接在多个线程里用的。2.

复制代码
1

2

3

4

5

#include <chrono>
#include <future>
#include <iostream>
#include <thread>

promise 和 future 在这里成对出现，可以看作是一个一次性管道：有人需要兑现承诺，

往 promise 里放东西（set_value）；有人就像收期货一样，到时间去 future（写到

这里想到，期货英文不就是 future 么，是不是该翻译成期货量呢？😝）里拿（get）就行

了。我们把 prom 移动给新线程，这样老线程就完全不需要管理它的生命周期了。

就这个例子而言，使用 promise 没有 async 方便，但可以看到，这是一种非常灵活的方

式，你不需要在一个函数结束的时候才去设置 future 的值。仍然需要注意的是，一组

promise 和 future 只能使用一次，既不能重复设，也不能重复取。

promise 和 future 还有个有趣的用法是使用 void 类型模板参数。这种情况下，两个线

程之间不是传递参数，而是进行同步：当一个线程在一个 future<void> 上等待时（使用

get() 或 wait()），另外一个线程可以通过调用 promise<void> 上的 set_value()

让其结束等待、继续往下执行。有兴趣的话，你可以自己试一下，我就不给例子了。

packaged_task

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

using namespace std;

class scoped_thread {
 … // 定义同上，略
};

void work(promise<int> prom)
{
 // 假装我们计算了很久
 this_thread::sleep_for(2s);
 prom.set_value(42);
}

int main()
{
 promise<int> prom;
 auto fut = prom.get_future();
 scoped_thread th{work,
 move(prom)};
 // 干一些其他事
 cout << "I am waiting now\n";
 cout << "Answer: " << fut.get()
 << '\n';
}

我们最后要讲的一种 future 的用法是打包任务 packaged_task [14]，我们同样给出完

成相同功能的示例，让你方便对比一下：

打包任务里打包的是一个函数，模板参数就是一个函数类型。跟 thread、future、

promise 一样，packaged_task 只能移动，不能复制。它是个函数对象，可以像正常函

数一样被执行，也可以传递给 thread 在新线程中执行。它的特别地方，自然也是你可以

从它得到一个未来量了。通过这个未来量，你可以得到这个打包任务的返回值，或者，至少

知道这个打包任务已经执行结束了。

内容小结

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#include <chrono>
#include <future>
#include <iostream>
#include <thread>

using namespace std;

class scoped_thread {
 … // 定义同上，略
};

int work()
{
 // 假装我们计算了很久
 this_thread::sleep_for(2s);
 return 42;
}

int main()
{
 packaged_task<int()> task{work};
 auto fut = task.get_future();
 scoped_thread th{move(task)};
 // 干一些其他事
 this_thread::sleep_for(1s);
 cout << "I am waiting now\n";
 cout << "Answer: " << fut.get()
 << '\n';
}

今天我们看了一下并发编程的原因、难点，以及 C++ 里的进行多线程计算的基本类，包括

线程、互斥量、未来量等。这些对象的使用已经可以初步展现并发编程的困难，但更麻烦的

事情还在后头呢……

课后思考

请试验一下文中的代码，并思考一下，并发编程中哪些情况下会发生死锁？

如果有任何问题或想法，欢迎留言与我分享。

参考资料

[1] Herb Sutter, “The free lunch is over”.

http://www.gotw.ca/publications/concurrency-ddj.htm

[2] Herb Sutter, “Effective concurrency”.

https://herbsutter.com/2010/09/24/effective-concurrency-know-when-to-use-

an-active-object-instead-of-a-mutex/

[3] Anthony Williams, C++ Concurrency in Action (2nd ed.). Manning, 2019,

https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-

edition

[4] cppreference.com, “std::thread”.

https://en.cppreference.com/w/cpp/thread/thread

[4a] cppreference.com, “std::thread”.

https://zh.cppreference.com/w/cpp/thread/thread

[5] cppreference.com, “std::jthread”.

https://en.cppreference.com/w/cpp/thread/jthread

[6] cppreference.com, “std::mutex”.

https://en.cppreference.com/w/cpp/thread/mutex

[6a] cppreference.com, “std::mutex”.

https://zh.cppreference.com/w/cpp/thread/mutex

[7] cppreference.com, “std::recursive_mutex”.

https://en.cppreference.com/w/cpp/thread/recursive_mutex

[7a] cppreference.com, “std::recursive_mutex”.

https://zh.cppreference.com/w/cpp/thread/recursive_mutex

[8] cppreference.com, “Standard library header <mutex>”.

https://en.cppreference.com/w/cpp/header/mutex

[8a] cppreference.com, “标准库头文件 <mutex>”.

https://zh.cppreference.com/w/cpp/header/mutex

[9] cppreference.com, “std::recursive_mutex”.

https://en.cppreference.com/w/cpp/thread/condition_variable

[9a] cppreference.com, “std::recursive_mutex”.

https://zh.cppreference.com/w/cpp/thread/condition_variable

[10] cppreference.com, “std::future”.

https://en.cppreference.com/w/cpp/thread/future

[10a] cppreference.com, “std::future”.

https://zh.cppreference.com/w/cpp/thread/future

[11] cppreference.com, “std::async”.

https://en.cppreference.com/w/cpp/thread/async

[11a] cppreference.com, “std::async”.

https://zh.cppreference.com/w/cpp/thread/async

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

[12] cppreference.com, “std::shared_future”.

https://en.cppreference.com/w/cpp/thread/shared_future

[12a] cppreference.com, “std::shared_future”.

https://en.cppreference.com/w/cpp/thread/shared_future

[13] cppreference.com, “std::promise”.

https://en.cppreference.com/w/cpp/thread/promise

[13a] cppreference.com, “std::promise”.

https://zh.cppreference.com/w/cpp/thread/promise

[14] cppreference.com, “std::packaged_task”.

https://en.cppreference.com/w/cpp/thread/packaged_task

[14a] cppreference.com, “std::packaged_task”.

https://zh.cppreference.com/w/cpp/thread/packaged_task

上一篇 18 | 应用可变模板和tuple的编译期技巧

下一篇 20 | 内存模型和atomic：理解并发的复杂性

李公子胜治
2020-01-08

作者大大，你好，我在effective modern c++这本书上面看到，作者告诫我们平时写代码
时，首先基于任务而不是线程，但是如果我们使用async时，实际上async还是为我们创建
了一个新线程，还是没有体会到async比thread的优越性，难道仅仅是可以调用get()，获
取async后的执行结果吗？

展开

作者回复: 少写这么多代码，还没有优越性？

新功能很多是用来提高程序员的工作效率的。而且，脑子摆脱了底层细节，就更有空去思考更高

层的抽象了。否则开发里到处是羁绊，只看到这个不能做，那个很麻烦。

  3

YouCompleteMe
2020-01-08

当时看<The C++ Programming>下册关于多线程的时候，还写了一些demo，现在看到f
uture/async这些类，一点想不起来怎么用的-_-

展开

作者回复: 一定是要多用，形成“肌肉记忆”才行。光读不用是真会忘的。

  2

王大为
2020-01-09

最近用google的cpplint工具扫描了我的代码，但cpplint报告说不允许包含c++11的threa
d头文件，请问这个是出于什么目的呢？

cpplint. py --verbose=5 my_cpp_file
output : <thread> is an unapproved c++11 header …
展开

精选留言 (6)  写留言

作者回复: 那是Google的偏好。除非你为Google的项目贡献代码，理它干嘛？

 1  1

三味
2020-01-10

普大喜奔！
🍾🍾🎉🎉🎊🎊
模板章节终于结束了！
其实我还没学够呢（真心）
 …
展开

作者回复: 编译期编程确实是 C++ 里比较好玩的部分，但也容易被滥用，还容易把新手全吓跑……

 

舍得
2020-01-08

nice

展开

 

tt
2020-01-08

烧脑的编译期内容终于结束了。每天在工作之余烧一会儿，还没烧透呢，就结束了。是该
庆幸还是该解脱呢？

感觉编译期编程就是C++中的理论物理，需要纸和笔，然后适应一大堆符号。
 …
展开

作者回复: future的设计原则我不熟。我是挺希望跟promise联用能复用，真当成管道。但目前不

支持。也许以后可以。并发方面，C++的标准机制还缺不少东西的，同步只用标准库的话很难。

不过C++20会加不少新东西。

用词方面的相同应该和语言实现是否用C++没关系。并发方面有很多前沿的文献，标准术语应该

早就有不少了吧。而且，标准的Python实现，CPython，是纯C写的。

 

