
第3讲 | 谈谈final、finally、 finalize有什么不同？
2018-05-10 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 11:03 大小 5.06M

Java 语言有很多看起来很相似，但是用途却完全不同的语言要素，这些内容往往容易成为

面试官考察你知识掌握程度的切入点。

今天，我要问你的是一个经典的 Java 基础题目，谈谈 final、finally、 finalize 有什么不

同？

典型回答

final 可以用来修饰类、方法、变量，分别有不同的意义，final 修饰的 class 代表不可以继

承扩展，final 的变量是不可以修改的，而 final 的方法也是不可以重写的（override）。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

finally 则是 Java 保证重点代码一定要被执行的一种机制。我们可以使用 try-finally 或者

try-catch-finally 来进行类似关闭 JDBC 连接、保证 unlock 锁等动作。

finalize 是基础类 java.lang.Object 的一个方法，它的设计目的是保证对象在被垃圾收集前

完成特定资源的回收。finalize 机制现在已经不推荐使用，并且在 JDK 9 开始被标记为

deprecated。

考点分析

这是一个非常经典的 Java 基础问题，我上面的回答主要是从语法和使用实践角度出发的，

其实还有很多方面可以深入探讨，面试官还可以考察你对性能、并发、对象生命周期或垃圾

收集基本过程等方面的理解。

推荐使用 final 关键字来明确表示我们代码的语义、逻辑意图，这已经被证明在很多场景下

是非常好的实践，比如：

如果你关注过 Java 核心类库的定义或源码， 有没有发现 java.lang 包下面的很多类，相当

一部分都被声明成为 final class？在第三方类库的一些基础类中同样如此，这可以有效避免

API 使用者更改基础功能，某种程度上，这是保证平台安全的必要手段。

final 也许会有性能的好处，很多文章或者书籍中都介绍了可在特定场景提高性能，比如，

利用 final 可能有助于 JVM 将方法进行内联，可以改善编译器进行条件编译的能力等等。

坦白说，很多类似的结论都是基于假设得出的，比如现代高性能 JVM（如 HotSpot）判断

内联未必依赖 final 的提示，要相信 JVM 还是非常智能的。类似的，final 字段对性能的影

响，大部分情况下，并没有考虑的必要。

我们可以将方法或者类声明为 final，这样就可以明确告知别人，这些行为是不许修改

的。

使用 final 修饰参数或者变量，也可以清楚地避免意外赋值导致的编程错误，甚至，有人

明确推荐将所有方法参数、本地变量、成员变量声明成 final。

final 变量产生了某种程度的不可变（immutable）的效果，所以，可以用于保护只读数

据，尤其是在并发编程中，因为明确地不能再赋值 final 变量，有利于减少额外的同步开

销，也可以省去一些防御性拷贝的必要。

从开发实践的角度，我不想过度强调这一点，这是和 JVM 的实现很相关的，未经验证比较

难以把握。我的建议是，在日常开发中，除非有特别考虑，不然最好不要指望这种小技巧带

来的所谓性能好处，程序最好是体现它的语义目的。如果你确实对这方面有兴趣，可以查阅

相关资料，我就不再赘述了，不过千万别忘了验证一下。

对于 finally，明确知道怎么使用就足够了。需要关闭的连接等资源，更推荐使用 Java 7 中

添加的 try-with-resources 语句，因为通常 Java 平台能够更好地处理异常情况，编码量也

要少很多，何乐而不为呢。

另外，我注意到有一些常被考到的 finally 问题（也比较偏门），至少需要了解一下。比

如，下面代码会输出什么？

上面 finally 里面的代码可不会被执行的哦，这是一个特例。

对于 finalize，我们要明确它是不推荐使用的，业界实践一再证明它不是个好的办法，在

Java 9 中，甚至明确将 Object.finalize() 标记为 deprecated！如果没有特别的原因，不要

实现 finalize 方法，也不要指望利用它来进行资源回收。

为什么呢？简单说，你无法保证 finalize 什么时候执行，执行的是否符合预期。使用不当会

影响性能，导致程序死锁、挂起等。

通常来说，利用上面的提到的 try-with-resources 或者 try-finally 机制，是非常好的回收

资源的办法。如果确实需要额外处理，可以考虑 Java 提供的 Cleaner 机制或者其他替代方

法。接下来，我来介绍更多设计考虑和实践细节。

知识扩展

1. 注意，final 不是 immutable！

1

2

3

4

5

6

try {
 // do something
 System.exit(1);
} finally{
 System.out.println(“Print from finally”);
}

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

我在前面介绍了 final 在实践中的益处，需要注意的是，final 并不等同于 immutable，比

如下面这段代码：

final 只能约束 strList 这个引用不可以被赋值，但是 strList 对象行为不被 final 影响，添加

元素等操作是完全正常的。如果我们真的希望对象本身是不可变的，那么需要相应的类支持

不可变的行为。在上面这个例子中，List.of 方法创建的本身就是不可变 List，最后那句

add 是会在运行时抛出异常的。

Immutable 在很多场景是非常棒的选择，某种意义上说，Java 语言目前并没有原生的不可

变支持，如果要实现 immutable 的类，我们需要做到：

这些原则是不是在并发编程实践中经常被提到？的确如此。

关于 setter/getter 方法，很多人喜欢直接用 IDE 一次全部生成，建议最好是你确定有需要

时再实现。

2.finalize 真的那么不堪？

前面简单介绍了 finalize 是一种已经被业界证明了的非常不好的实践，那么为什么会导致那

些问题呢？

1

2

3

4

5

 final List<String> strList = new ArrayList<>();
 strList.add("Hello");
 strList.add("world");
 List<String> unmodifiableStrList = List.of("hello", "world");
 unmodifiableStrList.add("again");

复制代码

将 class 自身声明为 final，这样别人就不能扩展来绕过限制了。

将所有成员变量定义为 private 和 final，并且不要实现 setter 方法。

通常构造对象时，成员变量使用深度拷贝来初始化，而不是直接赋值，这是一种防御措

施，因为你无法确定输入对象不被其他人修改。

如果确实需要实现 getter 方法，或者其他可能会返回内部状态的方法，使用 copy-on-

write 原则，创建私有的 copy。

http://openjdk.java.net/jeps/269

finalize 的执行是和垃圾收集关联在一起的，一旦实现了非空的 finalize 方法，就会导致相

应对象回收呈现数量级上的变慢，有人专门做过 benchmark，大概是 40~50 倍的下降。

因为，finalize 被设计成在对象被垃圾收集前调用，这就意味着实现了 finalize 方法的对象

是个“特殊公民”，JVM 要对它进行额外处理。finalize 本质上成为了快速回收的阻碍

者，可能导致你的对象经过多个垃圾收集周期才能被回收。

有人也许会问，我用 System.runFinalization () 告诉 JVM 积极一点，是不是就可以了？也

许有点用，但是问题在于，这还是不可预测、不能保证的，所以本质上还是不能指望。实践

中，因为 finalize 拖慢垃圾收集，导致大量对象堆积，也是一种典型的导致 OOM 的原

因。

从另一个角度，我们要确保回收资源就是因为资源都是有限的，垃圾收集时间的不可预测，

可能会极大加剧资源占用。这意味着对于消耗非常高频的资源，千万不要指望 finalize 去承

担资源释放的主要职责，最多让 finalize 作为最后的“守门员”，况且它已经暴露了如此多

的问题。这也是为什么我推荐，资源用完即显式释放，或者利用资源池来尽量重用。

finalize 还会掩盖资源回收时的出错信息，我们看下面一段 JDK 的源代码，截取自

java.lang.ref.Finalizer

结合我上期专栏介绍的异常处理实践，你认为这段代码会导致什么问题？

1

2

3

4

5

6

7

8

9

10

11

12

13

 private void runFinalizer(JavaLangAccess jla) {
 // ... 省略部分代码

 try {
 Object finalizee = this.get();
 if (finalizee != null && !(finalizee instanceof java.lang.Enum)) {
 jla.invokeFinalize(finalizee);
 // Clear stack slot containing this variable, to decrease
 // the chances of false retention with a conservative GC
 finalizee = null;
 }
 } catch (Throwable x) { }
 super.clear();
 }

复制代码

是的，你没有看错，这里的Throwable 是被生吞了的！也就意味着一旦出现异常或者出

错，你得不到任何有效信息。况且，Java 在 finalize 阶段也没有好的方式处理任何信息，

不然更加不可预测。

3. 有什么机制可以替换 finalize 吗？

Java 平台目前在逐步使用 java.lang.ref.Cleaner 来替换掉原有的 finalize 实现。Cleaner

的实现利用了幻象引用（PhantomReference），这是一种常见的所谓 post-mortem 清

理机制。我会在后面的专栏系统介绍 Java 的各种引用，利用幻象引用和引用队列，我们可

以保证对象被彻底销毁前做一些类似资源回收的工作，比如关闭文件描述符（操作系统有限

的资源），它比 finalize 更加轻量、更加可靠。

吸取了 finalize 里的教训，每个 Cleaner 的操作都是独立的，它有自己的运行线程，所以

可以避免意外死锁等问题。

实践中，我们可以为自己的模块构建一个 Cleaner，然后实现相应的清理逻辑。下面是

JDK 自身提供的样例程序：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

public class CleaningExample implements AutoCloseable {
 // A cleaner, preferably one shared within a library
 private static final Cleaner cleaner = <cleaner>;
 static class State implements Runnable {
 State(...) {
 // initialize State needed for cleaning action
 }
 public void run() {
 // cleanup action accessing State, executed at most once
 }
 }
 private final State;
 private final Cleaner.Cleanable cleanable
 public CleaningExample() {
 this.state = new State(...);
 this.cleanable = cleaner.register(this, state);
 }
 public void close() {
 cleanable.clean();
 }
 }

复制代码

拼课微
信：1

71614
3665

注意，从可预测性的角度来判断，Cleaner 或者幻象引用改善的程度仍然是有限的，如果由

于种种原因导致幻象引用堆积，同样会出现问题。所以，Cleaner 适合作为一种最后的保证

手段，而不是完全依赖 Cleaner 进行资源回收，不然我们就要再做一遍 finalize 的噩梦

了。

我也注意到很多第三方库自己直接利用幻象引用定制资源收集，比如广泛使用的 MySQL

JDBC driver 之一的 mysql-connector-j，就利用了幻象引用机制。幻象引用也可以进行类

似链条式依赖关系的动作，比如，进行总量控制的场景，保证只有连接被关闭，相应资源被

回收，连接池才能创建新的连接。

另外，这种代码如果稍有不慎添加了对资源的强引用关系，就会导致循环引用关系，前面提

到的 MySQL JDBC 就在特定模式下有这种问题，导致内存泄漏。上面的示例代码中，将

State 定义为 static，就是为了避免普通的内部类隐含着对外部对象的强引用，因为那样会

使外部对象无法进入幻象可达的状态。

今天，我从语法角度分析了 final、finally、finalize，并从安全、性能、垃圾收集等方面逐

步深入，探讨了实践中的注意事项，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？也许你已经注意到了，JDK 自身使用的

Cleaner 机制仍然是有缺陷的，你有什么更好的建议吗？

请你在留言区写写你的建议，我会选出经过认真思考的留言，送给你一份学习鼓励金，欢迎

你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第2讲 | Exception和Error有什么区别？

下一篇 第4讲 | 强引用、软引用、弱引用、幻象引用有什么区别？

sharp
2018-06-12

 384

这三个就是卡巴斯基和巴基斯坦的关系，有个基巴关系。。。

zjh
2018-05-11

 140

一直不懂为什么这三个经常拿来一起比较，本身就一点关系都没有啊，难道仅仅是长的
像。我觉得final倒是可以和volatile一起比较下

展开

精选留言 (75)  写留言

WolvesLead...2018-05-10 
103

能不能帮我分析一哈，匿名内部累，访问局部变量时，局部变量为啥要用final来修饰吗？

作者回复: 这个因为Java inner class实际会copy一份，不是去直接使用局部变量，final可以防止

出现数据一致性问题

云学
2018-06-12

 97

请问这篇文章中涉及的知识点是java中最重要的吗？我感觉有点剑走偏锋，这种知识了解
就好了，应该有很多知识比这更重要的吧，虽说面试中可能会问，但不能以面试为中心，
而要把实际应用中最有用的真正核心的东西分享出来，把它讲透彻，不追求面面俱到，也
不想成为语言专家，我期望通过这个专栏可以获得java中最核心最实用特性的本质认识，
希望有一种醍醐灌顶的感觉，在阅读java开源框架代码时不再困惑。我有多年的c++开发…
展开

石头狮子
2018-05-10

 97

列几个 fianlly 不会被执行的情况:
1. try-cach 异常退出。
try{
system.exit(1)
}finally{ …
展开

★神峰★
2018-05-12

 83

你们都看懂了吗？我怎么什么都不知道😂

展开

Monday
2018-09-26

 29

前提本节听了4遍，看了不下3遍，所花的时间大于4小时，写点心得与疑问。
一道如此“简单”的面试题，能够引申出性能、安全、GC的问题，再扩展出一些我以前没
接触过或知之甚少的知识点，如Cleaner、try-catch-resources、编写immutable对象、

幻象引用等等。
还有一些读起来很简单的语句，消化起来却很吃力，如：你无法保证finalize什么时候执…
展开

有渔@蔡
2018-05-10

 28

1.你说那异常被生吞，是指没写e.print...语句吧？另外我有个疑惑：super.clear()为什么写
在exception里，理论上super方法写第一行，或finally里。2.在一个对象的生命周期里，
其finalize方法应该只会被调用1次。3.强软弱虚引用大家都知道，这虚幻引用相比较有什么
特别的吗？请再深入点。4.final是不是都在编译后确定位置？比如final List这样的，内存
布局是怎样的？谢谢

展开

皮卡皮卡丘
2018-05-10

 27

“将 State 定义为 static，就是为了避免普通的内部类隐含着对外部对象的强引用，因为
那样会使外部对象无法进入幻象可达的状态。”这个该怎么理解呢？

展开

作者回复: 内部类如果不是static，它本身对外面那个类有引用关系，这一点其实从构造阶段就能

看出来，你可以写段代码试试；有强引用就是strong reachable状态

Hesher
2018-05-10

 13

见过一些写法是将对象手动赋值为null来让GC更快的回收，不过能起多少作用就不知道
了。关于JVM中那几种引用了解不多，平时可以怎么使用呢？

展开

小哥。
2018-05-10

 11

copy-on-write 原则，学习了

展开

🎵Childr...
2018-05-14

 10

用final修饰的class，这可以有效避免 API 使用者更改基础功能，某种程度上，这是保证平
台安全的必要手段。这个地方真的很需要个例子去帮助理解。比如大家都知道String类是
被final修饰不可被继承，但假如没有被final修饰，很好奇会出现什么样不安全的后果。

展开

作者回复: 谢谢反馈

Pantheon
2018-05-10

 10

杨老师，关于final不能修改我想请教下，代码如下，class util {
 public final Integer info = 123;
}

@Test …
展开

作者回复: setAccessible是“流氓”，不问题出在定义为基本数据类型，会被当作constant，可

以反编译看看

Loong
2018-12-03

 9

final、finally、finalize

1. final
 修饰类：不可被继承
 修饰方法：不可重写 …
展开

ls
2018-05-13

 8

Java中有说：finalize 有一种用途：在 Java 中调用非 Java 代码，在非 Java 代码中若调用
了C的 malloc 来分配内存，如果不调用 C 的free 函数，会导致内存泄露。所以需要在
finalize 中调用它。

面试中会有问：为什么 String 会设计成不可变？想听听老师的解释

展开

作者回复: 是的，很多资源都是需要使用本地方式获取和释放

公号-代码...
2018-05-10

 6

1定义不可变对象类，当构造函数传入可变对象引用时、当getter函数返回可变对象引用
时，容易掉坑。
2 在不可变对象类的构造函数中，如果传入值包括了可变对象，则clone先。
3 从不可变对象类的getter函数返回前，如果返回值为可变对象，则clone先。
4 Java默认的clone方法执行浅拷贝，对于数组、对象引用只是拷贝地址。浅拷贝在业务…
展开

echo＿陈
2018-05-10

 6

回答上面一个人的问题。
被final修饰的变量不可变。如果初始化不赋值，后续赋值，就是从null变成你的赋值，违反
不可变

展开

feifei
2018-06-30

 5

JDK 自身使用的 Cleaner 机制仍然是有缺陷的，你有什么更好的建议吗？

1，临时对象，使用完毕后，赋值为null,可以加快对象的回收
2，公用资源对象，比如数据库连接，使用连接池
3，native调用资源的释放，比如一个进程初始化调用一次，退出调用一次，这类场景可…
展开

Do
2018-05-12

 5

final修饰变量参数的时候，其实理解为内存地址的绑定，这样理解是不是更直观，基本类

型指向栈中，引用类型指向堆中。老师后期文章能不能说下java堆栈的区别，还有变量局
部变量的生命周期，最好能附上图，加深理解。

展开

作者回复: 会有

Julian
2018-12-12

 4

第3讲 | 谈谈final、finally、 finalize有什么不同的学习总结：
一、final：适合用来在语义方面标识当前的方法、变量、类不可以更改，适合封装一些代
码，让用的人知道这些不要随意更改。final标识的变量不等于不可变，对于变量而言这个
变量只是不能够在赋值，但是可以做任何增删改查操作。所以从这方面来讲，final在高并
发下面的数据一致性起来积极作用，对性能比较好。要想写一个不可变的对象，首先需…
展开

