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多线程设计模式是前人解决并发问题的经验总结，当我们试图解决一个并发问题时，首选方

案往往是使用匹配的设计模式，这样能避免走弯路。同时，由于大家都熟悉设计模式，所以

使用设计模式还能提升方案和代码的可理解性。

在这个模块，我们总共介绍了 9 种常见的多线程设计模式。下面我们就对这 9 种设计模式

做个分类和总结，同时也对前面各章的课后思考题做个答疑。

避免共享的设计模式

Immutability 模式、Copy-on-Write 模式和线程本地存储模式本质上都是为了避免共

享，只是实现手段不同而已。这 3 种设计模式的实现都很简单，但是实现过程中有些细节

还是需要格外注意的。例如，使用 Immutability 模式需要注意对象属性的不可变性，使
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用 Copy-on-Write 模式需要注意性能问题，使用线程本地存储模式需要注意异步执行问

题。所以，每篇文章最后我设置的课后思考题的目的就是提醒你注意这些细节。

《28 | Immutability 模式：如何利用不变性解决并发问题？》的课后思考题是讨论

Account 这个类是不是具备不可变性。这个类初看上去属于不可变对象的中规中矩实现，

而实质上这个实现是有问题的，原因在于 StringBuffer 不同于 String，StringBuffer 不具

备不可变性，通过 getUser() 方法获取 user 之后，是可以修改 user 的。一个简单的解决

方案是让 getUser() 方法返回 String 对象。

《29 | Copy-on-Write 模式：不是延时策略的 COW》的课后思考题是讨论 Java SDK 中

为什么没有提供 CopyOnWriteLinkedList。这是一个开放性的问题，没有标准答案，但是

性能问题一定是其中一个很重要的原因，毕竟完整地复制 LinkedList 性能开销太大了。

《30 | 线程本地存储模式：没有共享，就没有伤害》的课后思考题是在异步场景中，是否

可以使用 Spring 的事务管理器。答案显然是不能的，Spring 使用 ThreadLocal 来传递事

务信息，因此这个事务信息是不能跨线程共享的。实际工作中有很多类库都是用

ThreadLocal 传递上下文信息的，这种场景下如果有异步操作，一定要注意上下文信息是

不能跨线程共享的。

多线程版本 IF 的设计模式
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public final class Account{
  private final 
    StringBuffer user;
  public Account(String user){
    this.user = 
      new StringBuffer(user);
  }
  // 返回的 StringBuffer 并不具备不可变性

  public StringBuffer getUser(){
    return this.user;
  }
  public String toString(){
    return "user"+user;
  }
}
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Guarded Suspension 模式和Balking 模式都可以简单地理解为“多线程版本的 if”，但

它们的区别在于前者会等待 if 条件变为真，而后者则不需要等待。

Guarded Suspension 模式的经典实现是使用管程，很多初学者会简单地用线程 sleep 的

方式实现，比如《31 | Guarded Suspension 模式：等待唤醒机制的规范实现》的思考题

就是用线程 sleep 方式实现的。但不推荐你使用这种方式，最重要的原因是性能，如果

sleep 的时间太长，会影响响应时间；sleep 的时间太短，会导致线程频繁地被唤醒，消耗

系统资源。

同时，示例代码的实现也有问题：由于 obj 不是 volatile 变量，所以即便 obj 被设置了正

确的值，执行 while(!p.test(obj)) 的线程也有可能看不到，从而导致更长时间的

sleep。

实现 Balking 模式最容易忽视的就是竞态条件问题。比如，《32 | Balking 模式：再谈线程

安全的单例模式》的思考题就存在竞态条件问题。因此，在多线程场景中使用 if 语句时，

一定要多问自己一遍：是否存在竞态条件。
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// 获取受保护对象  
T get(Predicate<T> p) {
  try {
    //obj 的可见性无法保证

    while(!p.test(obj)){
      TimeUnit.SECONDS
        .sleep(timeout);
    }
  }catch(InterruptedException e){
    throw new RuntimeException(e);
  }
  // 返回非空的受保护对象

  return obj;
}
// 事件通知方法

void onChanged(T obj) {
  this.obj = obj;
}
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class Test{
  volatile boolean inited = false;
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三种最简单的分工模式

Thread-Per-Message 模式、Worker Thread 模式和生产者 - 消费者模式是三种最简单

实用的多线程分工方法。虽说简单，但也还是有许多细节需要你多加小心和注意。

Thread-Per-Message 模式在实现的时候需要注意是否存在线程的频繁创建、销毁以及是

否可能导致 OOM。在《33 | Thread-Per-Message 模式：最简单实用的分工方法》文章

中，最后的思考题就是关于如何快速解决 OOM 问题的。在高并发场景中，最简单的办法

其实是限流。当然，限流方案也并不局限于解决 Thread-Per-Message 模式中的 OOM 问

题。

Worker Thread 模式的实现，需要注意潜在的线程死锁问题。《34 | Worker Thread 模

式：如何避免重复创建线程？》思考题中的示例代码就存在线程死锁。有名叫 vector 的同

学关于这道思考题的留言，我觉得描述得很贴切和形象：“工厂里只有一个工人，他的工作

就是同步地等待工厂里其他人给他提供东西，然而并没有其他人，他将等到天荒地老，海枯

石烂！”因此，共享线程池虽然能够提供线程池的使用效率，但一定要保证一个前提，那就

是：任务之间没有依赖关系。
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  int count = 0;
  void init(){
    // 存在竞态条件

    if(inited){
      return;
    }
    // 有可能多个线程执行到这里

    inited = true;
    // 计算 count 的值

    count = calc();
  }
}  
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ExecutorService pool = Executors
  .newSingleThreadExecutor();
// 提交主任务

pool.submit(() -> {
  try {
    // 提交子任务并等待其完成，

    // 会导致线程死锁

    String qq=pool.submit(()->"QQ").get();
    System.out.println(qq);
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Java 线程池本身就是一种生产者 - 消费者模式的实现，所以大部分场景你都不需要自己实

现，直接使用 Java 的线程池就可以了。但若能自己灵活地实现生产者 - 消费者模式会更

好，比如可以实现批量执行和分阶段提交，不过这过程中还需要注意如何优雅地终止线程，

《36 | 生产者 - 消费者模式：用流水线思想提高效率》的思考题就是关于此的。

如何优雅地终止线程？我们在《35 | 两阶段终止模式：如何优雅地终止线程？》有过详细

介绍，两阶段终止模式是一种通用的解决方案。但其实终止生产者 - 消费者服务还有一种

更简单的方案，叫做“毒丸”对象。《Java 并发编程实战》第 7 章的 7.2.3 节对“毒

丸”对象有过详细的介绍。简单来讲，“毒丸”对象是生产者生产的一条特殊任务，然后当

消费者线程读到“毒丸”对象时，会立即终止自身的执行。

下面是用“毒丸”对象终止写日志线程的具体实现，整体的实现过程还是很简单的：类

Logger 中声明了一个“毒丸”对象 poisonPill ，当消费者线程从阻塞队列 bq 中取出一条

LogMsg 后，先判断是否是“毒丸”对象，如果是，则 break while 循环，从而终止自己

的执行。
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  } catch (Exception e) {
  }
});
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class Logger {
  // 用于终止日志执行的“毒丸”
  final LogMsg poisonPill = 
    new LogMsg(LEVEL.ERROR, "");
  // 任务队列  
  final BlockingQueue<LogMsg> bq
    = new BlockingQueue<>();
  // 只需要一个线程写日志

  ExecutorService es = 
    Executors.newFixedThreadPool(1);
  // 启动写日志线程

  void start(){
    File file=File.createTempFile(
      "foo", ".log");
    final FileWriter writer=
      new FileWriter(file);
    this.es.execute(()->{
      try {
        while (true) {
          LogMsg log = bq.poll(
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总结

到今天为止，“并发设计模式”模块就告一段落了，多线程的设计模式当然不止我们提到的

这 9 种，不过这里提到的这 9 种设计模式一定是最简单实用的。如果感兴趣，你也可以结

合《图解 Java 多线程设计模式》这本书来深入学习这个模块，这是一本不错的并发编程入

门书籍，虽然重点是讲解设计模式，但是也详细讲解了设计模式中涉及到的方方面面的基础

知识，而且深入浅出，非常推荐入门的同学认真学习一下。

欢迎在留言区与我分享你的想法，也欢迎你在留言区记录你的思考过程。感谢阅读，如果你

觉得这篇文章对你有帮助的话，也欢迎把它分享给更多的朋友。
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            5, TimeUnit.SECONDS);
          // 如果是“毒丸”，终止执行  
          if(poisonPill.equals(logMsg)){
            break;
          }  
          // 省略执行逻辑

        }
      } catch(Exception e){
      } finally {
        try {
          writer.flush();
          writer.close();
        }catch(IOException e){}
      }
    });  
  }
  // 终止写日志线程

  public void stop() {
    // 将“毒丸”对象加入阻塞队列

    bq.add(poisonPill);
    es.shutdown();
  }
}
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上一篇 36 | 生产者-消费者模式：用流水线思想提高效率

下一篇 38 | 案例分析（一）：高性能限流器Guava RateLimiter
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老师好 能不能后面讲一讲分布式锁相关的东西，比如实现方案，原理和场景之类的
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老师好 能不能后面讲一讲分布式锁相关的东西，比如实现方案，原理和场景之类的

作者回复: 方案就是利用zk，redis，db，也可以用atomix这样的工具类自己做集群管理，网上有

很多资料，最近实在太忙了😂😂😂
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老师想请问下，如果jvm挂了，有没有好的办法能记录下线程池当前未处理的任务

作者回复: 没有好的办法，可以通过分布式来解决，把未处理的任务先放到数据库里，处理完从数

据库删除
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毒丸对象，我也用过，就是一个可以通过外部接口或消息通知还写的bean，需要终止时设
置为终止状态，不终止时是正常状态，消费线程在读到终止状态时直接跳过任务执行，线
程也就完成终止了
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很期待接下来两个模块的深入讲解！
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