
30 | 线程本地存储模式：没有共享，就没有伤害
2019-05-07 王宝令

Java并发编程实战 进入课程

讲述：王宝令
时长 09:19 大小 8.55M

民国年间某山东省主席参加某大学校庆演讲，在篮球场看到十来个人穿着裤衩抢一个球，观

之实在不雅，于是怒斥学校的总务处长贪污，并且发话：“多买几个球，一人发一个，省得

你争我抢！”小时候听到这个段子只是觉得好玩，今天再来看，却别有一番滋味。为什么

呢？因为其间蕴藏着解决并发问题的一个重要方法：避免共享。

我们曾经一遍一遍又一遍地重复，多个线程同时读写同一共享变量存在并发问题。前面两篇

文章我们突破的是写，没有写操作自然没有并发问题了。其实还可以突破共享变量，没有共

享变量也不会有并发问题，正所谓是没有共享，就没有伤害。

那如何避免共享呢？思路其实很简单，多个人争一个球总容易出矛盾，那就每个人发一个

球。对应到并发编程领域，就是每个线程都拥有自己的变量，彼此之间不共享，也就没有并

发问题了。





 下载APP 

我们在《11 | Java 线程（下）：为什么局部变量是线程安全的？》中提到过线程封闭，其

本质上就是避免共享。你已经知道通过局部变量可以做到避免共享，那还有没有其他方法可

以做到呢？有的，Java 语言提供的线程本地存储（ThreadLocal）就能够做到。下面我们

先看看 ThreadLocal 到底该如何使用。

ThreadLocal 的使用方法

下面这个静态类 ThreadId 会为每个线程分配一个唯一的线程 Id，如果一个线程前后两次

调用 ThreadId 的 get() 方法，两次 get() 方法的返回值是相同的。但如果是两个线程分别

调用 ThreadId 的 get() 方法，那么两个线程看到的 get() 方法的返回值是不同的。若你是

初次接触 ThreadLocal，可能会觉得奇怪，为什么相同线程调用 get() 方法结果就相同，而

不同线程调用 get() 方法结果就不同呢？

能有这个奇怪的结果，都是 ThreadLocal 的杰作，不过在详细解释 ThreadLocal 的工作原

理之前，我们再看一个实际工作中可能遇到的例子来加深一下对 ThreadLocal 的理解。你

可能知道 SimpleDateFormat 不是线程安全的，那如果需要在并发场景下使用它，你该怎

么办呢？

其实有一个办法就是用 ThreadLocal 来解决，下面的示例代码就是 ThreadLocal 解决方案

的具体实现，这段代码与前面 ThreadId 的代码高度相似，同样地，不同线程调用

SafeDateFormat 的 get() 方法将返回不同的 SimpleDateFormat 对象实例，由于不同线

程并不共享 SimpleDateFormat，所以就像局部变量一样，是线程安全的。

1

2

3

4

5

6

7

8

9

10

11

12

static class ThreadId {
 static final AtomicLong
 nextId=new AtomicLong(0);
 // 定义 ThreadLocal 变量

 static final ThreadLocal<Long>
 tl=ThreadLocal.withInitial(
 ()->nextId.getAndIncrement());
 // 此方法会为每个线程分配一个唯一的 Id
 static long get(){
 return tl.get();
 }
}

复制代码

复制代码

https://time.geekbang.org/column/article/86695

通过上面两个例子，相信你对 ThreadLocal 的用法以及应用场景都了解了，下面我们就来

详细解释 ThreadLocal 的工作原理。

ThreadLocal 的工作原理

在解释 ThreadLocal 的工作原理之前， 你先自己想想：如果让你来实现 ThreadLocal 的

功能，你会怎么设计呢？ThreadLocal 的目标是让不同的线程有不同的变量 V，那最直接

的方法就是创建一个 Map，它的 Key 是线程，Value 是每个线程拥有的变量 V，

ThreadLocal 内部持有这样的一个 Map 就可以了。你可以参考下面的示意图和示例代码来

理解。

ThreadLocal 持有 Map 的示意图

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

static class SafeDateFormat {
 // 定义 ThreadLocal 变量

 static final ThreadLocal<DateFormat>
 tl=ThreadLocal.withInitial(
 ()-> new SimpleDateFormat(
 "yyyy-MM-dd HH:mm:ss"));

 static DateFormat get(){
 return tl.get();
 }
}
// 不同线程执行下面代码

// 返回的 df 是不同的

DateFormat df =
 SafeDateFormat.get()；

那 Java 的 ThreadLocal 是这么实现的吗？这一次我们的设计思路和 Java 的实现差异很

大。Java 的实现里面也有一个 Map，叫做 ThreadLocalMap，不过持有

ThreadLocalMap 的不是 ThreadLocal，而是 Thread。Thread 这个类内部有一个私有属

性 threadLocals，其类型就是 ThreadLocalMap，ThreadLocalMap 的 Key 是

ThreadLocal。你可以结合下面的示意图和精简之后的 Java 实现代码来理解。

Thread 持有 ThreadLocalMap 的示意图

1

2

3

4

5

6

7

8

9

10

11

12

13

14

class MyThreadLocal<T> {
 Map<Thread, T> locals =
 new ConcurrentHashMap<>();
 // 获取线程变量
 T get() {
 return locals.get(
 Thread.currentThread());
 }
 // 设置线程变量

 void set(T t) {
 locals.put(
 Thread.currentThread(), t);
 }
}

复制代码

1

2

3

class Thread {
 // 内部持有 ThreadLocalMap
 ThreadLocal.ThreadLocalMap

复制代码

初看上去，我们的设计方案和 Java 的实现仅仅是 Map 的持有方不同而已，我们的设计里

面 Map 属于 ThreadLocal，而 Java 的实现里面 ThreadLocalMap 则是属于 Thread。这

两种方式哪种更合理呢？很显然 Java 的实现更合理一些。在 Java 的实现方案里面，

ThreadLocal 仅仅是一个代理工具类，内部并不持有任何与线程相关的数据，所有和线程

相关的数据都存储在 Thread 里面，这样的设计容易理解。而从数据的亲缘性上来讲，

ThreadLocalMap 属于 Thread 也更加合理。

当然还有一个更加深层次的原因，那就是不容易产生内存泄露。在我们的设计方案中，

ThreadLocal 持有的 Map 会持有 Thread 对象的引用，这就意味着，只要 ThreadLocal

对象存在，那么 Map 中的 Thread 对象就永远不会被回收。ThreadLocal 的生命周期往往

都比线程要长，所以这种设计方案很容易导致内存泄露。而 Java 的实现中 Thread 持有

ThreadLocalMap，而且 ThreadLocalMap 里对 ThreadLocal 的引用还是弱引用

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 threadLocals;
}
class ThreadLocal<T>{
 public T get() {
 // 首先获取线程持有的

 //ThreadLocalMap
 ThreadLocalMap map =
 Thread.currentThread()
 .threadLocals;
 // 在 ThreadLocalMap 中
 // 查找变量

 Entry e =
 map.getEntry(this);
 return e.value;
 }
 static class ThreadLocalMap{
 // 内部是数组而不是 Map
 Entry[] table;
 // 根据 ThreadLocal 查找 Entry
 Entry getEntry(ThreadLocal key){
 // 省略查找逻辑

 }
 //Entry 定义

 static class Entry extends
 WeakReference<ThreadLocal>{
 Object value;
 }
 }
}

（WeakReference），所以只要 Thread 对象可以被回收，那么 ThreadLocalMap 就能被

回收。Java 的这种实现方案虽然看上去复杂一些，但是更加安全。

Java 的 ThreadLocal 实现应该称得上深思熟虑了，不过即便如此深思熟虑，还是不能百分

百地让程序员避免内存泄露，例如在线程池中使用 ThreadLocal，如果不谨慎就可能导致

内存泄露。

ThreadLocal 与内存泄露

在线程池中使用 ThreadLocal 为什么可能导致内存泄露呢？原因就出在线程池中线程的存

活时间太长，往往都是和程序同生共死的，这就意味着 Thread 持有的 ThreadLocalMap

一直都不会被回收，再加上 ThreadLocalMap 中的 Entry 对 ThreadLocal 是弱引用

（WeakReference），所以只要 ThreadLocal 结束了自己的生命周期是可以被回收掉的。

但是 Entry 中的 Value 却是被 Entry 强引用的，所以即便 Value 的生命周期结束了，

Value 也是无法被回收的，从而导致内存泄露。

那在线程池中，我们该如何正确使用 ThreadLocal 呢？其实很简单，既然 JVM 不能做到

自动释放对 Value 的强引用，那我们手动释放就可以了。如何能做到手动释放呢？估计你

马上想到try{}finally{}方案了，这个简直就是手动释放资源的利器。示例的代码如下，你

可以参考学习。

InheritableThreadLocal 与继承性

1

2

3

4

5

6

7

8

9

10

11

12

ExecutorService es;
ThreadLocal tl;
es.execute(()->{
 //ThreadLocal 增加变量

 tl.set(obj);
 try {
 // 省略业务逻辑代码

 }finally {
 // 手动清理 ThreadLocal
 tl.remove();
 }
});

复制代码

通过 ThreadLocal 创建的线程变量，其子线程是无法继承的。也就是说你在线程中通过

ThreadLocal 创建了线程变量 V，而后该线程创建了子线程，你在子线程中是无法通过

ThreadLocal 来访问父线程的线程变量 V 的。

如果你需要子线程继承父线程的线程变量，那该怎么办呢？其实很简单，Java 提供了

InheritableThreadLocal 来支持这种特性，InheritableThreadLocal 是 ThreadLocal 子

类，所以用法和 ThreadLocal 相同，这里就不多介绍了。

不过，我完全不建议你在线程池中使用 InheritableThreadLocal，不仅仅是因为它具有

ThreadLocal 相同的缺点——可能导致内存泄露，更重要的原因是：线程池中线程的创建

是动态的，很容易导致继承关系错乱，如果你的业务逻辑依赖 InheritableThreadLocal，

那么很可能导致业务逻辑计算错误，而这个错误往往比内存泄露更要命。

总结

线程本地存储模式本质上是一种避免共享的方案，由于没有共享，所以自然也就没有并发问

题。如果你需要在并发场景中使用一个线程不安全的工具类，最简单的方案就是避免共享。

避免共享有两种方案，一种方案是将这个工具类作为局部变量使用，另外一种方案就是线程

本地存储模式。这两种方案，局部变量方案的缺点是在高并发场景下会频繁创建对象，而线

程本地存储方案，每个线程只需要创建一个工具类的实例，所以不存在频繁创建对象的问

题。

线程本地存储模式是解决并发问题的常用方案，所以 Java SDK 也提供了相应的实现：

ThreadLocal。通过上面我们的分析，你应该能体会到 Java SDK 的实现已经是深思熟虑

了，不过即便如此，仍不能尽善尽美，例如在线程池中使用 ThreadLocal 仍可能导致内存

泄漏，所以使用 ThreadLocal 还是需要你打起精神，足够谨慎。

课后思考

实际工作中，有很多平台型的技术方案都是采用 ThreadLocal 来传递一些上下文信息，例

如 Spring 使用 ThreadLocal 来传递事务信息。我们曾经说过，异步编程已经很成熟了，

那你觉得在异步场景中，是否可以使用 Spring 的事务管理器呢？

欢迎在留言区与我分享你的想法，也欢迎你在留言区记录你的思考过程。感谢阅读，如果你

觉得这篇文章对你有帮助的话，也欢迎把它分享给更多的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 29 | Copy-on-Write模式：不是延时策略的COW

下一篇 31 | Guarded Suspension模式：等待唤醒机制的规范实现

右耳听海
2019-05-07

 9

有个疑问请教老师，避免共享变量的两种解决方案，在高并发情况下，使用局部变量会频
繁创建对象，使用threadlocal也是针对线程创建新变量，都是针对线程维度，threadlocal
并未体现出什么优势，为什么还要用threadlocal

展开

作者回复: threadlocal=线程数，局部变量=调用量，差距太大了

QQ怪  5

精选留言 (26)  写留言

2019-05-07

上面有些同学说多线程是simpledateformat会打印出一样名称的对象，我刚刚也试了下，
的确可以复现，但其实是simpledateformat对象的toString()方法搞得鬼，该类是继承
object类的tostring方法，如下有个hashcode()方法，但该类重写了hashcode方法，在追
溯到hashcode方法，pattern.hashcode(),pattern就是我们的yyyy-MM-dd,这个是一直保
持不变的，现在终于真相大白了

展开

作者回复: 感谢回复！！！！

晓杰
2019-05-07

 5

不可以，因为ThreadLocal内的变量是线程级别的，而异步编程意味着线程不同，不同线程
的变量不可以共享

作者回复: 👍

linqw
2019-05-25

 1

自己写了下对ThreadLocal的源码分析
https://juejin.im/post/5ce7e0596fb9a07ee742ba79，感兴趣的可以看下哦，老师也帮
忙看下哦

作者回复: 有心👍

承香墨影
2019-05-22

 1

老师您好，有个问题想请教。
在线程池中使用 ThreadLocal，您给的解决方案是，使用后手动释放。
那这样和使用线程的局部变量有什么区别？每次线程执行的时候都去创建对象并存储在
ThreadLocal 中，用完就释放掉了，下次执行依然需要重新创建，并存入
ThreadLocalMap 中，这样并没有解决局部变量频繁创建对象的问题。

展开

作者回复: 这种用法一般是为了在一个线程里传递全局参数，也叫上下文信息，局部变量不能跨方

法，这个用法不是用来解决局部变量重复创建的

ddup
2019-05-16

 1

System.identityHashCode(dateFormat)); 这个来打印内存地址。

展开

刘晓林
2019-05-11

 1

getEntry(): 0x61c88647，解决hash碰撞的一个神奇的数

展开

QQ怪
2019-05-07

 1

扩展:可以打断点进ThreadLocal的getmap方法里面可以直接看到slf对象是不同的

晓杰
2019-05-07

 1

请问一下老师，我刚刚对simpledateformat加threadlocal，但是不同线程得到的
simpledateformat对象是一样的，代码如下：
public class Tool {
 public static void main(String[] args) throws Exception{
 System.out.println(SafeDateFormat.get()); …
展开

作者回复: 有同学已经找到原因了，是tostring的锅

vic
2019-05-07

 1

想问一下如果gc发生在对threadLocal的 set和get操作之间，get的时候value对应的key已
经被gc了，不是拿不到我之前放进threadLocal的对象了吗？这样对业务不会有问题吗？

展开

峰
2019-05-07

 1

java实现异步的方式基本上就是多线程了，而threadlocal是线程封闭的，不能在线程之间
共享，就谈不上全局的事务管理了。

张三
2019-05-07

 1

这节的ThreadLocal，我记得15年刚开始工作的时候，工作中有一个需要动态切换数据源
的需求，Spring+Hibernate框架，当时通过百度查到用ThreadLocal，使用AOP在进入
service层之前来切换数据源。正好跟这里文章说的Spring使用ThreadLocal来传递事物信
息意思一样吧。

张三
2019-05-07

 1

打卡！我认为不行吧，文末提到ThreadLocal创建的线程变量子线程无法继承了。

易儿易
2019-05-24



老师，写demo的时候发现，threadlocalmap中始终会有两个陌生的entry，value是两个
软引，分别是StringDecoder和StringEncoder，为什么会有这两个东西呢？这里指定的
GBK是用来指明线程所有上下文文本编码格式的吗？

展开

看不到de颜...
2019-05-19



异步编程应该慎用ThreadLocal。因为不再是同一个线程执行，所以获取不到原本想获取的
数据

张三2019-05-17 

期待老师解答这里的思考题。

展开

Zach_
2019-05-14



异步场景中，被调用方可以自己用spring的事事务来管理吧？

展开

_light
2019-05-09



老师，你好
 阿里有一个TransmittableThreadLocal据说是支持线程池线程复用的继承了
InheritableThreadLocal类的东西，我试了下确实可以，他可以在线程池线程执行时拿到
正确的父类本地变量，其实也不是父类，就是初始化赋值TransmittableThreadLocal的那
个线程的数据，因为我们的线程池一般都是静态全局的，谁是父类都说不清楚。感觉这…
展开

作者回复: 我也没看过，最近太忙了😂

天天向善
2019-05-08



有个疑问请教，线程多路复用，使用thread local有什么注意的，会不会不同请求获取内容
相同，造成后续业务错误

作者回复: 很有这种可能，所以不能用它存状态数据

狂风骤雨
2019-05-08



线程的本地存储是加了native关键字来修饰的么

展开

