
37 | 设计模式模块热点问题答疑
2019-05-23 王宝令

Java并发编程实战 进入课程

讲述：王宝令
时长 07:02 大小 6.45M

多线程设计模式是前人解决并发问题的经验总结，当我们试图解决一个并发问题时，首选方

案往往是使用匹配的设计模式，这样能避免走弯路。同时，由于大家都熟悉设计模式，所以

使用设计模式还能提升方案和代码的可理解性。

在这个模块，我们总共介绍了 9 种常见的多线程设计模式。下面我们就对这 9 种设计模式

做个分类和总结，同时也对前面各章的课后思考题做个答疑。

避免共享的设计模式

Immutability 模式、Copy-on-Write 模式和线程本地存储模式本质上都是为了避免共

享，只是实现手段不同而已。这 3 种设计模式的实现都很简单，但是实现过程中有些细节

还是需要格外注意的。例如，使用 Immutability 模式需要注意对象属性的不可变性，使





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

用 Copy-on-Write 模式需要注意性能问题，使用线程本地存储模式需要注意异步执行问

题。所以，每篇文章最后我设置的课后思考题的目的就是提醒你注意这些细节。

《28 | Immutability 模式：如何利用不变性解决并发问题？》的课后思考题是讨论

Account 这个类是不是具备不可变性。这个类初看上去属于不可变对象的中规中矩实现，

而实质上这个实现是有问题的，原因在于 StringBuffer 不同于 String，StringBuffer 不具

备不可变性，通过 getUser() 方法获取 user 之后，是可以修改 user 的。一个简单的解决

方案是让 getUser() 方法返回 String 对象。

《29 | Copy-on-Write 模式：不是延时策略的 COW》的课后思考题是讨论 Java SDK 中

为什么没有提供 CopyOnWriteLinkedList。这是一个开放性的问题，没有标准答案，但是

性能问题一定是其中一个很重要的原因，毕竟完整地复制 LinkedList 性能开销太大了。

《30 | 线程本地存储模式：没有共享，就没有伤害》的课后思考题是在异步场景中，是否

可以使用 Spring 的事务管理器。答案显然是不能的，Spring 使用 ThreadLocal 来传递事

务信息，因此这个事务信息是不能跨线程共享的。实际工作中有很多类库都是用

ThreadLocal 传递上下文信息的，这种场景下如果有异步操作，一定要注意上下文信息是

不能跨线程共享的。

多线程版本 IF 的设计模式

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public final class Account{
 private final
 StringBuffer user;
 public Account(String user){
 this.user =
 new StringBuffer(user);
 }
 // 返回的 StringBuffer 并不具备不可变性

 public StringBuffer getUser(){
 return this.user;
 }
 public String toString(){
 return "user"+user;
 }
}

复制代码

https://time.geekbang.org/column/article/92856
https://time.geekbang.org/column/article/93154
https://time.geekbang.org/column/article/93745

Guarded Suspension 模式和Balking 模式都可以简单地理解为“多线程版本的 if”，但

它们的区别在于前者会等待 if 条件变为真，而后者则不需要等待。

Guarded Suspension 模式的经典实现是使用管程，很多初学者会简单地用线程 sleep 的

方式实现，比如《31 | Guarded Suspension 模式：等待唤醒机制的规范实现》的思考题

就是用线程 sleep 方式实现的。但不推荐你使用这种方式，最重要的原因是性能，如果

sleep 的时间太长，会影响响应时间；sleep 的时间太短，会导致线程频繁地被唤醒，消耗

系统资源。

同时，示例代码的实现也有问题：由于 obj 不是 volatile 变量，所以即便 obj 被设置了正

确的值，执行 while(!p.test(obj)) 的线程也有可能看不到，从而导致更长时间的

sleep。

实现 Balking 模式最容易忽视的就是竞态条件问题。比如，《32 | Balking 模式：再谈线程

安全的单例模式》的思考题就存在竞态条件问题。因此，在多线程场景中使用 if 语句时，

一定要多问自己一遍：是否存在竞态条件。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

// 获取受保护对象
T get(Predicate<T> p) {
 try {
 //obj 的可见性无法保证

 while(!p.test(obj)){
 TimeUnit.SECONDS
 .sleep(timeout);
 }
 }catch(InterruptedException e){
 throw new RuntimeException(e);
 }
 // 返回非空的受保护对象

 return obj;
}
// 事件通知方法

void onChanged(T obj) {
 this.obj = obj;
}

复制代码

1

2

class Test{
 volatile boolean inited = false;

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

https://time.geekbang.org/column/article/94097
https://time.geekbang.org/column/article/94604

三种最简单的分工模式

Thread-Per-Message 模式、Worker Thread 模式和生产者 - 消费者模式是三种最简单

实用的多线程分工方法。虽说简单，但也还是有许多细节需要你多加小心和注意。

Thread-Per-Message 模式在实现的时候需要注意是否存在线程的频繁创建、销毁以及是

否可能导致 OOM。在《33 | Thread-Per-Message 模式：最简单实用的分工方法》文章

中，最后的思考题就是关于如何快速解决 OOM 问题的。在高并发场景中，最简单的办法

其实是限流。当然，限流方案也并不局限于解决 Thread-Per-Message 模式中的 OOM 问

题。

Worker Thread 模式的实现，需要注意潜在的线程死锁问题。《34 | Worker Thread 模

式：如何避免重复创建线程？》思考题中的示例代码就存在线程死锁。有名叫 vector 的同

学关于这道思考题的留言，我觉得描述得很贴切和形象：“工厂里只有一个工人，他的工作

就是同步地等待工厂里其他人给他提供东西，然而并没有其他人，他将等到天荒地老，海枯

石烂！”因此，共享线程池虽然能够提供线程池的使用效率，但一定要保证一个前提，那就

是：任务之间没有依赖关系。

3

4

5

6

7

8

9

10

11

12

13

14

 int count = 0;
 void init(){
 // 存在竞态条件

 if(inited){
 return;
 }
 // 有可能多个线程执行到这里

 inited = true;
 // 计算 count 的值

 count = calc();
 }
}

1

2

3

4

5

6

7

8

9

ExecutorService pool = Executors
 .newSingleThreadExecutor();
// 提交主任务

pool.submit(() -> {
 try {
 // 提交子任务并等待其完成，

 // 会导致线程死锁

 String qq=pool.submit(()->"QQ").get();
 System.out.println(qq);

复制代码

https://time.geekbang.org/column/article/95098
https://time.geekbang.org/column/article/95525

Java 线程池本身就是一种生产者 - 消费者模式的实现，所以大部分场景你都不需要自己实

现，直接使用 Java 的线程池就可以了。但若能自己灵活地实现生产者 - 消费者模式会更

好，比如可以实现批量执行和分阶段提交，不过这过程中还需要注意如何优雅地终止线程，

《36 | 生产者 - 消费者模式：用流水线思想提高效率》的思考题就是关于此的。

如何优雅地终止线程？我们在《35 | 两阶段终止模式：如何优雅地终止线程？》有过详细

介绍，两阶段终止模式是一种通用的解决方案。但其实终止生产者 - 消费者服务还有一种

更简单的方案，叫做“毒丸”对象。《Java 并发编程实战》第 7 章的 7.2.3 节对“毒

丸”对象有过详细的介绍。简单来讲，“毒丸”对象是生产者生产的一条特殊任务，然后当

消费者线程读到“毒丸”对象时，会立即终止自身的执行。

下面是用“毒丸”对象终止写日志线程的具体实现，整体的实现过程还是很简单的：类

Logger 中声明了一个“毒丸”对象 poisonPill ，当消费者线程从阻塞队列 bq 中取出一条

LogMsg 后，先判断是否是“毒丸”对象，如果是，则 break while 循环，从而终止自己

的执行。

10

11

12

 } catch (Exception e) {
 }
});

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

class Logger {
 // 用于终止日志执行的“毒丸”
 final LogMsg poisonPill =
 new LogMsg(LEVEL.ERROR, "");
 // 任务队列
 final BlockingQueue<LogMsg> bq
 = new BlockingQueue<>();
 // 只需要一个线程写日志

 ExecutorService es =
 Executors.newFixedThreadPool(1);
 // 启动写日志线程

 void start(){
 File file=File.createTempFile(
 "foo", ".log");
 final FileWriter writer=
 new FileWriter(file);
 this.es.execute(()->{
 try {
 while (true) {
 LogMsg log = bq.poll(

复制代码

https://time.geekbang.org/column/article/96168
https://time.geekbang.org/column/article/95847
time://mall?url=https%3A%2F%2Fh5.youzan.com%2Fv2%2Fgoods%2F2758xqdzr6uuw

总结

到今天为止，“并发设计模式”模块就告一段落了，多线程的设计模式当然不止我们提到的

这 9 种，不过这里提到的这 9 种设计模式一定是最简单实用的。如果感兴趣，你也可以结

合《图解 Java 多线程设计模式》这本书来深入学习这个模块，这是一本不错的并发编程入

门书籍，虽然重点是讲解设计模式，但是也详细讲解了设计模式中涉及到的方方面面的基础

知识，而且深入浅出，非常推荐入门的同学认真学习一下。

欢迎在留言区与我分享你的想法，也欢迎你在留言区记录你的思考过程。感谢阅读，如果你

觉得这篇文章对你有帮助的话，也欢迎把它分享给更多的朋友。

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

 5, TimeUnit.SECONDS);
 // 如果是“毒丸”，终止执行
 if(poisonPill.equals(logMsg)){
 break;
 }
 // 省略执行逻辑

 }
 } catch(Exception e){
 } finally {
 try {
 writer.flush();
 writer.close();
 }catch(IOException e){}
 }
 });
 }
 // 终止写日志线程

 public void stop() {
 // 将“毒丸”对象加入阻塞队列

 bq.add(poisonPill);
 es.shutdown();
 }
}

拼课微
信：1

71614
3665

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 36 | 生产者-消费者模式：用流水线思想提高效率

下一篇 38 | 案例分析（一）：高性能限流器Guava RateLimiter

coolrandy
2019-05-23

 6

老师好 能不能后面讲一讲分布式锁相关的东西，比如实现方案，原理和场景之类的

PJ ◕‿◕

2019-05-23
 1

老师好 能不能后面讲一讲分布式锁相关的东西，比如实现方案，原理和场景之类的

作者回复: 方案就是利用zk，redis，db，也可以用atomix这样的工具类自己做集群管理，网上有

很多资料，最近实在太忙了😂😂😂

精选留言 (6)  写留言

青莲
2019-05-25



老师想请问下，如果jvm挂了，有没有好的办法能记录下线程池当前未处理的任务

作者回复: 没有好的办法，可以通过分布式来解决，把未处理的任务先放到数据库里，处理完从数

据库删除

缪文@有赞
2019-05-23



毒丸对象，我也用过，就是一个可以通过外部接口或消息通知还写的bean，需要终止时设
置为终止状态，不终止时是正常状态，消费线程在读到终止状态时直接跳过任务执行，线
程也就完成终止了

展开

作者回复: 👍

强哥
2019-05-23



很期待接下来两个模块的深入讲解！

展开

张三
2019-05-23



打卡！

展开

