
14 | Lock和Condition（上）：隐藏在并发包中的管程
2019-03-30 王宝令

Java并发编程实战 进入课程

讲述：王宝令
时长 11:03 大小 10.14M

Java SDK 并发包内容很丰富，包罗万象，但是我觉得最核心的还是其对管程的实现。因为

理论上利用管程，你几乎可以实现并发包里所有的工具类。在前面《08 | 管程：并发编程

的万能钥匙》中我们提到过在并发编程领域，有两大核心问题：一个是互斥，即同一时刻只

允许一个线程访问共享资源；另一个是同步，即线程之间如何通信、协作。这两大问题，管

程都是能够解决的。Java SDK 并发包通过 Lock 和 Condition 两个接口来实现管程，其

中 Lock 用于解决互斥问题，Condition 用于解决同步问题。

今天我们重点介绍 Lock 的使用，在介绍 Lock 的使用之前，有个问题需要你首先思考一

下：Java 语言本身提供的 synchronized 也是管程的一种实现，既然 Java 从语言层面已经

实现了管程了，那为什么还要在 SDK 里提供另外一种实现呢？难道 Java 标准委员会还能

同意“重复造轮子”的方案？很显然它们之间是有巨大区别的。那区别在哪里呢？如果能深

入理解这个问题，对你用好 Lock 帮助很大。下面我们就一起来剖析一下这个问题。





 下载APP 

https://time.geekbang.org/column/article/86089

再造管程的理由

你也许曾经听到过很多这方面的传说，例如在 Java 的 1.5 版本中，synchronized 性能不

如 SDK 里面的 Lock，但 1.6 版本之后，synchronized 做了很多优化，将性能追了上来，

所以 1.6 之后的版本又有人推荐使用 synchronized 了。那性能是否可以成为“重复造轮

子”的理由呢？显然不能。因为性能问题优化一下就可以了，完全没必要“重复造轮子”。

到这里，关于这个问题，你是否能够想出一条理由来呢？如果你细心的话，也许能想到一

点。那就是我们前面在介绍死锁问题的时候，提出了一个破坏不可抢占条件方案，但是这个

方案 synchronized 没有办法解决。原因是 synchronized 申请资源的时候，如果申请不

到，线程直接进入阻塞状态了，而线程进入阻塞状态，啥都干不了，也释放不了线程已经占

有的资源。但我们希望的是：

如果我们重新设计一把互斥锁去解决这个问题，那该怎么设计呢？我觉得有三种方案。

1. 能够响应中断。synchronized 的问题是，持有锁 A 后，如果尝试获取锁 B 失败，那么

线程就进入阻塞状态，一旦发生死锁，就没有任何机会来唤醒阻塞的线程。但如果阻塞

状态的线程能够响应中断信号，也就是说当我们给阻塞的线程发送中断信号的时候，能

够唤醒它，那它就有机会释放曾经持有的锁 A。这样就破坏了不可抢占条件了。

2. 支持超时。如果线程在一段时间之内没有获取到锁，不是进入阻塞状态，而是返回一个

错误，那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。

3. 非阻塞地获取锁。如果尝试获取锁失败，并不进入阻塞状态，而是直接返回，那这个线

程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。

这三种方案可以全面弥补 synchronized 的问题。到这里相信你应该也能理解了，这三个方

案就是“重复造轮子”的主要原因，体现在 API 上，就是 Lock 接口的三个方法。详情如

下：

对于“不可抢占”这个条件，占用部分资源的线程进一步申请其他资源时，

如果申请不到，可以主动释放它占有的资源，这样不可抢占这个条件就破坏

掉了。

1

2

3

4

// 支持中断的 API
void lockInterruptibly()
 throws InterruptedException;
// 支持超时的 API

复制代码

https://time.geekbang.org/column/article/85001

如何保证可见性

Java SDK 里面 Lock 的使用，有一个经典的范例，就是try{}finally{}，需要重点关注

的是在 finally 里面释放锁。这个范例无需多解释，你看一下下面的代码就明白了。但是有

一点需要解释一下，那就是可见性是怎么保证的。你已经知道 Java 里多线程的可见性是通

过 Happens-Before 规则保证的，而 synchronized 之所以能够保证可见性，也是因为有

一条 synchronized 相关的规则：synchronized 的解锁 Happens-Before 于后续对这个锁

的加锁。那 Java SDK 里面 Lock 靠什么保证可见性呢？例如在下面的代码中，线程 T1 对

value 进行了 +=1 操作，那后续的线程 T2 能够看到 value 的正确结果吗？

答案必须是肯定的。Java SDK 里面锁的实现非常复杂，这里我就不展开细说了，但是原理

还是需要简单介绍一下：它是利用了 volatile 相关的 Happens-Before 规则。Java SDK

里面的 ReentrantLock，内部持有一个 volatile 的成员变量 state，获取锁的时候，会读写

state 的值；解锁的时候，也会读写 state 的值（简化后的代码如下面所示）。也就是说，

在执行 value+=1 之前，程序先读写了一次 volatile 变量 state，在执行 value+=1 之

后，又读写了一次 volatile 变量 state。根据相关的 Happens-Before 规则：

5

6

7

8

boolean tryLock(long time, TimeUnit unit)
 throws InterruptedException;
// 支持非阻塞获取锁的 API
boolean tryLock();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

class X {
 private final Lock rtl =
 new ReentrantLock();
 int value;
 public void addOne() {
 // 获取锁

 rtl.lock();
 try {
 value+=1;
 } finally {
 // 保证锁能释放

 rtl.unlock();
 }
 }
}

复制代码

1. 顺序性规则：对于线程 T1，value+=1 Happens-Before 释放锁的操作 unlock()；

2. volatile 变量规则：由于 state = 1 会先读取 state，所以线程 T1 的 unlock() 操作

Happens-Before 线程 T2 的 lock() 操作；

3. 传递性规则：线程 T1 的 value+=1 Happens-Before 线程 T2 的 lock() 操作。

所以说，后续线程 T2 能够看到 value 的正确结果。如果你觉得理解起来还有点困难，建议

你重温一下前面我们讲过的《02 | Java 内存模型：看 Java 如何解决可见性和有序性问题》

里面的相关内容。

什么是可重入锁

如果你细心观察，会发现我们创建的锁的具体类名是 ReentrantLock，这个翻译过来叫可

重入锁，这个概念前面我们一直没有介绍过。所谓可重入锁，顾名思义，指的是线程可以重

复获取同一把锁。例如下面代码中，当线程 T1 执行到 ① 处时，已经获取到了锁 rtl ，当在

① 处调用 get() 方法时，会在 ② 再次对锁 rtl 执行加锁操作。此时，如果锁 rtl 是可重入

的，那么线程 T1 可以再次加锁成功；如果锁 rtl 是不可重入的，那么线程 T1 此时会被阻

塞。

除了可重入锁，可能你还听说过可重入函数，可重入函数怎么理解呢？指的是线程可以重复

调用？显然不是，所谓可重入函数，指的是多个线程可以同时调用该函数，每个线程都能得

到正确结果；同时在一个线程内支持线程切换，无论被切换多少次，结果都是正确的。多线

程可以同时执行，还支持线程切换，这意味着什么呢？线程安全啊。所以，可重入函数是线

程安全的。

1

2

3

4

5

6

7

8

9

10

11

12

13

class SampleLock {
 volatile int state;
 // 加锁

 lock() {
 // 省略代码无数

 state = 1;
 }
 // 解锁

 unlock() {
 // 省略代码无数

 state = 0;
 }
}

复制代码

https://time.geekbang.org/column/article/84017

公平锁与非公平锁

在使用 ReentrantLock 的时候，你会发现 ReentrantLock 这个类有两个构造函数，一个是

无参构造函数，一个是传入 fair 参数的构造函数。fair 参数代表的是锁的公平策略，如果传

入 true 就表示需要构造一个公平锁，反之则表示要构造一个非公平锁。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

class X {
 private final Lock rtl =
 new ReentrantLock();
 int value;
 public int get() {
 // 获取锁

 rtl.lock(); ②
 try {
 return value;
 } finally {
 // 保证锁能释放

 rtl.unlock();
 }
 }
 public void addOne() {
 // 获取锁

 rtl.lock();
 try {
 value = 1 + get(); ①
 } finally {
 // 保证锁能释放

 rtl.unlock();
 }
 }
}

复制代码

1

2

3

4

5

6

7

8

9

// 无参构造函数：默认非公平锁

public ReentrantLock() {
 sync = new NonfairSync();
}
// 根据公平策略参数创建锁

public ReentrantLock(boolean fair){
 sync = fair ? new FairSync()
 : new NonfairSync();
}

复制代码

在前面《08 | 管程：并发编程的万能钥匙》中，我们介绍过入口等待队列，锁都对应着一

个等待队列，如果一个线程没有获得锁，就会进入等待队列，当有线程释放锁的时候，就需

要从等待队列中唤醒一个等待的线程。如果是公平锁，唤醒的策略就是谁等待的时间长，就

唤醒谁，很公平；如果是非公平锁，则不提供这个公平保证，有可能等待时间短的线程反而

先被唤醒。

用锁的最佳实践

你已经知道，用锁虽然能解决很多并发问题，但是风险也是挺高的。可能会导致死锁，也可

能影响性能。这方面有是否有相关的最佳实践呢？有，还很多。但是我觉得最值得推荐的是

并发大师 Doug Lea《Java 并发编程：设计原则与模式》一书中，推荐的三个用锁的最佳

实践，它们分别是：

这三条规则，前两条估计你一定会认同，最后一条你可能会觉得过于严苛。但是我还是倾向

于你去遵守，因为调用其他对象的方法，实在是太不安全了，也许“其他”方法里面有线程

sleep() 的调用，也可能会有奇慢无比的 I/O 操作，这些都会严重影响性能。更可怕的

是，“其他”类的方法可能也会加锁，然后双重加锁就可能导致死锁。

并发问题，本来就难以诊断，所以你一定要让你的代码尽量安全，尽量简单，哪怕有一点可

能会出问题，都要努力避免。

总结

Java SDK 并发包里的 Lock 接口里面的每个方法，你可以感受到，都是经过深思熟虑的。

除了支持类似 synchronized 隐式加锁的 lock() 方法外，还支持超时、非阻塞、可中断的

方式获取锁，这三种方式为我们编写更加安全、健壮的并发程序提供了很大的便利。希望你

以后在使用锁的时候，一定要仔细斟酌。

除了并发大师 Doug Lea 推荐的三个最佳实践外，你也可以参考一些诸如：减少锁的持有

时间、减小锁的粒度等业界广为人知的规则，其实本质上它们都是相通的，不过是在该加锁

的地方加锁而已。你可以自己体会，自己总结，最终总结出自己的一套最佳实践来。

1. 永远只在更新对象的成员变量时加锁

2. 永远只在访问可变的成员变量时加锁

3. 永远不在调用其他对象的方法时加锁

https://time.geekbang.org/column/article/86089

课后思考

你已经知道 tryLock() 支持非阻塞方式获取锁，下面这段关于转账的程序就使用到了

tryLock()，你来看看，它是否存在死锁问题呢？

欢迎在留言区与我分享你的想法，也欢迎你在留言区记录你的思考过程。感谢阅读，如果你

觉得这篇文章对你有帮助的话，也欢迎把它分享给更多的朋友。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

class Account {
 private int balance;
 private final Lock lock
 = new ReentrantLock();
 // 转账

 void transfer(Account tar, int amt){
 while (true) {
 if(this.lock.tryLock()) {
 try {
 if (tar.lock.tryLock()) {
 try {
 this.balance -= amt;
 tar.balance += amt;
 } finally {
 tar.lock.unlock();
 }
 }//if
 } finally {
 this.lock.unlock();
 }
 }//if
 }//while
 }//transfer
}

复制代码

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 13 | 理论基础模块热点问题答疑

下一篇 15 | Lock和Condition（下）：Dubbo如何用管程实现异步转同步？

　
2019-03-30

 21

我觉得:不会出现死锁，但会出现活锁

展开

作者回复: 👍

xiyi
2019-03-30

 15

存在活锁。这个例子可以稍微改下，成功转账后应该跳出循环。加个随机重试时间避免活

精选留言 (44)  写留言

锁

作者回复: 👍👍👍

bing
2019-03-30

 13

文中说的公平锁和非公平锁，是不按照排队的顺序被唤醒，我记得非公平锁的场景应该是
线程释放锁之后，如果来了一个线程获取锁，他不必去排队直接获取到，应该不会入队
吧。获取不到才进吧

展开

作者回复: 是的，高手👍👍👍

刘晓林
2019-03-30

 8

1.这个是个死循环啊，有锁没群，都出不来。
2.如果抛开死循环，也会造成活锁，状态不稳定。当然这个也看场景，假如冲突窗口很
小，又在单机多核的话，活锁的可能性还是很小的，可以接受

展开

作者回复: 👍👍👍

Q宝的宝
2019-03-30

 7

老师，本文在讲述如何保证可见性时，分析示例--“线程 T1 对 value 进行了 +=1 操作
后，后续的线程 T2 能否看到 value 的正确结果？“时，提到三条Happen-Before规则，
这里在解释第2条和第3条规则时，似乎说反了，正确的应该是，根据volatile变量规则，线
程T1的unlock()操作Happen-Before于线程T2的lock()操作，所以，根据传递性规则，线
程 T1 的 value+=1操作Happen-Before于线程T2的lock()操作。请老师指正。

展开

作者回复: 火眼金睛👍👍👍👍，这就改过来

小华
2019-03-30

 6

有可能活锁，A，B两账户相互转账，各自持有自己lock的锁，都一直在尝试获取对方的
锁，形成了活锁

作者回复: 👍

羊三@XCoin...
2019-03-30

 6

用非阻塞的方式去获取锁，破坏了第五章所说的产生死锁的四个条件之一的“不可抢
占”。所以不会产生死锁。

用锁的最佳实践，第三个“永远不在调用其他对象的方法时加锁”，我理解其实是在工程
规范上避免可能出现的锁相关问题。

展开

作者回复: 是的

姜戈
2019-03-30

 5

我也觉得是存在活锁，而非死锁。存在这种可能性：互相持有各自的锁，发现需要的对方
的锁都被对方持有，就会释放当前持有的锁，导致大家都在不停持锁，释放锁，但事情还
没做。当然还是会存在转账成功的情景，不过效率低下。我觉得此时需要引入Condition，
协调两者同步处理转账！

作者回复: 用condition会更复杂

Liam
2019-03-30

 2

1 不会出现死锁，因为不存在阻塞的情况
2 线程较多的情况会导致部分线程始终无法获取到锁，导致活锁

作者回复: 👍

海鸿
2019-03-30

 2

突然有个问题：
cpu层面的原子性是单条cpu指令。
java层面的互斥（管程）保证了原子性。
这两个原子性意义应该不一样吧？
我的理解是cpu的原子性是不受线程调度影响，指令要不执行了，要么没执行。而java层…
展开

作者回复: 对

朱小豪
2019-03-30

 2

应该是少了个break跳出循环，然后这个例子是会产生死锁的，因为满足了死锁产生的条
件。

作者回复: 加了break，也会有活锁问题，不加的话我觉得也是活锁，因为锁都会释放

朱小豪
2019-03-30

 2

本文最后的例子，不明白为什么要用while true而且没有跳出循环，这不是死循环吗

tdytaylo...
2019-05-15

 1

老师，关于这个问题，我思考之后觉得不会出现死锁，但是没看出为什么会出现活锁

作者回复: 想想对面相遇的两个人互相谦让的例子看看

尹圣
2019-04-11

 1

public class Main {

 static volatile int state = 0;

 public static long account = 0; …
展开

作者回复: 不知道你说的不安全是指哪里，state 你只是写了，没有读，而且account++也不是互

斥的操作。

java并发包里用volatile保证可见性，还用aqs实现了互斥。保证线程安全不是这么简单的。

linqw
2019-04-07

 1

class Account {
 private int balance;
 private final Lock lock
 = new ReentrantLock();
 // 转账 …
展开

作者回复: 点个大大的赞！不过还可以再优化一下，如果阻塞在tar.lock.tryLock上一段时间，

this.lock是不能释放的。

右耳听海
2019-03-31

 1

请问state=1先读取是怎么得出来的，还有lock和unlock的方法对state都是写操作，怎么
用到valiate规则的，valiate规则不是读取操作先与写操作吗，这个地方两个都是写操作

展开

作者回复: =1之前有一段代码会查看状态是否为0，显然不能三七二十一直接设置

JackJin
2019-03-31

 1

老师您好：
 那在解决这个活锁问题时，是在获取其他对象锁前面（tar.lock.tryLock()）加个随机线程
睡眠时间？还是《java编程：设计原则与模式》中的第三条，永远不在调用其他对象时加
锁；去掉（tar.lock.tryLock()） 这个锁来解决活锁呢？

作者回复: 加个随机线程睡眠时间就可以了

alias cd=...
2019-03-31

 1

不会死锁因为，打破了不释放的原则。

展开

JGOS
2019-06-03



老师 如果线程t2 , 不加锁直接读value,是不是会读到旧数据?

展开

假装自己不...
2019-05-30



if(this.lock.tryLock()) {
 try {
 this.balance -= amt;
 if (tar.lock.tryLock()) {
 try { …
展开

