
03 | 互斥锁（上）：解决原子性问题
2019-03-05 王宝令

Java并发编程实战 进入课程

讲述：王宝令
时长 12:56 大小 11.85M

在第一篇文章中我们提到，一个或者多个操作在 CPU 执行的过程中不被中断的特性，称

为“原子性”。理解这个特性有助于你分析并发编程 Bug 出现的原因，例如利用它可以分

析出 long 型变量在 32 位机器上读写可能出现的诡异 Bug，明明已经把变量成功写入内

存，重新读出来却不是自己写入的。

那原子性问题到底该如何解决呢？

你已经知道，原子性问题的源头是线程切换，如果能够禁用线程切换那不就能解决这个问题

了吗？而操作系统做线程切换是依赖 CPU 中断的，所以禁止 CPU 发生中断就能够禁止线

程切换。





 下载APP 

https://time.geekbang.org/column/article/83682

在早期单核 CPU 时代，这个方案的确是可行的，而且也有很多应用案例，但是并不适合多

核场景。这里我们以 32 位 CPU 上执行 long 型变量的写操作为例来说明这个问题，long

型变量是 64 位，在 32 位 CPU 上执行写操作会被拆分成两次写操作（写高 32 位和写低

32 位，如下图所示）。

在单核 CPU 场景下，同一时刻只有一个线程执行，禁止 CPU 中断，意味着操作系统不会

重新调度线程，也就是禁止了线程切换，获得 CPU 使用权的线程就可以不间断地执行，所

以两次写操作一定是：要么都被执行，要么都没有被执行，具有原子性。

但是在多核场景下，同一时刻，有可能有两个线程同时在执行，一个线程执行在 CPU-1

上，一个线程执行在 CPU-2 上，此时禁止 CPU 中断，只能保证 CPU 上的线程连续执行，

并不能保证同一时刻只有一个线程执行，如果这两个线程同时写 long 型变量高 32 位的

话，那就有可能出现我们开头提及的诡异 Bug 了。

“同一时刻只有一个线程执行”这个条件非常重要，我们称之为互斥。如果我们能够保证对

共享变量的修改是互斥的，那么，无论是单核 CPU 还是多核 CPU，就都能保证原子性了。

简易锁模型

当谈到互斥，相信聪明的你一定想到了那个杀手级解决方案：锁。同时大脑中还会出现以下

模型：

简易锁模型

我们把一段需要互斥执行的代码称为临界区。线程在进入临界区之前，首先尝试加锁

lock()，如果成功，则进入临界区，此时我们称这个线程持有锁；否则呢就等待，直到持有

锁的线程解锁；持有锁的线程执行完临界区的代码后，执行解锁 unlock()。

这个过程非常像办公室里高峰期抢占坑位，每个人都是进坑锁门（加锁），出坑开门（解

锁），如厕这个事就是临界区。很长时间里，我也是这么理解的。这样理解本身没有问题，

但却很容易让我们忽视两个非常非常重要的点：我们锁的是什么？我们保护的又是什么？

改进后的锁模型

我们知道在现实世界里，锁和锁要保护的资源是有对应关系的，比如你用你家的锁保护你家

的东西，我用我家的锁保护我家的东西。在并发编程世界里，锁和资源也应该有这个关系，

但这个关系在我们上面的模型中是没有体现的，所以我们需要完善一下我们的模型。

改进后的锁模型

首先，我们要把临界区要保护的资源标注出来，如图中临界区里增加了一个元素：受保护的

资源 R；其次，我们要保护资源 R 就得为它创建一把锁 LR；最后，针对这把锁 LR，我们

还需在进出临界区时添上加锁操作和解锁操作。另外，在锁 LR 和受保护资源之间，我特地

用一条线做了关联，这个关联关系非常重要。很多并发 Bug 的出现都是因为把它忽略了，

然后就出现了类似锁自家门来保护他家资产的事情，这样的 Bug 非常不好诊断，因为潜意

识里我们认为已经正确加锁了。

Java 语言提供的锁技术：synchronized

锁是一种通用的技术方案，Java 语言提供的 synchronized 关键字，就是锁的一种实现。

synchronized 关键字可以用来修饰方法，也可以用来修饰代码块，它的使用示例基本上都

是下面这个样子：

1

2

3

4

5

6

7

8

class X {
 // 修饰非静态方法

 synchronized void foo() {
 // 临界区

 }
 // 修饰静态方法

 synchronized static void bar() {
 // 临界区

复制代码

看完之后你可能会觉得有点奇怪，这个和我们上面提到的模型有点对不上号啊，加锁 lock()

和解锁 unlock() 在哪里呢？其实这两个操作都是有的，只是这两个操作是被 Java 默默加

上的，Java 编译器会在 synchronized 修饰的方法或代码块前后自动加上加锁 lock() 和解

锁 unlock()，这样做的好处就是加锁 lock() 和解锁 unlock() 一定是成对出现的，毕竟忘记

解锁 unlock() 可是个致命的 Bug（意味着其他线程只能死等下去了）。

那 synchronized 里的加锁 lock() 和解锁 unlock() 锁定的对象在哪里呢？上面的代码我们

看到只有修饰代码块的时候，锁定了一个 obj 对象，那修饰方法的时候锁定的是什么呢？

这个也是 Java 的一条隐式规则：

对于上面的例子，synchronized 修饰静态方法相当于:

修饰非静态方法，相当于：

9

10

11

12

13

14

15

16

17

 }
 // 修饰代码块

 Object obj = new Object()；
 void baz() {
 synchronized(obj) {
 // 临界区

 }
 }
}

当修饰静态方法的时候，锁定的是当前类的 Class 对象，在上面的例子中就

是 Class X；

当修饰非静态方法的时候，锁定的是当前实例对象 this。

1

2

3

4

5

6

class X {
 // 修饰静态方法

 synchronized(X.class) static void bar() {
 // 临界区

 }
}

复制代码

用 synchronized 解决 count+=1 问题

相信你一定记得我们前面文章中提到过的 count+=1 存在的并发问题，现在我们可以尝试

用 synchronized 来小试牛刀一把，代码如下所示。SafeCalc 这个类有两个方法：一个是

get() 方法，用来获得 value 的值；另一个是 addOne() 方法，用来给 value 加 1，并且

addOne() 方法我们用 synchronized 修饰。那么我们使用的这两个方法有没有并发问题

呢？

我们先来看看 addOne() 方法，首先可以肯定，被 synchronized 修饰后，无论是单核

CPU 还是多核 CPU，只有一个线程能够执行 addOne() 方法，所以一定能保证原子操作，

那是否有可见性问题呢？要回答这问题，就要重温一下上一篇文章中提到的管程中锁的规

则。

管程，就是我们这里的 synchronized（至于为什么叫管程，我们后面介绍），我们知道

synchronized 修饰的临界区是互斥的，也就是说同一时刻只有一个线程执行临界区的代

码；而所谓“对一个锁解锁 Happens-Before 后续对这个锁的加锁”，指的是前一个线程

1

2

3

4

5

6

class X {
 // 修饰非静态方法

 synchronized(this) void foo() {
 // 临界区

 }
}

复制代码

1

2

3

4

5

6

7

8

9

class SafeCalc {
 long value = 0L;
 long get() {
 return value;
 }
 synchronized void addOne() {
 value += 1;
 }
}

复制代码

管程中锁的规则：对一个锁的解锁 Happens-Before 于后续对这个锁的加

锁。

https://time.geekbang.org/column/article/84017

的解锁操作对后一个线程的加锁操作可见，综合 Happens-Before 的传递性原则，我们就

能得出前一个线程在临界区修改的共享变量（该操作在解锁之前），对后续进入临界区（该

操作在加锁之后）的线程是可见的。

按照这个规则，如果多个线程同时执行 addOne() 方法，可见性是可以保证的，也就说如

果有 1000 个线程执行 addOne() 方法，最终结果一定是 value 的值增加了 1000。看到这

个结果，我们长出一口气，问题终于解决了。

但也许，你一不小心就忽视了 get() 方法。执行 addOne() 方法后，value 的值对 get() 方

法是可见的吗？这个可见性是没法保证的。管程中锁的规则，是只保证后续对这个锁的加锁

的可见性，而 get() 方法并没有加锁操作，所以可见性没法保证。那如何解决呢？很简单，

就是 get() 方法也 synchronized 一下，完整的代码如下所示。

上面的代码转换为我们提到的锁模型，就是下面图示这个样子。get() 方法和 addOne() 方

法都需要访问 value 这个受保护的资源，这个资源用 this 这把锁来保护。线程要进入临界

区 get() 和 addOne()，必须先获得 this 这把锁，这样 get() 和 addOne() 也是互斥的。

1

2

3

4

5

6

7

8

9

class SafeCalc {
 long value = 0L;
 synchronized long get() {
 return value;
 }
 synchronized void addOne() {
 value += 1;
 }
}

复制代码

保护临界区 get() 和 addOne() 的示意图

这个模型更像现实世界里面球赛门票的管理，一个座位只允许一个人使用，这个座位就

是“受保护资源”，球场的入口就是 Java 类里的方法，而门票就是用来保护资源

的“锁”，Java 里的检票工作是由 synchronized 解决的。

锁和受保护资源的关系

我们前面提到，受保护资源和锁之间的关联关系非常重要，他们的关系是怎样的呢？一个合

理的关系是：受保护资源和锁之间的关联关系是 N:1 的关系。还拿前面球赛门票的管理来

类比，就是一个座位，我们只能用一张票来保护，如果多发了重复的票，那就要打架了。现

实世界里，我们可以用多把锁来保护同一个资源，但在并发领域是不行的，并发领域的锁和

现实世界的锁不是完全匹配的。不过倒是可以用同一把锁来保护多个资源，这个对应到现实

世界就是我们所谓的“包场”了。

上面那个例子我稍作改动，把 value 改成静态变量，把 addOne() 方法改成静态方法，此

时 get() 方法和 addOne() 方法是否存在并发问题呢？

1

2

3

4

class SafeCalc {
 static long value = 0L;
 synchronized long get() {
 return value;

复制代码

如果你仔细观察，就会发现改动后的代码是用两个锁保护一个资源。这个受保护的资源就是

静态变量 value，两个锁分别是 this 和 SafeCalc.class。我们可以用下面这幅图来形象描述

这个关系。由于临界区 get() 和 addOne() 是用两个锁保护的，因此这两个临界区没有互斥

关系，临界区 addOne() 对 value 的修改对临界区 get() 也没有可见性保证，这就导致并

发问题了。

两把锁保护一个资源的示意图

总结

互斥锁，在并发领域的知名度极高，只要有了并发问题，大家首先容易想到的就是加锁，因

为大家都知道，加锁能够保证执行临界区代码的互斥性。这样理解虽然正确，但是却不能够

指导你真正用好互斥锁。临界区的代码是操作受保护资源的路径，类似于球场的入口，入口

一定要检票，也就是要加锁，但不是随便一把锁都能有效。所以必须深入分析锁定的对象和

受保护资源的关系，综合考虑受保护资源的访问路径，多方面考量才能用好互斥锁。

5

6

7

8

9

 }
 synchronized static void addOne() {
 value += 1;
 }
}

synchronized 是 Java 在语言层面提供的互斥原语，其实 Java 里面还有很多其他类型的

锁，但作为互斥锁，原理都是相通的：锁，一定有一个要锁定的对象，至于这个锁定的对象

要保护的资源以及在哪里加锁 / 解锁，就属于设计层面的事情了。

课后思考

下面的代码用 synchronized 修饰代码块来尝试解决并发问题，你觉得这个使用方式正确

吗？有哪些问题呢？能解决可见性和原子性问题吗？

欢迎在留言区与我分享你的想法，也欢迎你在留言区记录你的思考过程。感谢阅读，如果你

觉得这篇文章对你有帮助的话，也欢迎把它分享给更多的朋友。

1

2

3

4

5

6

7

8

9

10

11

12

13

class SafeCalc {
 long value = 0L;
 long get() {
 synchronized (new Object()) {
 return value;
 }
 }
 void addOne() {
 synchronized (new Object()) {
 value += 1;
 }
 }
}

复制代码

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 02 | Java内存模型：看Java如何解决可见性和有序性问题

下一篇 04 | 互斥锁（下）：如何用一把锁保护多个资源？

nonohony
2019-03-05

 145

加锁本质就是在锁对象的对象头中写入当前线程id，但是new object每次在内存中都是新
对象，所以加锁无效。

作者回复: synchronized的实现都知道了，厉害！

zyl
2019-03-05

 38

sync锁的对象monitor指针指向一个ObjectMonitor对象，所有线程加入他的entrylist里

精选留言 (138)  写留言

面，去cas抢锁，更改state加1拿锁，执行完代码，释放锁state减1，和aqs机制差不多，
只是所有线程不阻塞，cas抢锁，没有队列，属于非公平锁。
wait的时候，线程进waitset休眠，等待notify唤醒

展开

作者回复: sync的优化都知道了，厉害啊

w1sl1y
2019-03-05

 35

经过JVM逃逸分析的优化后，这个sync代码直接会被优化掉，所以在运行时该代码块是无
锁的

作者回复: 👍厉害

探索无止境
2019-03-05

 29

不能，因为new了，所以不是同一把锁。老师您好，我对那 synchronized的理解是这样，
它并不能改变CPU时间片切换的特点，只是当其他线程要访问这个资源时，发现锁还未释
放，所以只能在外面等待，不知道理解是否正确

展开

作者回复: 理解正确！

老杨同志
2019-03-05

 21

两把不同的锁，不能保护临界资源。而且这种new出来只在一个地方使用的对象，其它线
程不能对它解锁，这个锁会被编译器优化掉。和没有syncronized代码块效果是相同的

展开

作者回复: 实在是太厉害了！！！

王大王
2019-03-05

 19

Get方法加锁不是为了解决原子性问题，这个读操作本身就是原子性的，是为了实现不能线
程间addone方法的操作结果对get方法可见，那么value变量加volitile也可以实现同样效
果吗？

展开

作者回复: 是的，并发包里的原子类都是靠它实现的

石头剪刀布
2019-03-08

 8

老师说：现实世界里，我们可以用多把锁来保护同一个资源，但在并发领域是不行的。
不能用两把锁锁定同一个资源吗？
如下代码：
public class X {
 private Object lock1 = new Object(); …
展开

作者回复: 你这么优秀，我该怎么指导呢？你这不是用lock1 保护 lock2，lock2保护value吗？很

符合我们的原则。我怎么没想到呢？

大南瓜
2019-03-05

 8

沙发，并不能，不是同一把锁

展开

作者回复: 为快点赞

sbwei🚴
2019-03-24

 6

最后的思考题: 多把锁保护同一个资源，就像一个厕所坑位，有N多门可以进去，没有丝毫

保护效果，管理员一看，还不如把门都撤了，弄成开放式(编译器代码优化)😂。

展开

小和尚笨南...
2019-03-05

 6

不正确
使用锁保护资源时，对资源的所有操作应该使用同一个锁，这样才能起到保护的作用。
课后题中每个线程对资源的操作都是用的是各自的锁，不存在互斥和竞争的情况。
这就相当于有一个房间，每个人过来都安装一个门，每个人都有自己门的钥匙，大家都可
以随意出入这个房间。 …
展开

作者回复: 比喻很生动

落落彩虹
2019-03-10

 4

老师的文章我都要看几遍.评论区也不敢放过.

评论区有些demo，注意关于join的hb原则；注意system.out.println对可见性的影响，该
方法内部加锁了.
还有个问题，如果我不用join，而是sleep足够长时间以确保线程跑完了，也能保证可见…
展开

作者回复: 感谢不离不弃啊

测试的时候经常用sleep，实际项目还是用join吧。这个我感觉不能认为是join原则。规范里确实

没有。

别皱眉
2019-03-13

 3

老师，我觉得get方法有必要用加锁来保证可见性的另一个理由如下:
class SafeCalc {
 long value = 0L;

 synchronized long get() { …

展开

作者回复: 我觉得你这个才是正道，并发问题小心还躲不过呢，哪里敢冒险啊！没想到还有学生看

这个专栏，有前途👍

陈华
2019-03-07

 3

我理解get方法不需要加synchroized关键字，也可以保证可见性。
因为 对 value的写有被 synchroized 修饰，addOne（）方法结束后，会强制其他CPU缓
存失效，从新从内存读取最新值！

class SafeCalc { …
展开

作者回复: 你说的对，从实现上看是这样。但是hb没有这样的要求

churchchen
2019-03-06

 3

class SafeCalc {
 static long value = 0L;
 synchronized long get() {
 return value;
 } …
展开

作者回复: get和addone锁的是一个对象，结合上一期的hb规则再想想

ChallengeN...
2019-03-05

 3

synchronized的加锁解锁，具体是怎么实现的，没有讲

展开

作者回复: 有兴趣的自己找资料看吧

侯大虎
2019-03-30

 2

老师，有个小问题 class锁锁的是该类的所有实例，和this不应该是同一把锁吗(this不就是
这个类的实例吗)？

作者回复: 没有包含关系，就像公交卡和单次票一样，都能坐车

别皱眉
2019-03-17

 2

相信很多人跟我一样会碰到这个问题,评论里也看到有人在问，内容有点长，辛苦老师帮忙
大家分析下了 哈哈

public class A implements Runnable {
 public Integer b = 1; …
展开

作者回复: 1. println的代码里锁的this指的是你的控制台，这个锁跟你的代码没关系，而且println

里也没有写操作，所以println不会导致强刷缓存。

我觉得是因为println产生了IO，IO相对CPU来说，太慢，所以这个期间大概率的会把缓存的值写

入内存。也有可能这个线程被调度到了其他的CPU上，压根没有缓存，所以只能从内存取数。你

调用sleep，效果应该也差不多。

2. 线程切换显然不足以保证可见性，保证的可见性只能靠hb规则。

3. 线程结束后，不一定会强刷缓存。否则Join的规则就没必要了

并发问题本来就是小概率的事件，尤其有了IO操作之后，概率就更低了。

毛祥  2

2019-03-07

线程每次调用方法锁的都是新new的一个对象。令哥讲解得透彻，让我这个菜鸟一看code
就知道答案。此外，留言板潜伏一樽樽大神，有种豁然开朗的感觉。

展开

作者回复: 你也会成为一尊大神的

hxy
2019-03-06

 2

老师请问synchronized修饰的临界区中，如果不是同一把锁，能保证共享变量的可见性
吗？
 private final static int cnt = 10000;
 private static int tmp = 0;
 …
展开

作者回复: 这种简单情况，实际上出bug的概率还真是很低。但是低不意味着正确。

也不用奇怪，我们所说的都是可能。锁两个对象，编译器官方不保证可见性，私下里也许能保

证。我们不能依赖于私下的方案。

小黄
2019-03-05

 2

明显getOne 和 addOne 每次加锁在不同资源上，并没有形成互斥

展开

作者回复: 👍

