
33 | MySQL调优之事务：高并发场景下的数据库事务调优
2019-08-08 刘超

Java性能调优实战 进入课程

讲述：李良
时长 11:09 大小 10.22M

你好，我是刘超。

数据库事务是数据库系统执行过程中的一个逻辑处理单元，保证一个数据库操作要么成功，

要么失败。谈到他，就不得不提 ACID 属性了。数据库事务具有以下四个基本属性：原子

性（Atomicity）、一致性（Consistent）、隔离性（Isolation）以及持久性

（Durable）。正是这些特性，才保证了数据库事务的安全性。而在 MySQL 中，鉴于

MyISAM 存储引擎不支持事务，所以接下来的内容都是在 InnoDB 存储引擎的基础上进行

讲解的。

我们知道，在 Java 并发编程中，可以多线程并发执行程序，然而并发虽然提高了程序的执

行效率，却给程序带来了线程安全问题。事务跟多线程一样，为了提高数据库处理事务的吞





 下载APP 



吐量，数据库同样支持并发事务，而在并发运行中，同样也存在着安全性问题，例如，修改

数据丢失，读取数据不一致等。

在数据库事务中，事务的隔离是解决并发事务问题的关键， 今天我们就重点了解下事务隔

离的实现原理，以及如何优化事务隔离带来的性能问题。

并发事务带来的问题

我们可以通过以下几个例子来了解下并发事务带来的几个问题：

1. 数据丢失

2. 脏读

3. 不可重复读

4. 幻读



事务隔离解决并发问题

以上 4 个并发事务带来的问题，其中，数据丢失可以基于数据库中的悲观锁来避免发生，

即在查询时通过在事务中使用 select xx for update 语句来实现一个排他锁，保证在该事务

结束之前其他事务无法更新该数据。

当然，我们也可以基于乐观锁来避免，即将某一字段作为版本号，如果更新时的版本号跟之

前的版本一致，则更新，否则更新失败。剩下 3 个问题，其实是数据库读一致性造成的，

需要数据库提供一定的事务隔离机制来解决。

我们通过加锁的方式，可以实现不同的事务隔离机制。在了解事务隔离机制之前，我们不妨

先来了解下 MySQL 都有哪些锁机制。

InnoDB 实现了两种类型的锁机制：共享锁（S）和排他锁（X）。共享锁允许一个事务读

数据，不允许修改数据，如果其他事务要再对该行加锁，只能加共享锁；排他锁是修改数据

时加的锁，可以读取和修改数据，一旦一个事务对该行数据加锁，其他事务将不能再对该数

据加任务锁。

熟悉了以上 InnoDB 行锁的实现原理，我们就可以更清楚地理解下面的内容。

在操作数据的事务中，不同的锁机制会产生以下几种不同的事务隔离级别，不同的隔离级别

分别可以解决并发事务产生的几个问题，对应如下：

未提交读（Read Uncommitted）：在事务 A 读取数据时，事务 B 读取和修改数据加了

共享锁。这种隔离级别，会导致脏读、不可重复读以及幻读。

已提交读（Read Committed）：在事务 A 读取数据时增加了共享锁，一旦读取，立即释

放锁，事务 B 读取修改数据时增加了行级排他锁，直到事务结束才释放锁。也就是说，事

务 A 在读取数据时，事务 B 只能读取数据，不能修改。当事务 A 读取到数据后，事务 B

才能修改。这种隔离级别，可以避免脏读，但依然存在不可重复读以及幻读的问题。

可重复读（Repeatable Read）：在事务 A 读取数据时增加了共享锁，事务结束，才释放

锁，事务 B 读取修改数据时增加了行级排他锁，直到事务结束才释放锁。也就是说，事务

A 在没有结束事务时，事务 B 只能读取数据，不能修改。当事务 A 结束事务，事务 B 才能

修改。这种隔离级别，可以避免脏读、不可重复读，但依然存在幻读的问题。



可序列化（Serializable）：在事务 A 读取数据时增加了共享锁，事务结束，才释放锁，

事务 B 读取修改数据时增加了表级排他锁，直到事务结束才释放锁。可序列化解决了脏

读、不可重复读、幻读等问题，但隔离级别越来越高的同时，并发性会越来越低。

InnoDB 中的 RC 和 RR 隔离事务是基于多版本并发控制（MVVC）实现高性能事务。一旦

数据被加上排他锁，其他事务将无法加入共享锁，且处于阻塞等待状态，如果一张表有大量

的请求，这样的性能将是无法支持的。

MVVC 对普通的 Select 不加锁，如果读取的数据正在执行 Delete 或 Update 操作，这时

读取操作不会等待排它锁的释放，而是直接利用 MVVC 读取该行的数据快照（数据快照是

指在该行的之前版本的数据，而数据快照的版本是基于 undo 实现的，undo 是用来做事务

回滚的，记录了回滚的不同版本的行记录）。MVVC 避免了对数据重复加锁的过程，大大

提高了读操作的性能。

锁具体实现算法

我们知道，InnoDB 既实现了行锁，也实现了表锁。行锁是通过索引实现的，如果不通过索

引条件检索数据，那么 InnoDB 将对表中所有的记录进行加锁，其实就是升级为表锁了。

行锁的具体实现算法有三种：record lock、gap lock 以及 next-key lock。record lock

是专门对索引项加锁；gap lock 是对索引项之间的间隙加锁；next-key lock 则是前面两

种的组合，对索引项以其之间的间隙加锁。

只在可重复读或以上隔离级别下的特定操作才会取得 gap lock 或 next-key lock，在

Select 、Update 和 Delete 时，除了基于唯一索引的查询之外，其他索引查询时都会获取

gap lock 或 next-key lock，即锁住其扫描的范围。

优化高并发事务

通过以上讲解，相信你对事务、锁以及隔离级别已经有了一个透彻的了解了。清楚了问题，

我们就可以聊聊高并发场景下的事务到底该如何调优了。

1. 结合业务场景，使用低级别事务隔离

在高并发业务中，为了保证业务数据的一致性，操作数据库时往往会使用到不同级别的事务

隔离。隔离级别越高，并发性能就越低。



那换到业务场景中，我们如何判断用哪种隔离级别更合适呢？我们可以通过两个简单的业务

来说下其中的选择方法。

我们在修改用户最后登录时间的业务场景中，这里对查询用户的登录时间没有特别严格的准

确性要求，而修改用户登录信息只有用户自己登录时才会修改，不存在一个事务提交的信息

被覆盖的可能。所以我们允许该业务使用最低隔离级别。

而如果是账户中的余额或积分的消费，就存在多个客户端同时消费一个账户的情况，此时我

们应该选择 RR 级别来保证一旦有一个客户端在对账户进行消费，其他客户端就不可能对该

账户同时进行消费了。

2. 避免行锁升级表锁

前面讲了，在 InnoDB 中，行锁是通过索引实现的，如果不通过索引条件检索数据，行锁

将会升级到表锁。我们知道，表锁是会严重影响到整张表的操作性能的，所以我们应该避免

他。

3. 控制事务的大小，减少锁定的资源量和锁定时间长度

你是否遇到过以下 SQL 异常呢？在抢购系统的日志中，在活动区间，我们经常可以看到这

种异常日志：

由于在抢购提交订单中开启了事务，在高并发时对一条记录进行更新的情况下，由于更新记

录所在的事务还可能存在其他操作，导致一个事务比较长，当有大量请求进入时，就可能导

致一些请求同时进入到事务中。

又因为锁的竞争是不公平的，当多个事务同时对一条记录进行更新时，极端情况下，一个更

新操作进去排队系统后，可能会一直拿不到锁，最后因超时被系统打断踢出。

在用户购买商品时，首先我们需要查询库存余额，再新建一个订单，并扣除相应的库存。这

一系列操作是处于同一个事务的。

1 MySQLQueryInterruptedException: Query execution was interrupted

复制代码



以上业务若是在两种不同的执行顺序下，其结果都是一样的，但在事务性能方面却不一样：

这是因为，虽然这些操作在同一个事务，但锁的申请在不同时间，只有当其他操作都执行

完，才会释放所有锁。因为扣除库存是更新操作，属于行锁，这将会影响到其他操作该数据

的事务，所以我们应该尽量避免长时间地持有该锁，尽快释放该锁。

又因为先新建订单和先扣除库存都不会影响业务，所以我们可以将扣除库存操作放到最后，

也就是使用执行顺序 1，以此尽量减小锁的持有时间。

总结

其实 MySQL 的并发事务调优和 Java 的多线程编程调优非常类似，都是可以通过减小锁粒

度和减少锁的持有时间进行调优。在 MySQL 的并发事务调优中，我们尽量在可以使用低

事务隔离级别的业务场景中，避免使用高事务隔离级别。

在功能业务开发时，开发人员往往会为了追求开发速度，习惯使用默认的参数设置来实现业

务功能。例如，在 service 方法中，你可能习惯默认使用 transaction，很少再手动变更事

务隔离级别。但要知道，transaction 默认是 RR 事务隔离级别，在某些业务场景下，可能

并不合适。因此，我们还是要结合具体的业务场景，进行考虑。

思考题

以上我们主要了解了锁实现事务的隔离性，你知道 InnoDB 是如何实现原子性、一致性和

持久性的吗？

期待在留言区看到你的见解。也欢迎你点击“请朋友读”，把今天的内容分享给身边的朋

友，邀请他一起讨论。



© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 32 | MySQL调优之SQL语句：如何写出高性能SQL语句？

下一篇 34 | MySQL调优之索引：索引的失效与优化

许童童
2019-08-08

binlog + redo log 两阶段提交保证持久性 
事务的回滚机制 保证原子性 要么全部提交成功 要么回滚 
undo log + MVCC 保证一致性 事务开始和结束的过程不会其它事务看到 为了并发可以适
当破坏一致性

展开

作者回复: 数据库基础非常扎实，赞

  3

胡峣

精选留言 (11)  写留言



2019-08-08

老师能否重点讲一下record lock、gap lock 以及 next-key lock？

作者回复: 好的，后面安排

 1  3

QQ怪
2019-08-08

默认transaction用的是数据库默认的隔离级别不是一定是RR，只是用MySQL默认是RR

作者回复: 对的

  2

Liam
2019-08-12

老师好，查询未加索引时行锁升级为表锁这里有个疑问，mvvc机制下select不是不加锁
吗？除非是in share mode或for update

展开

作者回复: 对的

 

星星滴蓝天
2019-08-09

老师能否多讲点innodb锁。最近我们老是出现锁等待的情况，老师可否给一些优化的思路

作者回复: 嗯嗯，后面会讲到死锁和锁等待的问题

 

苏志辉
2019-08-09

RR是基于MVVC的，而后者对于select不加锁，那么如果事务a有两次查询，事务b在a的两
次查询之间做了修改，要保证可重复读，a两次读取的都是b改之前的快照吗？

 



LW
2019-08-08

思考题：通过redo log和undo log实现

展开

作者回复: 对的，redo log保证事务的原子性以及持久性，undo log保证事务的一致性。

 

张学磊
2019-08-08

MySQL通过事务实战原子性，一个事务内的DML语句要么全部成功要么全部失败。通过re
do log和undo log实现持久性和一致性，当执行DML语句时会将操作记录到redo log中并
记录与之相反的操作到undo log中，事务一旦提交，就将该redolog中的操作，持久化到
磁盘上，事务回滚，则执行undo log中记录的操作，恢复到执行前的状态。

展开

作者回复: 对的

 

撒旦的堕落
2019-08-08

这是因为，虽然这些操作在同一个事务，但锁的申请在不同时间，只有当其他操作都执行
完，才会释放所有锁。 老师 这个虽然降低了更新库存表那行锁持有时间 但是不是增加了
订单表锁定的时间了么 还是说一个事务数据插入操作 并不会受到另一个事务数据插入操作
的影响

展开

 

-W.LI-
2019-08-08

老师好!之前听说不少互联网公司，把mysql数据库默认隔离级别设置为读已提交(不手动设
默认是RR)，来提高吞吐量。这样就需要开发人员根据业务选择合适的隔离级别是么? 
接着老师减库存的例子: 
新建订单,减库存操作可以在，读已提交隔离级别下执行么? 
我觉得新建订单和减库存只要保证原子行就好了。减库存是读当前操作，还是需要在RR…
展开



 

我已经设置了昵称
2019-08-08

执行顺序1那边，是否可以把查询条件放到事务外，减少事务里面的操作

 1 


