
24 | CompletableFuture：异步编程没那么难
2019-04-23 王宝令

Java并发编程实战 进入课程

讲述：王宝令
时长 10:53 大小 9.98M

前面我们不止一次提到，用多线程优化性能，其实不过就是将串行操作变成并行操作。如果

仔细观察，你还会发现在串行转换成并行的过程中，一定会涉及到异步化，例如下面的示例

代码，现在是串行的，为了提升性能，我们得把它们并行化，那具体实施起来该怎么做呢？

还是挺简单的，就像下面代码中这样，创建两个子线程去执行就可以了。你会发现下面的并

行方案，主线程无需等待 doBizA() 和 doBizB() 的执行结果，也就是说 doBizA() 和



1

2

3

// 以下两个方法都是耗时操作

doBizA();
doBizB();

复制代码



 下载APP 

doBizB() 两个操作已经被异步化了。

异步化，是并行方案得以实施的基础，更深入地讲其实就是：利用多线程优化性能这个核心

方案得以实施的基础。看到这里，相信你应该就能理解异步编程最近几年为什么会大火了，

因为优化性能是互联网大厂的一个核心需求啊。Java 在 1.8 版本提供了

CompletableFuture 来支持异步编程，CompletableFuture 有可能是你见过的最复杂的工

具类了，不过功能也着实让人感到震撼。

CompletableFuture 的核心优势

为了领略 CompletableFuture 异步编程的优势，这里我们用 CompletableFuture 重新实

现前面曾提及的烧水泡茶程序。首先还是需要先完成分工方案，在下面的程序中，我们分了

3 个任务：任务 1 负责洗水壶、烧开水，任务 2 负责洗茶壶、洗茶杯和拿茶叶，任务 3 负

责泡茶。其中任务 3 要等待任务 1 和任务 2 都完成后才能开始。这个分工如下图所示。

1

2

3

4

new Thread(()->doBizA())
 .start();
new Thread(()->doBizB())
 .start();

复制代码

烧水泡茶分工方案

下面是代码实现，你先略过 runAsync()、supplyAsync()、thenCombine() 这些不太熟悉

的方法，从大局上看，你会发现：

1. 无需手工维护线程，没有繁琐的手工维护线程的工作，给任务分配线程的工作也不需要

我们关注；

2. 语义更清晰，例如 f3 = f1.thenCombine(f2, ()->{}) 能够清晰地表述“任务 3

要等待任务 1 和任务 2 都完成后才能开始”；

3. 代码更简练并且专注于业务逻辑，几乎所有代码都是业务逻辑相关的。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

// 任务 1：洗水壶 -> 烧开水

CompletableFuture<Void> f1 =
 CompletableFuture.runAsync(()->{
 System.out.println("T1: 洗水壶...");
 sleep(1, TimeUnit.SECONDS);

 System.out.println("T1: 烧开水...");
 sleep(15, TimeUnit.SECONDS);
});
// 任务 2：洗茶壶 -> 洗茶杯 -> 拿茶叶

CompletableFuture<String> f2 =
 CompletableFuture.supplyAsync(()->{
 System.out.println("T2: 洗茶壶...");
 sleep(1, TimeUnit.SECONDS);

 System.out.println("T2: 洗茶杯...");
 sleep(2, TimeUnit.SECONDS);

 System.out.println("T2: 拿茶叶...");
 sleep(1, TimeUnit.SECONDS);
 return " 龙井 ";
});
// 任务 3：任务 1 和任务 2 完成后执行：泡茶

CompletableFuture<String> f3 =
 f1.thenCombine(f2, (__, tf)->{
 System.out.println("T1: 拿到茶叶:" + tf);
 System.out.println("T1: 泡茶...");
 return " 上茶:" + tf;
 });
// 等待任务 3 执行结果

System.out.println(f3.join());

void sleep(int t, TimeUnit u) {
 try {

复制代码

领略 CompletableFuture 异步编程的优势之后，下面我们详细介绍 CompletableFuture

的使用，首先是如何创建 CompletableFuture 对象。

创建 CompletableFuture 对象

创建 CompletableFuture 对象主要靠下面代码中展示的这 4 个静态方法，我们先看前两

个。在烧水泡茶的例子中，我们已经使用了runAsync(Runnable runnable)和

supplyAsync(Supplier<U> supplier)，它们之间的区别是：Runnable 接口的

run() 方法没有返回值，而 Supplier 接口的 get() 方法是有返回值的。

前两个方法和后两个方法的区别在于：后两个方法可以指定线程池参数。

默认情况下 CompletableFuture 会使用公共的 ForkJoinPool 线程池，这个线程池默认创

建的线程数是 CPU 的核数（也可以通过 JVM option:-

Djava.util.concurrent.ForkJoinPool.common.parallelism 来设置 ForkJoinPool 线程池

的线程数）。如果所有 CompletableFuture 共享一个线程池，那么一旦有任务执行一些很

慢的 I/O 操作，就会导致线程池中所有线程都阻塞在 I/O 操作上，从而造成线程饥饿，进

而影响整个系统的性能。所以，强烈建议你要根据不同的业务类型创建不同的线程池，以避

免互相干扰。

35

36

37

38

39

40

41

42

43

44

45

46

 u.sleep(t);
 }catch(InterruptedException e){}
}
// 一次执行结果：

T1: 洗水壶...
T2: 洗茶壶...
T1: 烧开水...
T2: 洗茶杯...
T2: 拿茶叶...
T1: 拿到茶叶: 龙井

T1: 泡茶...
上茶: 龙井

1

2

3

4

5

// 使用默认线程池

static CompletableFuture<Void>
 runAsync(Runnable runnable)
static <U> CompletableFuture<U>
 supplyAsync(Supplier<U> supplier)

复制代码

创建完 CompletableFuture 对象之后，会自动地异步执行 runnable.run() 方法或者

supplier.get() 方法，对于一个异步操作，你需要关注两个问题：一个是异步操作什么时候

结束，另一个是如何获取异步操作的执行结果。因为 CompletableFuture 类实现了

Future 接口，所以这两个问题你都可以通过 Future 接口来解决。另外，

CompletableFuture 类还实现了 CompletionStage 接口，这个接口内容实在是太丰富

了，在 1.8 版本里有 40 个方法，这些方法我们该如何理解呢？

如何理解 CompletionStage 接口

我觉得，你可以站在分工的角度类比一下工作流。任务是有时序关系的，比如有串行关系、

并行关系、汇聚关系等。这样说可能有点抽象，这里还举前面烧水泡茶的例子，其中洗水壶

和烧开水就是串行关系，洗水壶、烧开水和洗茶壶、洗茶杯这两组任务之间就是并行关系，

而烧开水、拿茶叶和泡茶就是汇聚关系。

串行关系

并行关系

6

7

8

9

10

// 可以指定线程池
static CompletableFuture<Void>
 runAsync(Runnable runnable, Executor executor)
static <U> CompletableFuture<U>
 supplyAsync(Supplier<U> supplier, Executor executor)

汇聚关系

CompletionStage 接口可以清晰地描述任务之间的这种时序关系，例如前面提到的 f3 =

f1.thenCombine(f2, ()->{}) 描述的就是一种汇聚关系。烧水泡茶程序中的汇聚关系

是一种 AND 聚合关系，这里的 AND 指的是所有依赖的任务（烧开水和拿茶叶）都完成后

才开始执行当前任务（泡茶）。既然有 AND 聚合关系，那就一定还有 OR 聚合关系，所谓

OR 指的是依赖的任务只要有一个完成就可以执行当前任务。

在编程领域，还有一个绕不过去的山头，那就是异常处理，CompletionStage 接口也可以

方便地描述异常处理。

下面我们就来一一介绍，CompletionStage 接口如何描述串行关系、AND 聚合关系、OR

聚合关系以及异常处理。

1. 描述串行关系

CompletionStage 接口里面描述串行关系，主要是 thenApply、thenAccept、thenRun

和 thenCompose 这四个系列的接口。

thenApply 系列函数里参数 fn 的类型是接口 Function<T, R>，这个接口里与

CompletionStage 相关的方法是 R apply(T t)，这个方法既能接收参数也支持返回

值，所以 thenApply 系列方法返回的是CompletionStage<R>。

而 thenAccept 系列方法里参数 consumer 的类型是接口Consumer<T>，这个接口里与

CompletionStage 相关的方法是 void accept(T t)，这个方法虽然支持参数，但却不

支持回值，所以 thenAccept 系列方法返回的是CompletionStage<Void>。

thenRun 系列方法里 action 的参数是 Runnable，所以 action 既不能接收参数也不支持

返回值，所以 thenRun 系列方法返回的也是CompletionStage<Void>。

这些方法里面 Async 代表的是异步执行 fn、consumer 或者 action。其中，需要你注意的

是 thenCompose 系列方法，这个系列的方法会新创建出一个子流程，最终结果和

thenApply 系列是相同的。

通过下面的示例代码，你可以看一下 thenApply() 方法是如何使用的。首先通过

supplyAsync() 启动一个异步流程，之后是两个串行操作，整体看起来还是挺简单的。不

过，虽然这是一个异步流程，但任务①②③却是串行执行的，②依赖①的执行结果，③依赖

②的执行结果。

2. 描述 AND 汇聚关系

CompletionStage 接口里面描述 AND 汇聚关系，主要是 thenCombine、

thenAcceptBoth 和 runAfterBoth 系列的接口，这些接口的区别也是源自 fn、

consumer、action 这三个核心参数不同。它们的使用你可以参考上面烧水泡茶的实现程

序，这里就不赘述了。

1

2

3

4

5

6

7

8

CompletionStage<R> thenApply(fn);
CompletionStage<R> thenApplyAsync(fn);
CompletionStage<Void> thenAccept(consumer);
CompletionStage<Void> thenAcceptAsync(consumer);
CompletionStage<Void> thenRun(action);
CompletionStage<Void> thenRunAsync(action);
CompletionStage<R> thenCompose(fn);
CompletionStage<R> thenComposeAsync(fn);

复制代码

1

2

3

4

5

6

7

8

9

CompletableFuture<String> f0 =
 CompletableFuture.supplyAsync(
 () -> "Hello World") //①
 .thenApply(s -> s + " QQ") //②
 .thenApply(String::toUpperCase);//③

System.out.println(f0.join());
// 输出结果

HELLO WORLD QQ

复制代码

复制代码

3. 描述 OR 汇聚关系

CompletionStage 接口里面描述 OR 汇聚关系，主要是 applyToEither、acceptEither 和

runAfterEither 系列的接口，这些接口的区别也是源自 fn、consumer、action 这三个核

心参数不同。

下面的示例代码展示了如何使用 applyToEither() 方法来描述一个 OR 汇聚关系。

1

2

3

4

5

6

CompletionStage<R> thenCombine(other, fn);
CompletionStage<R> thenCombineAsync(other, fn);
CompletionStage<Void> thenAcceptBoth(other, consumer);
CompletionStage<Void> thenAcceptBothAsync(other, consumer);
CompletionStage<Void> runAfterBoth(other, action);
CompletionStage<Void> runAfterBothAsync(other, action);

1

2

3

4

5

6

CompletionStage applyToEither(other, fn);
CompletionStage applyToEitherAsync(other, fn);
CompletionStage acceptEither(other, consumer);
CompletionStage acceptEitherAsync(other, consumer);
CompletionStage runAfterEither(other, action);
CompletionStage runAfterEitherAsync(other, action);

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

CompletableFuture<String> f1 =
 CompletableFuture.supplyAsync(()->{
 int t = getRandom(5, 10);
 sleep(t, TimeUnit.SECONDS);
 return String.valueOf(t);
});

CompletableFuture<String> f2 =
 CompletableFuture.supplyAsync(()->{
 int t = getRandom(5, 10);
 sleep(t, TimeUnit.SECONDS);
 return String.valueOf(t);
});

CompletableFuture<String> f3 =
 f1.applyToEither(f2,s -> s);

复制代码

4. 异常处理

虽然上面我们提到的 fn、consumer、action 它们的核心方法都不允许抛出可检查异常，

但是却无法限制它们抛出运行时异常，例如下面的代码，执行 7/0 就会出现除零错误这个

运行时异常。非异步编程里面，我们可以使用 try{}catch{}来捕获并处理异常，那在异步编

程里面，异常该如何处理呢？

CompletionStage 接口给我们提供的方案非常简单，比 try{}catch{}还要简单，下面是相

关的方法，使用这些方法进行异常处理和串行操作是一样的，都支持链式编程方式。

下面的示例代码展示了如何使用 exceptionally() 方法来处理异常，exceptionally() 的使用

非常类似于 try{}catch{}中的 catch{}，但是由于支持链式编程方式，所以相对更简单。既然

有 try{}catch{}，那就一定还有 try{}finally{}，whenComplete() 和 handle() 系列方法就类

似于 try{}finally{}中的 finally{}，无论是否发生异常都会执行 whenComplete() 中的回调

函数 consumer 和 handle() 中的回调函数 fn。whenComplete() 和 handle() 的区别在于

whenComplete() 不支持返回结果，而 handle() 是支持返回结果的。

18 System.out.println(f3.join());

1

2

3

4

5

CompletableFuture<Integer>
 f0 = CompletableFuture.
 .supplyAsync(()->(7/0))
 .thenApply(r->r*10);
System.out.println(f0.join());

复制代码

1

2

3

4

5

CompletionStage exceptionally(fn);
CompletionStage<R> whenComplete(consumer);
CompletionStage<R> whenCompleteAsync(consumer);
CompletionStage<R> handle(fn);
CompletionStage<R> handleAsync(fn);

复制代码

复制代码

总结

曾经一提到异步编程，大家脑海里都会随之浮现回调函数，例如在 JavaScript 里面异步问

题基本上都是靠回调函数来解决的，回调函数在处理异常以及复杂的异步任务关系时往往力

不从心，对此业界还发明了个名词：回调地狱（Callback Hell）。应该说在前些年，异步

编程还是声名狼藉的。

不过最近几年，伴随着ReactiveX的发展（Java 语言的实现版本是 RxJava），回调地狱已

经被完美解决了，异步编程已经慢慢开始成熟，Java 语言也开始官方支持异步编程：在

1.8 版本提供了 CompletableFuture，在 Java 9 版本则提供了更加完备的 Flow API，异

步编程目前已经完全工业化。因此，学好异步编程还是很有必要的。

CompletableFuture 已经能够满足简单的异步编程需求，如果你对异步编程感兴趣，可以

重点关注 RxJava 这个项目，利用 RxJava，即便在 Java 1.6 版本也能享受异步编程的乐

趣。

课后思考

创建采购订单的时候，需要校验一些规则，例如最大金额是和采购员级别相关的。有同学利

用 CompletableFuture 实现了这个校验的功能，逻辑很简单，首先是从数据库中把相关规

则查出来，然后执行规则校验。你觉得他的实现是否有问题呢？

1

2

3

4

5

6

CompletableFuture<Integer>
 f0 = CompletableFuture
 .supplyAsync(()->7/0))
 .thenApply(r->r*10)
 .exceptionally(e->0);
System.out.println(f0.join());

1

2

3

4

5

6

7

8

9

// 采购订单

PurchersOrder po;
CompletableFuture<Boolean> cf =
 CompletableFuture.supplyAsync(()->{
 // 在数据库中查询规则

 return findRuleByJdbc();
 }).thenApply(r -> {
 // 规则校验

 return check(po, r);

复制代码

http://reactivex.io/intro.html

欢迎在留言区与我分享你的想法，也欢迎你在留言区记录你的思考过程。感谢阅读，如果你

觉得这篇文章对你有帮助的话，也欢迎把它分享给更多的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

10

11

});
Boolean isOk = cf.join();

上一篇 23 | Future：如何用多线程实现最优的“烧水泡茶”程序？

下一篇 25 | CompletionService：如何批量执行异步任务？

袁阳
2019-04-23

 12

思考题:
1，读数据库属于io操作，应该放在单独线程池，避免线程饥饿
2，异常未处理

精选留言 (35)  写留言

展开

作者回复: 👍👍

密码123456
2019-04-23

 8

我在想一个问题，明明是串行过程，直接写就可以了。为什么还要用异步去实现串行？

作者回复: 这个简单场景没必要用

青莲
2019-04-23

 6

1.查数据库属于io操作，用定制线程池
2.查出来的结果做为下一步处理的条件，若结果为空呢，没有对应处理
3.缺少异常处理机制

展开

作者回复: 👍👍

刘晓林
2019-04-23

 3

思考题：
1.没有进行异常处理，
2.要指定专门的线程池做数据库查询
3.如果检查和查询都比较耗时，那么应该像之前的对账系统一样，采用生产者和消费者模
式，让上一次的检查和下一次的查询并行起来。 …
展开

作者回复: 思考题考虑的很全面👍

tyul
2019-04-23

 2

回答「密码123456」：CompletableFuture 在执行的过程中可以不阻塞主线程，支持
runAsync、anyOf、allOf 等操作，等某个时间点需要异步执行的结果时再阻塞获取。

展开

作者回复: 是的，复杂场景就能体现出优势了

笃行之
2019-04-29

 1

”如果所有 CompletableFuture 共享一个线程池，那么一旦有任务执行一些很慢的 I/O
操作，就会导致线程池中所有线程都阻塞在 I/O 操作上，从而造成线程饥饿，进而影响整
个系统的性能。”老师，阻塞在io上和是不是在一个线程池没关系吧？

作者回复: 有关系，如果系统就一个线程池，里面的线程都阻塞在io上，那么系统其他的任务都需

要等待。如果其他任务有自己的线程池，就没有问题。

发条橙子 ...
2019-04-24

 1

老师 ，我有个疑问。 completableFuture 中各种关系（并行、串行、聚合），实际上就
覆盖了各种需求场景。 例如 ： 线程A 等待 线程B 或者 线程C 等待 线程A和B 。

我们之前讲的并发包里面 countdownLatch , 或者 threadPoolExecutor 和future 就是来
解决这些关系场景的 ， 那有了 completableFuture 这个类 ，是不是以后有需求都优先…
展开

作者回复: 我觉得可以优先使用CompletableFuture，当然前提是你的jdk是1.8

易儿易
2019-04-23

 1

老师我有一个问题：在描述串行关系时，为什么参数没有other？这让我觉得并不是在描述
两个子任务的串行关系，而是给第一个子任务追加了一个类似“回调方法”fn等……而并行
关系和汇聚关系则很明确的出现了other……

展开

作者回复: 你也可以理解成给第一个子任务追加了一个类似“回调方法”。回调不也是在第一个任

务执行完才回调吗？所以也是串行的。都是一回事，你怎么理解起来顺手就怎么理解就可以了。

刘晓林
2019-04-23

 1

我觉得既然都讲到CompletableFuture了，老师是不是有必要不一章ForkJoinPool呀？毕
竟，ForkJoinPool和ThreadPoolExecutor还是有很多不一样的。谢谢老师

展开

作者回复: 后面有介绍

linqw
2019-04-23

 1

课后习题，规则校验依赖于数据库中的规则，如果规则不是共用的，直接放在一个内部，
如果规则是共用，可以在主线程进行规则获取，异步校验规则。thenApply会重新创建一
个CompletableFuture
PurchersOrder po;
CompletableFuture<Boolean> cf = …
展开

木木匠
2019-04-23

 1

我觉得课后思考题中，既然是先查规则再校验，这本来就是一个串行化的动作，为什么要
异步呢？用异步的意义在哪？

Michael
2019-05-23



老师 你好，对文章点赞这种功能异步如何实现？

展开

作者回复: 喊一嗓子，让朋友点

大卫
2019-05-19



王老师，您好。
目前业务场景我觉得适合用completablefuture，一个详情页，动态接口，会调用多个上
游接口做聚合，部分接口之间有依赖。
这些上游分别是不同业务线的，比如搜索、推荐、会员、用户、其他等。
问题1:您建议是每个业务线都是要建立独立的线程池？还是说几个业务线一个线程池? …
展开

xuery
2019-05-15



Completable使用注意事项：1.不同的业务场景最好指定单独的线程池，避免相互影响
2.记得考虑异常处理

展开

佑儿
2019-05-10



带有asyn的方法是异步执行，这里的异步是不在当前线程中执行？ 比较困惑

展开

作者回复: 不是在调用方法的线程中执行的，这样是不是更容易理解

Sunqc
2019-04-30



评论区那个从多张表查数据然后验证保存到一张表。分页每次次读1000条数据的话
1.采用线程池+future，每次提交的任务结果保存到一个队列里，然后执行任务取队列结果
执行保存；或者不采用队列
2.采用completionservice
3.就是这节的主题completionfuture …
展开

aroll
2019-04-29



嗯对，我以log的打印为准了，log打印结束并不代表主线程已经结束了，还是有个时间
差，这个时候子线程还会运行一段时间，感谢老师

作者回复: 找到原因就好

aroll
2019-04-27



是的，启动前设置成守护线程了，就像这样
public static void main(String[] args){
 Thread thread = new Thread(new Runnable() {
 @Override
 public void run() { …
展开

作者回复: 我把sleep部分去掉，for改成while true，主线程结束，子线程还是能结束的。是不是

log的锅？

aroll
2019-04-26



老师想请教您一个问题，我创建了一个用户线程然后将它设置为守护线程，为什么主线程
结束时，它没有结束，需要在它的执行逻辑里调用sleep才会当主线程结束时结束。

展开

作者回复: 启动之前设置成守护线程了？

Zach_
2019-04-25



很喜欢这个专栏!

但是，老师说 教好学生，饿死师傅。 我……😭😭😭

展开

