
第22讲 | AtomicInteger底层实现原理是什么？如何在自己的产品
代码中应用CAS操作？
2018-06-26 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 11:03 大小 5.06M

在今天这一讲中，我来分析一下并发包内部的组成，一起来看看各种同步结构、线程池等，

是基于什么原理来设计和实现的。

今天我要问你的问题是，AtomicInteger 底层实现原理是什么？如何在自己的产品代码中

应用 CAS 操作？

典型回答

AtomicIntger 是对 int 类型的一个封装，提供原子性的访问和更新操作，其原子性操作的

实现是基于 CAS（compare-and-swap）技术。





 下载APP 

https://en.wikipedia.org/wiki/Compare-and-swap

所谓 CAS，表征的是一些列操作的集合，获取当前数值，进行一些运算，利用 CAS 指令试

图进行更新。如果当前数值未变，代表没有其他线程进行并发修改，则成功更新。否则，可

能出现不同的选择，要么进行重试，要么就返回一个成功或者失败的结果。

从 AtomicInteger 的内部属性可以看出，它依赖于 Unsafe 提供的一些底层能力，进行底

层操作；以 volatile 的 value 字段，记录数值，以保证可见性。

具体的原子操作细节，可以参考任意一个原子更新方法，比如下面的 getAndIncrement。

Unsafe 会利用 value 字段的内存地址偏移，直接完成操作。

因为 getAndIncrement 需要返归数值，所以需要添加失败重试逻辑。

而类似 compareAndSet 这种返回 boolean 类型的函数，因为其返回值表现的就是成功与

否，所以不需要重试。

1

2

3

private static final jdk.internal.misc.Unsafe U = jdk.internal.misc.Unsafe.getUnsafe();
private static final long VALUE = U.objectFieldOffset(AtomicInteger.class, "value");
private volatile int value;

复制代码

1

2

3

public final int getAndIncrement() {
 return U.getAndAddInt(this, VALUE, 1);
}

复制代码

1

2

3

4

5

6

7

public final int getAndAddInt(Object o, long offset, int delta) {
 int v;
 do {
 v = getIntVolatile(o, offset);
 } while (!weakCompareAndSetInt(o, offset, v, v + delta));
 return v;
}

复制代码

CAS 是 Java 并发中所谓 lock-free 机制的基础。

考点分析

今天的问题有点偏向于 Java 并发机制的底层了，虽然我们在开发中未必会涉及 CAS 的实

现层面，但是理解其机制，掌握如何在 Java 中运用该技术，还是十分有必要的，尤其是这

也是个并发编程的面试热点。

有的同学反馈面试官会问 CAS 更加底层是如何实现的，这依赖于 CPU 提供的特定指令，

具体根据体系结构的不同还存在着明显区别。比如，x86 CPU 提供 cmpxchg 指令；而在

精简指令集的体系架构中，则通常是靠一对儿指令（如“load and reserve”和“store

conditional”）实现的，在大多数处理器上 CAS 都是个非常轻量级的操作，这也是其优势

所在。

大部分情况下，掌握到这个程度也就够用了，我认为没有必要让每个 Java 工程师都去了解

到指令级别，我们进行抽象、分工就是为了让不同层面的开发者在开发中，可以尽量屏蔽不

相关的细节。

如果我作为面试官，很有可能深入考察这些方向：

知识扩展

关于 CAS 的使用，你可以设想这样一个场景：在数据库产品中，为保证索引的一致性，一

个常见的选择是，保证只有一个线程能够排他性地修改一个索引分区，如何在数据库抽象层

面实现呢？

1 public final boolean compareAndSet(int expectedValue, int newValue)

复制代码

在什么场景下，可以采用 CAS 技术，调用 Unsafe 毕竟不是大多数场景的最好选择，有

没有更加推荐的方式呢？毕竟我们掌握一个技术，cool 不是目的，更不是为了应付面

试，我们还是希望能在实际产品中有价值。

对 ReentrantLock、CyclicBarrier 等并发结构底层的实现技术的理解。

可以考虑为索引分区对象添加一个逻辑上的锁，例如，以当前独占的线程 ID 作为锁的数

值，然后通过原子操作设置 lock 数值，来实现加锁和释放锁，伪代码如下：

那么在 Java 代码中，我们怎么实现锁操作呢？Unsafe 似乎不是个好的选择，例如，我就

注意到类似 Cassandra 等产品，因为 Java 9 中移除了

Unsafe.moniterEnter()/moniterExit()，导致无法平滑升级到新的 JDK 版本。目前 Java

提供了两种公共 API，可以实现这种 CAS 操作，比如使用

java.util.concurrent.atomic.AtomicLongFieldUpdater，它是基于反射机制创建，我们需

要保证类型和字段名称正确。

Atomic 包提供了最常用的原子性数据类型，甚至是引用、数组等相关原子类型和更新操作

工具，是很多线程安全程序的首选。

我在专栏第七讲中曾介绍使用原子数据类型和 Atomic*FieldUpdater，创建更加紧凑的计

数器实现，以替代 AtomicLong。优化永远是针对特定需求、特定目的，我这里的侧重点

是介绍可能的思路，具体还是要看需求。如果仅仅创建一两个对象，其实完全没有必要进行

前面的优化，但是如果对象成千上万或者更多，就要考虑紧凑性的影响了。而 atomic 包提

1

2

3

4

5

public class AtomicBTreePartition {
private volatile long lock;
public void acquireLock(){}
public void releaseeLock(){}
}

复制代码

1

2

3

4

5

6

7

8

9

10

private static final AtomicLongFieldUpdater<AtomicBTreePartition> lockFieldUpdater =
 AtomicLongFieldUpdater.newUpdater(AtomicBTreePartition.class, "lock");

private void acquireLock(){
 long t = Thread.currentThread().getId();
 while (!lockFieldUpdater.compareAndSet(this, 0L, t)){
 // 等待一会儿，数据库操作可能比较慢

 …
 }
}

复制代码

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/atomic/package-summary.html

供的LongAdder，在高度竞争环境下，可能就是比 AtomicLong 更佳的选择，尽管它的本

质是空间换时间。

回归正题，如果是 Java 9 以后，我们完全可以采用另外一种方式实现，也就是 Variable

Handle API，这是源自于JEP 193，提供了各种粒度的原子或者有序性的操作等。我将前面

的代码修改为如下实现：

过程非常直观，首先，获取相应的变量句柄，然后直接调用其提供的 CAS 方法。

一般来说，我们进行的类似 CAS 操作，可以并且推荐使用 Variable Handle API 去实现，

其提供了精细粒度的公共底层 API。我这里强调公共，是因为其 API 不会像内部 API 那

样，发生不可预测的修改，这一点提供了对于未来产品维护和升级的基础保障，坦白说，很

多额外工作量，都是源于我们使用了 Hack 而非 Solution 的方式解决问题。

CAS 也并不是没有副作用，试想，其常用的失败重试机制，隐含着一个假设，即竞争情况

是短暂的。大多数应用场景中，确实大部分重试只会发生一次就获得了成功，但是总是有意

外情况，所以在有需要的时候，还是要考虑限制自旋的次数，以免过度消耗 CPU。

另外一个就是著名的ABA问题，这是通常只在 lock-free 算法下暴露的问题。我前面说过

CAS 是在更新时比较前值，如果对方只是恰好相同，例如期间发生了 A -> B -> A 的更

新，仅仅判断数值是 A，可能导致不合理的修改操作。针对这种情况，Java 提供了

AtomicStampedReference 工具类，通过为引用建立类似版本号（stamp）的方式，来保

证 CAS 的正确性，具体用法请参考这里的介绍。

1

2

3

4

5

6

7

8

9

10

private static final VarHandle HANDLE = MethodHandles.lookup().findStaticVarHandle
 (AtomicBTreePartition.class, "lock");

private void acquireLock(){
 long t = Thread.currentThread().getId();
 while (!HANDLE.compareAndSet(this, 0L, t)){
 // 等待一会儿，数据库操作可能比较慢

 …
 }
}

复制代码

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/atomic/LongAdder.html
http://openjdk.java.net/jeps/193
https://en.wikipedia.org/wiki/ABA_problem
http://tutorials.jenkov.com/java-util-concurrent/atomicstampedreference.html

前面介绍了 CAS 的场景与实现，幸运的是，大多数情况下，Java 开发者并不需要直接利用

CAS 代码去实现线程安全容器等，更多是通过并发包等间接享受到 lock-free 机制在扩展

性上的好处。

下面我来介绍一下 AbstractQueuedSynchronizer（AQS），其是 Java 并发包中，实现各

种同步结构和部分其他组成单元（如线程池中的 Worker）的基础。

学习 AQS，如果上来就去看它的一系列方法（下图所示），很有可能把自己看晕，这种似

懂非懂的状态也没有太大的实践意义。

我建议的思路是，尽量简化一下，理解为什么需要 AQS，如何使用 AQS，至少要做什么，

再进一步结合 JDK 源代码中的实践，理解 AQS 的原理与应用。

Doug Lea曾经介绍过 AQS 的设计初衷。从原理上，一种同步结构往往是可以利用其他的

结构实现的，例如我在专栏第 19 讲中提到过可以使用 Semaphore 实现互斥锁。但是，对

某种同步结构的倾向，会导致复杂、晦涩的实现逻辑，所以，他选择了将基础的同步相关操

作抽象在 AbstractQueuedSynchronizer 中，利用 AQS 为我们构建同步结构提供了范

本。

AQS 内部数据和方法，可以简单拆分为：

利用 AQS 实现一个同步结构，至少要实现两个基本类型的方法，分别是 acquire 操作，获

取资源的独占权；还有就是 release 操作，释放对某个资源的独占。

一个 volatile 的整数成员表征状态，同时提供了 setState 和 getState 方法

1 private volatile int state;

复制代码

一个先入先出（FIFO）的等待线程队列，以实现多线程间竞争和等待，这是 AQS 机制的

核心之一。

各种基于 CAS 的基础操作方法，以及各种期望具体同步结构去实现的 acquire/release

方法。

https://en.wikipedia.org/wiki/Doug_Lea

以 ReentrantLock 为例，它内部通过扩展 AQS 实现了 Sync 类型，以 AQS 的 state 来反

映锁的持有情况。

下面是 ReentrantLock 对应 acquire 和 release 操作，如果是 CountDownLatch 则可以

看作是 await()/countDown()，具体实现也有区别。

排除掉一些细节，整体地分析 acquire 方法逻辑，其直接实现是在 AQS 内部，调用了

tryAcquire 和 acquireQueued，这是两个需要搞清楚的基本部分。

首先，我们来看看 tryAcquire。在 ReentrantLock 中，tryAcquire 逻辑实现在

NonfairSync 和 FairSync 中，分别提供了进一步的非公平或公平性方法，而 AQS 内部

tryAcquire 仅仅是个接近未实现的方法（直接抛异常），这是留个实现者自己定义的操

作。

1

2

private final Sync sync;
abstract static class Sync extends AbstractQueuedSynchronizer { …}

复制代码

1

2

3

4

5

6

7

public void lock() {
 sync.acquire(1);
}
public void unlock() {
 sync.release(1);
}

复制代码

1

2

3

4

5

public final void acquire(int arg) {
 if (!tryAcquire(arg) &&
 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
 selfInterrupt();
}

复制代码

我们可以看到公平性在 ReentrantLock 构建时如何指定的，具体如下：

以非公平的 tryAcquire 为例，其内部实现了如何配合状态与 CAS 获取锁，注意，对比公

平版本的 tryAcquire，它在锁无人占有时，并不检查是否有其他等待者，这里体现了非公

平的语义。

接下来我再来分析 acquireQueued，如果前面的 tryAcquire 失败，代表着锁争抢失败，

进入排队竞争阶段。这里就是我们所说的，利用 FIFO 队列，实现线程间对锁的竞争的部

分，算是是 AQS 的核心逻辑。

1

2

3

4

5

6

7

public ReentrantLock() {
 sync = new NonfairSync(); // 默认是非公平的

 }
 public ReentrantLock(boolean fair) {
 sync = fair ? new FairSync() : new NonfairSync();
 }

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

final boolean nonfairTryAcquire(int acquires) {
 final Thread current = Thread.currentThread();
 int c = getState();// 获取当前 AQS 内部状态量

 if (c == 0) { // 0 表示无人占有，则直接用 CAS 修改状态位，

 if (compareAndSetState(0, acquires)) {// 不检查排队情况，直接争抢

 setExclusiveOwnerThread(current); // 并设置当前线程独占锁

 return true;
 }
 } else if (current == getExclusiveOwnerThread()) { // 即使状态不是 0，也可能当前线程是

 int nextc = c + acquires;
 if (nextc < 0) // overflow
 throw new Error("Maximum lock count exceeded");
 setState(nextc);
 return true;
 }
 return false;
}

复制代码

当前线程会被包装成为一个排他模式的节点（EXCLUSIVE），通过 addWaiter 方法添加到

队列中。acquireQueued 的逻辑，简要来说，就是如果当前节点的前面是头节点，则试图

获取锁，一切顺利则成为新的头节点；否则，有必要则等待，具体处理逻辑请参考我添加的

注释。

到这里线程试图获取锁的过程基本展现出来了，tryAcquire 是按照特定场景需要开发者去

实现的部分，而线程间竞争则是 AQS 通过 Waiter 队列与 acquireQueued 提供的，在

release 方法中，同样会对队列进行对应操作。

今天我介绍了 Atomic 数据类型的底层技术 CAS，并通过实例演示了如何在产品代码中利

用 CAS，最后介绍了并发包的基础技术 AQS，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？今天布置一个源码阅读作业，AQS 中

Node 的 waitStatus 有什么作用？

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

final boolean acquireQueued(final Node node, int arg) {
 boolean interrupted = false;
 try {
 for (;;) {// 循环

 final Node p = node.predecessor();// 获取前一个节点

 if (p == head && tryAcquire(arg)) { // 如果前一个节点是头结点，表示当前节点

 setHead(node); // acquire 成功，则设置新的头节点

 p.next = null; // 将前面节点对当前节点的引用清空

 return interrupted;
 }
 if (shouldParkAfterFailedAcquire(p, node)) // 检查是否失败后需要 park
 interrupted |= parkAndCheckInterrupt();
 }
 } catch (Throwable t) {
 cancelAcquire(node);// 出现异常，取消

 if (interrupted)
 selfInterrupt();
 throw t;
 }
}

复制代码

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第21讲 | Java并发类库提供的线程池有哪几种？ 分别有什么特点？

下一篇 第23讲 | 请介绍类加载过程，什么是双亲委派模型？

wenxueliu
2018-06-26

 80

建议；

1. 希望能有推外内存的主题，范型部分希望能与cpp比较讲解。
2. 一些主题如果已经有公开的比较好的资料，可以提供链接，对重点强调即可。希望能看

精选留言 (20)  写留言

到更多公开资料所没有的信息，这也是老鸟们付费的初衷。 …
展开

墨飞域
2018-08-07

 17

这一讲对于我来说，挺有难度的，还是基础比较薄弱，整体上没太听懂。老师对于Java的
理解真是太深入了，等我以后技术精进了，再回来看看老师的36讲，应该会有新的认识。
继续往下听吧，已经懂点的加深理解，没听过的就当是听了名字以后用到了再仔细研究

展开

OneThin
2018-07-16

 9

能否出一节讲一下unsafe，感觉这个才是最基础的。另外unsafe为什么叫unsafe呢

Cui
2018-06-26

 8

老师，看了AQS的实现原理后，我再回顾了您之前关于synchronized的文章，心中有些疑
问：
1、synchronized在JVM中是会进行锁升级和降级的，并且是基于CAS来掌握竞争的情
况，在竞争不多的情况下利用CAS的轻量级操作来减少开销。
2、而AQS也是基于CAS操作队列的，位于队列头的节点优先获得锁，其他的节点会被…
展开

作者回复: Locksupport的实现据说速度快，我也没具体对比过；不过jdk9里，monitor相关操作

也加快了，可以看看jep143

三口先生
2018-06-26

 8

大于0取消状态，小于0有效状态，表示等待状态四种cancelled，signal，condition，
propagate

作者回复: 不错

二木🐶
2018-06-28

 5

一直很好奇，为何CAS指令在发现内容未变的时候就能判断没有其他线程修改呢？可能被
修改后的值与比较的值一样呀

展开

I.am DZX
2018-06-26

 4

CANCELLED 1 因为超时或中断设置为此状态，标志节点不可用
SIGNAL -1 处于此状态的节点释放资源时会唤醒后面的节点
CONDITION -2 处于条件队列里，等待条件成立(signal signalall) 条件成立后会置入获取
资源的队列里
PROPAGATE -3 共享模式下使用，头节点获取资源时将后面节点设置为此状态，如果头…
展开

作者回复: 好

卡斯瓦德
2018-07-05

 3

老师请教个问题，acquireQueued的源代码中，使用for（；；）做了个自旋锁吧，作者为
什么不用while（true），这种方式呢，是因为开销不一样吗？

展开

作者回复: 也许，这个我不知道具体原因，看上去while会比for多一个变量

三木子
2018-06-26

 2

最近遇到配置tomcat连接池，导致cpu过高问题，最后发现配置连接池数过大导致上下文
切换次数过多
，也就是线程池中任务数过少，空闲的线程过多，我想问为什么会导致上下文切换过多？

王胖小子
2018-07-09

 1

CAS有部分实现是解决ABA问题，可以讲一下ABA问题是如何解决的，除了version外，还
有没有其他的方式

黄明恩
2018-06-28

 1

老师可否分析下Object.wait和notify的原理

展开

Pine
2019-04-30



请教老师一个问题，基本类型前面加volatile，大概能明白什么意思。 可加在引用类型前面
就不是很明白了？

Zach_
2019-04-28



关于状态的其他童鞋已经说啦，

AQS的Node中包含了 Thread和waitStatus，也就是链表中需要获取锁的线程吧～！

Geek_98716...
2019-03-26



老师，您说的"更加紧凑"，是什么意思？不太理解

展开

ylw666
2019-01-26



LongAdder这里，说要考虑紧凑性的影响，不清楚指的是哪方面的考虑

作者回复: 紧凑就是说内存使用效率，有些高性能应用会对此提出苛刻要求

约书亚
2018-11-16



全局最看不懂的cancelAcquire方法没说...

展开

dal136
2018-09-27



waitStatus有5种状态：
SIGNAL，-1，需要unpark
CONDITION，-2,等待condition
PROPAGATE，-3, 共享模式中线程处于可运行状态
CANCELLED，1，取消 …
展开

爱新觉罗老...
2018-06-27



ReentrantLock的非公平锁，其实只有一次非公平的机会！那一次就是在lock方法中，非
公平锁的实现有if else分支，在if时就进行一次cas state，成功的线程去执行任务代码去
了。那么失败的线程就会进入else逻辑，就是AQS#acquired，从这里开始非公平锁和公平
锁就完全一样了，只是公平锁被欺负了一次，它的lock方法是直接调acquired方法。
 …
展开

antipas
2018-06-26



看AQS源码过程中产生了新问题，它对线程的挂起唤醒是通过locksupport实现的，那么它
与wait/notify又有何不同，使用场景有何不同。我的理解是使用 wait/notify需要
synchronized锁，而且wait需要条件触发

作者回复: 这是两种方式，wait基于monitor；一般用并发库就不用Object.wait、notify之类了

TonyEasy
2018-06-26



老师，说实话这一期的对我来说有点难度了，钦佩老师对知识理解的深入，请问老师可以
指点下java学习的路线图吗，或者您分享下您自己的学习路线。

展开

作者回复: 大家基础不一样，以后被问到不生疏也好；关于路线，不知道你的兴趣和规划是什么，

通常来说Java只是技能树中的一项，项目经验，领域知识，综合起来才能要到高价

