
07 | 安全性、活跃性以及性能问题
2019-03-14 王宝令

Java并发编程实战 进入课程

讲述：王宝令
时长 13:01 大小 11.94M

通过前面六篇文章，我们开启了一个简单的并发旅程，相信现在你对并发编程需要注意的问

题已经有了更深入的理解，这是一个很大的进步，正所谓只有发现问题，才能解决问题。但

是前面六篇文章的知识点可能还是有点分散，所以是时候将其总结一下了。

并发编程中我们需要注意的问题有很多，很庆幸前人已经帮我们总结过了，主要有三个方

面，分别是：安全性问题、活跃性问题和性能问题。下面我就来一一介绍这些问题。

安全性问题

相信你一定听说过类似这样的描述：这个方法不是线程安全的，这个类不是线程安全的，等

等。





 下载APP 

那什么是线程安全呢？其实本质上就是正确性，而正确性的含义就是程序按照我们期望的执

行，不要让我们感到意外。在第一篇《可见性、原子性和有序性问题：并发编程 Bug 的源

头》中，我们已经见识过很多诡异的 Bug，都是出乎我们预料的，它们都没有按照我们期

望的执行。

那如何才能写出线程安全的程序呢？第一篇文章中已经介绍了并发 Bug 的三个主要源头：

原子性问题、可见性问题和有序性问题。也就是说，理论上线程安全的程序，就要避免出现

原子性问题、可见性问题和有序性问题。

那是不是所有的代码都需要认真分析一遍是否存在这三个问题呢？当然不是，其实只有一种

情况需要：存在共享数据并且该数据会发生变化，通俗地讲就是有多个线程会同时读写同一

数据。那如果能够做到不共享数据或者数据状态不发生变化，不就能够保证线程的安全性了

嘛。有不少技术方案都是基于这个理论的，例如线程本地存储（Thread Local Storage，

TLS）、不变模式等等，后面我会详细介绍相关的技术方案是如何在 Java 语言中实现的。

但是，现实生活中，必须共享会发生变化的数据，这样的应用场景还是很多的。

当多个线程同时访问同一数据，并且至少有一个线程会写这个数据的时候，如果我们不采取

防护措施，那么就会导致并发 Bug，对此还有一个专业的术语，叫做数据竞争（Data

Race）。比如，前面第一篇文章里有个 add10K() 的方法，当多个线程调用时候就会发生

数据竞争，如下所示。

那是不是在访问数据的地方，我们加个锁保护一下就能解决所有的并发问题了呢？显然没有

这么简单。例如，对于上面示例，我们稍作修改，增加两个被 synchronized 修饰的 get()

和 set() 方法， add10K() 方法里面通过 get() 和 set() 方法来访问 value 变量，修改后的

1

2

3

4

5

6

7

8

9

public class Test {
 private long count = 0;
 void add10K() {
 int idx = 0;
 while(idx++ < 10000) {
 count += 1;
 }
 }
}

复制代码

https://time.geekbang.org/column/article/83682
https://time.geekbang.org/column/article/83682
https://time.geekbang.org/column/article/83682

代码如下所示。对于修改后的代码，所有访问共享变量 value 的地方，我们都增加了互斥

锁，此时是不存在数据竞争的。但很显然修改后的 add10K() 方法并不是线程安全的。

假设 count=0，当两个线程同时执行 get() 方法时，get() 方法会返回相同的值 0，两个线

程执行 get()+1 操作，结果都是 1，之后两个线程再将结果 1 写入了内存。你本来期望的

是 2，而结果却是 1。

这种问题，有个官方的称呼，叫竞态条件（Race Condition）。所谓竞态条件，指的是程

序的执行结果依赖线程执行的顺序。例如上面的例子，如果两个线程完全同时执行，那么结

果是 1；如果两个线程是前后执行，那么结果就是 2。在并发环境里，线程的执行顺序是不

确定的，如果程序存在竞态条件问题，那就意味着程序执行的结果是不确定的，而执行结果

不确定这可是个大 Bug。

下面再结合一个例子来说明下竞态条件，就是前面文章中提到的转账操作。转账操作里面有

个判断条件——转出金额不能大于账户余额，但在并发环境里面，如果不加控制，当多个

线程同时对一个账号执行转出操作时，就有可能出现超额转出问题。假设账户 A 有余额

200，线程 1 和线程 2 都要从账户 A 转出 150，在下面的代码里，有可能线程 1 和线程 2

同时执行到第 6 行，这样线程 1 和线程 2 都会发现转出金额 150 小于账户余额 200，于是

就会发生超额转出的情况。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public class Test {
 private long count = 0;
 synchronized long get(){
 return count；
 }
 synchronized void set(long v){
 count = v;
 }
 void add10K() {
 int idx = 0;
 while(idx++ < 10000) {
 set(get()+1)
 }
 }
}

复制代码

复制代码

所以你也可以按照下面这样来理解竞态条件。在并发场景中，程序的执行依赖于某个状态变

量，也就是类似于下面这样：

当某个线程发现状态变量满足执行条件后，开始执行操作；可是就在这个线程执行操作的时

候，其他线程同时修改了状态变量，导致状态变量不满足执行条件了。当然很多场景下，这

个条件不是显式的，例如前面 addOne 的例子中，set(get()+1) 这个复合操作，其实就隐

式依赖 get() 的结果。

那面对数据竞争和竞态条件问题，又该如何保证线程的安全性呢？其实这两类问题，都可以

用互斥这个技术方案，而实现互斥的方案有很多，CPU 提供了相关的互斥指令，操作系

统、编程语言也会提供相关的 API。从逻辑上来看，我们可以统一归为：锁。前面几章我们

也粗略地介绍了如何使用锁，相信你已经胸中有丘壑了，这里就不再赘述了，你可以结合前

面的文章温故知新。

活跃性问题

所谓活跃性问题，指的是某个操作无法执行下去。我们常见的“死锁”就是一种典型的活跃

性问题，当然除了死锁外，还有两种情况，分别是“活锁”和“饥饿”。

1

2

3

4

5

6

7

8

9

10

11

class Account {
 private int balance;
 // 转账

 void transfer(
 Account target, int amt){
 if (this.balance > amt) {
 this.balance -= amt;
 target.balance += amt;
 }
 }
}

1

2

3

if (状态变量 满足 执行条件) {
 执行操作

}

复制代码

通过前面的学习你已经知道，发生“死锁”后线程会互相等待，而且会一直等待下去，在技

术上的表现形式是线程永久地“阻塞”了。

但有时线程虽然没有发生阻塞，但仍然会存在执行不下去的情况，这就是所谓的“活锁”。

可以类比现实世界里的例子，路人甲从左手边出门，路人乙从右手边进门，两人为了不相

撞，互相谦让，路人甲让路走右手边，路人乙也让路走左手边，结果是两人又相撞了。这种

情况，基本上谦让几次就解决了，因为人会交流啊。可是如果这种情况发生在编程世界了，

就有可能会一直没完没了地“谦让”下去，成为没有发生阻塞但依然执行不下去的“活

锁”。

解决“活锁”的方案很简单，谦让时，尝试等待一个随机的时间就可以了。例如上面的那个

例子，路人甲走左手边发现前面有人，并不是立刻换到右手边，而是等待一个随机的时间

后，再换到右手边；同样，路人乙也不是立刻切换路线，也是等待一个随机的时间再切换。

由于路人甲和路人乙等待的时间是随机的，所以同时相撞后再次相撞的概率就很低了。“等

待一个随机时间”的方案虽然很简单，却非常有效，Raft 这样知名的分布式一致性算法中

也用到了它。

那“饥饿”该怎么去理解呢？所谓“饥饿”指的是线程因无法访问所需资源而无法执行下去

的情况。“不患寡，而患不均”，如果线程优先级“不均”，在 CPU 繁忙的情况下，优先

级低的线程得到执行的机会很小，就可能发生线程“饥饿”；持有锁的线程，如果执行的时

间过长，也可能导致“饥饿”问题。

解决“饥饿”问题的方案很简单，有三种方案：一是保证资源充足，二是公平地分配资源，

三就是避免持有锁的线程长时间执行。这三个方案中，方案一和方案三的适用场景比较有

限，因为很多场景下，资源的稀缺性是没办法解决的，持有锁的线程执行的时间也很难缩

短。倒是方案二的适用场景相对来说更多一些。

那如何公平地分配资源呢？在并发编程里，主要是使用公平锁。所谓公平锁，是一种先来后

到的方案，线程的等待是有顺序的，排在等待队列前面的线程会优先获得资源。

性能问题

使用“锁”要非常小心，但是如果小心过度，也可能出“性能问题”。“锁”的过度使用可

能导致串行化的范围过大，这样就不能够发挥多线程的优势了，而我们之所以使用多线程搞

并发程序，为的就是提升性能。

所以我们要尽量减少串行，那串行对性能的影响是怎么样的呢？假设串行百分比是 5%，我

们用多核多线程相比单核单线程能提速多少呢？

有个阿姆达尔（Amdahl）定律，代表了处理器并行运算之后效率提升的能力，它正好可以

解决这个问题，具体公式如下：

公式里的 n 可以理解为 CPU 的核数，p 可以理解为并行百分比，那（1-p）就是串行百分

比了，也就是我们假设的 5%。我们再假设 CPU 的核数（也就是 n）无穷大，那加速比 S

的极限就是 20。也就是说，如果我们的串行率是 5%，那么我们无论采用什么技术，最高

也就只能提高 20 倍的性能。

所以使用锁的时候一定要关注对性能的影响。 那怎么才能避免锁带来的性能问题呢？这个

问题很复杂，Java SDK 并发包里之所以有那么多东西，有很大一部分原因就是要提升在某

个特定领域的性能。

不过从方案层面，我们可以这样来解决这个问题。

第一，既然使用锁会带来性能问题，那最好的方案自然就是使用无锁的算法和数据结构了。

在这方面有很多相关的技术，例如线程本地存储 (Thread Local Storage, TLS)、写入时复

制 (Copy-on-write)、乐观锁等；Java 并发包里面的原子类也是一种无锁的数据结构；

Disruptor 则是一个无锁的内存队列，性能都非常好……

第二，减少锁持有的时间。互斥锁本质上是将并行的程序串行化，所以要增加并行度，一定

要减少持有锁的时间。这个方案具体的实现技术也有很多，例如使用细粒度的锁，一个典型

的例子就是 Java 并发包里的 ConcurrentHashMap，它使用了所谓分段锁的技术（这个技

术后面我们会详细介绍）；还可以使用读写锁，也就是读是无锁的，只有写的时候才会互

斥。

性能方面的度量指标有很多，我觉得有三个指标非常重要，就是：吞吐量、延迟和并发量。

1. 吞吐量：指的是单位时间内能处理的请求数量。吞吐量越高，说明性能越好。

2. 延迟：指的是从发出请求到收到响应的时间。延迟越小，说明性能越好。

S = 1

(1−p)+
p

n

3. 并发量：指的是能同时处理的请求数量，一般来说随着并发量的增加、延迟也会增加。

所以延迟这个指标，一般都会是基于并发量来说的。例如并发量是 1000 的时候，延迟

是 50 毫秒。

总结

并发编程是一个复杂的技术领域，微观上涉及到原子性问题、可见性问题和有序性问题，宏

观则表现为安全性、活跃性以及性能问题。

我们在设计并发程序的时候，主要是从宏观出发，也就是要重点关注它的安全性、活跃性以

及性能。安全性方面要注意数据竞争和竞态条件，活跃性方面需要注意死锁、活锁、饥饿等

问题，性能方面我们虽然介绍了两个方案，但是遇到具体问题，你还是要具体分析，根据特

定的场景选择合适的数据结构和算法。

要解决问题，首先要把问题分析清楚。同样，要写好并发程序，首先要了解并发程序相关的

问题，经过这 7 章的内容，相信你一定对并发程序相关的问题有了深入的理解，同时对并

发程序也一定心存敬畏，因为一不小心就出问题了。不过这恰恰也是一个很好的开始，因为

你已经学会了分析并发问题，然后解决并发问题也就不远了。

课后思考

Java 语言提供的 Vector 是一个线程安全的容器，有同学写了下面的代码，你看看是否存

在并发问题呢？

欢迎在留言区与我分享你的想法，也欢迎你在留言区记录你的思考过程。感谢阅读，如果你

觉得这篇文章对你有帮助的话，也欢迎把它分享给更多的朋友。

1

2

3

4

5

6

void addIfNotExist(Vector v,
 Object o){
 if(!v.contains(o)) {
 v.add(o);
 }
}

复制代码

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 06 | 用“等待-通知”机制优化循环等待

下一篇 08 | 管程：并发编程的万能钥匙

峰
2019-03-14

 37

vector是线程安全，指的是它方法单独执行的时候没有并发正确性问题，并不代表把它的
操作组合在一起问木有，而这个程序显然有老师讲的竞态条件问题。

展开

作者回复: 👍

虎虎❤

2019-03-14
 12

精选留言 (90)  写留言

老师讲的太好了。我没有并发的编程经验，但是可以看懂每一篇文章，也可以正确回答每
节课后的习题。我觉得这次跟对了人，觉得很有希望跟着老师学好并发。

但是，这样跟着学完课程就能学好并发编程吗？老师可以给些建议吗？除了跟着课程，我
还需要做些什么来巩固战果？老师能不能给加餐一篇学习方法，谢谢！ …
展开

作者回复: 能看懂说明基本功很扎实啊。你的建议我会考虑的。

易水南风
2019-03-15

 9

add10k的例子不明白，因为两个方法都已经加上锁了，同一个test对象应该不可能两个线
程同时执行吧？

作者回复: 同时执行，指的是同时被调用。被锁串行后，还是有问题

亮亮
2019-03-14

 8

void addIfNotExist(Vector v,
 Object o){
synchronized(v) {
 if(!v.contains(o)) {
 v.add(o); …
展开

作者回复: 对的

刘章周
2019-03-14

 7

contains和add之间不是原子操作，有可能重复添加。

展开

kaixiao7
2019-03-29

 5

老师，串行百分比一般怎么得出来呢（依据是什么）?

展开

作者回复: 你可以这么理解：临界区都是串行的，非临界区都是并行的，用单线程执行临界区的时

间/用单线程执行(临界区+非临界区)的时间就是串行百分比

Demter
2019-03-14

 5

老师说两个线程同时访问get()，所以可能返回1.但是两个线程不可能同时访问
get(),get（）上面有互斥锁啊，所以这个不是很懂啊

作者回复: 同时访问，被串行化后，一先一后，结果两个线程都得到1

ken
2019-03-14

 5

实例不是线程安全的，Vector容器虽然是安全的单这个安全的原子性范围紧紧是每个成员
方法。当需要调用多个方法来完成一个操作时Vector容器的原子性就适用了需要收到控制
原子性，可以通过在方法上加synchronize保证安全性原子性。

作者回复: 方法上加还不行

寒铁
2019-04-03

 4

add10K() 如果用synchronized修饰 应该就没有问题了吧？ get和set是synchronized不
能保证调用get和set之间的没有其他线程进入get和set，所以这是导致出错的根本原因。

展开

作者回复: 👍

飘呀飘的小...
2019-03-14

 4

Vector实现线程安全是通过给主要的写方法加了synchronized，类似contains这样的读方
法并没有synchronized，该题的问题就出在不是线程安全的contains方法，两个线程如果
同时执行到if(!v.contains(o)) 是可以都通过的，这时就会执行两次add方法，重复添加。
也就是老师说的竞态条件。

作者回复: 👍

hanmshasho...
2019-03-14

 4

ConcurrentHashMap 1.8后没有分段锁 syn + cas

展开

作者回复: 是这样，高手！

iron_man
2019-03-16

 3

关于活锁，看了老师举的例子还是不太明白。
死锁是多个线程互相持有彼此需要的资源，形成依赖循环。
活锁是多个线程类似死锁的情况下，同时释放掉自己已经获取的资源，然后同时获取另外
一种资源，又形成依赖循环，导致都不能执行下去？不知道总结的对不对，老师可否点评
一下？

展开

作者回复: 总结的对。就是同时放弃，然后又重试竞争，最后死循环在里面了。

探索无止境
2019-03-14

 2

吞吐量和并发量从文中描述的概念上来看，总觉得很像，具体该怎么区分？期待指点！

作者回复: 对于一台webserver，吞吐量一般指的是server每秒钟能处理多少请求；并发量指的是

有多少个客户端同时访问。

duff
2019-05-18

 1

「临界区串行，非临界区并行」 ，就很好理解，set（get（）） 符合操作时在并发场景下
的安全性问题了。

你只是看起...
2019-03-19

 1

void addIfNotExist(Vector v,
 Object o){
synchronized(v) {
 if(!v.contains(o)) {
 v.add(o); …
展开

作者回复: vector的地址不会变，只是个指针而已

李林杰
2019-03-17

 1

add10K例子中，set,get都是同一把锁，而且执行规则是set方法拿到锁之后，get方法再
次获取该锁，不存在两个线程同时执行get方法啊，请老师解答下

作者回复: 指的是方法被同时调用，不是先拿set的锁，是先拿get的锁。先计算参数，后调用方法

陈华应
2019-03-17

 1

老师这里说被串行化还是1，是不是可见性问题？先执行的线程的count最新值并没有对后
一个执行的可见啊

作者回复: 执行count=1，压根就没有读操作，哪里来的可见性问题？

王玉坤
2019-03-16

 1

老师，add10K()那块不是很懂，就算两个线程get()方法都读到0，他们在s调set()方法时因
为是同步方法，总会一前一后的，根据hapens-before原则，前面修改的值应该对后面可
见，为什么这个地方会出错呢？

展开

作者回复: 两个线程同时执行set(1){count=1}，即便有同步，写到内存里的值也是1

果然如此
2019-03-15

 1

问题是非线程安全的。
线程锁从两个方面考虑，一是颗粒度，二是被锁的对象。
 假设把锁加在addIfNotExist方法上虽然颗粒度达到了，但是多线程被锁的对象可能不是同
一个，所以还要调整锁定的对象。

不靠谱的琴...
2019-03-15

 1

void addIfNotExist(Vector v,
 Object o){
sync（o）{
 if(!v.contains(o)) {
 v.add(o); …
展开

作者回复: 我觉得锁v会更好

