
18 | 案例篇：内存泄漏了，我该如何定位和处理？
2018-12-31 倪朋飞

Linux性能优化实战 进入课程

讲述：冯永吉
时长 11:54 大小 10.91M

你好，我是倪朋飞。

通过前几节对内存基础的学习，我相信你对 Linux 内存的工作原理，已经有了初步了解。

对普通进程来说，能看到的其实是内核提供的虚拟内存，这些虚拟内存还需要通过页表，由

系统映射为物理内存。

当进程通过 malloc() 申请虚拟内存后，系统并不会立即为其分配物理内存，而是在首次访

问时，才通过缺页异常陷入内核中分配内存。

为了协调 CPU 与磁盘间的性能差异，Linux 还会使用 Cache 和 Buffer ，分别把文件和磁

盘读写的数据缓存到内存中。





 下载APP 

对应用程序来说，动态内存的分配和回收，是既核心又复杂的一个逻辑功能模块。管理内存

的过程中，也很容易发生各种各样的“事故”，比如，

今天我就带你来看看，内存泄漏到底是怎么发生的，以及发生内存泄漏之后该如何排查和定

位。

说起内存泄漏，这就要先从内存的分配和回收说起了。

内存的分配和回收

先回顾一下，你还记得应用程序中，都有哪些方法来分配内存吗？用完后，又该怎么释放还

给系统呢？

前面讲进程的内存空间时，我曾经提到过，用户空间内存包括多个不同的内存段，比如只读

段、数据段、堆、栈以及文件映射段等。这些内存段正是应用程序使用内存的基本方式。

举个例子，你在程序中定义了一个局部变量，比如一个整数数组 int data[64] ，就定义了

一个可以存储 64 个整数的内存段。由于这是一个局部变量，它会从内存空间的栈中分配内

存。

栈内存由系统自动分配和管理。一旦程序运行超出了这个局部变量的作用域，栈内存就会被

系统自动回收，所以不会产生内存泄漏的问题。

再比如，很多时候，我们事先并不知道数据大小，所以你就要用到标准库函数 malloc() _，

_ 在程序中动态分配内存。这时候，系统就会从内存空间的堆中分配内存。

堆内存由应用程序自己来分配和管理。除非程序退出，这些堆内存并不会被系统自动释放，

而是需要应用程序明确调用库函数 free() 来释放它们。如果应用程序没有正确释放堆内

存，就会造成内存泄漏。

这是两个栈和堆的例子，那么，其他内存段是否也会导致内存泄漏呢？经过我们前面的学

习，这个问题并不难回答。

没正确回收分配后的内存，导致了泄漏。

访问的是已分配内存边界外的地址，导致程序异常退出，等等。

内存泄漏的危害非常大，这些忘记释放的内存，不仅应用程序自己不能访问，系统也不能把

它们再次分配给其他应用。内存泄漏不断累积，甚至会耗尽系统内存。

虽然，系统最终可以通过 OOM （Out of Memory）机制杀死进程，但进程在 OOM 前，

可能已经引发了一连串的反应，导致严重的性能问题。

比如，其他需要内存的进程，可能无法分配新的内存；内存不足，又会触发系统的缓存回收

以及 SWAP 机制，从而进一步导致 I/O 的性能问题等等。

内存泄漏的危害这么大，那我们应该怎么检测这种问题呢？特别是，如果你已经发现了内存

泄漏，该如何定位和处理呢。

接下来，我们就用一个计算斐波那契数列的案例，来看看内存泄漏问题的定位和处理方法。

斐波那契数列是一个这样的数列：0、1、1、2、3、5、8…，也就是除了前两个数是 0 和

1，其他数都由前面两数相加得到，用数学公式来表示就是 F(n)=F(n-1)+F(n-2)，

（n>=2），F(0)=0, F(1)=1。

案例

今天的案例基于 Ubuntu 18.04，当然，同样适用其他的 Linux 系统。

只读段，包括程序的代码和常量，由于是只读的，不会再去分配新的内存，所以也不会产

生内存泄漏。

数据段，包括全局变量和静态变量，这些变量在定义时就已经确定了大小，所以也不会产

生内存泄漏。

最后一个内存映射段，包括动态链接库和共享内存，其中共享内存由程序动态分配和管

理。所以，如果程序在分配后忘了回收，就会导致跟堆内存类似的泄漏问题。

机器配置：2 CPU，8GB 内存

预先安装 sysstat、Docker 以及 bcc 软件包，比如：

1

2

install sysstat docker
sudo apt-get install -y sysstat docker.io

复制代码

其中，sysstat 和 Docker 我们已经很熟悉了。sysstat 软件包中的 vmstat ，可以观察内存

的变化情况；而 Docker 可以运行案例程序。

bcc 软件包前面也介绍过，它提供了一系列的 Linux 性能分析工具，常用来动态追踪进程

和内核的行为。更多工作原理你先不用深究，后面学习我们会逐步接触。这里你只需要记

住，按照上面步骤安装完后，它提供的所有工具都位于 /usr/share/bcc/tools 这个目录

中。

打开一个终端，SSH 登录到机器上，安装上述工具。

同以前的案例一样，下面的所有命令都默认以 root 用户运行，如果你是用普通用户身份登

陆系统，请运行 sudo su root 命令切换到 root 用户。

如果安装过程中有什么问题，同样鼓励你先自己搜索解决，解决不了的，可以在留言区向我

提问。如果你以前已经安装过了，就可以忽略这一点了。

安装完成后，再执行下面的命令来运行案例：

案例成功运行后，你需要输入下面的命令，确认案例应用已经正常启动。如果一切正常，你

应该可以看到下面这个界面：

3

4

5

6

7

8

Install bcc
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 4052245BD4284CDD
echo "deb https://repo.iovisor.org/apt/bionic bionic main" | sudo tee /etc/apt/sources.l
sudo apt-get update
sudo apt-get install -y bcc-tools libbcc-examples linux-headers-$(uname -r)

注意：bcc-tools 需要内核版本为 4.1 或者更高，如果你使用的是

CentOS7，或者其他内核版本比较旧的系统，那么你需要手动升级内核版本

后再安装。

1 $ docker run --name=app -itd feisky/app:mem-leak

复制代码

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/issues/462

从输出中，我们可以发现，这个案例会输出斐波那契数列的一系列数值。实际上，这些数值

每隔 1 秒输出一次。

知道了这些，我们应该怎么检查内存情况，判断有没有泄漏发生呢？你首先想到的可能是

top 工具，不过，top 虽然能观察系统和进程的内存占用情况，但今天的案例并不适合。内

存泄漏问题，我们更应该关注内存使用的变化趋势。

所以，开头我也提到了，今天推荐的是另一个老熟人， vmstat 工具。

运行下面的 vmstat ，等待一段时间，观察内存的变化情况。如果忘了 vmstat 里各指标的

含义，记得复习前面内容，或者执行 man vmstat 查询。

从输出中你可以看到，内存的 free 列在不停的变化，并且是下降趋势；而 buffer 和 cache

基本保持不变。

1

2

3

4

5

6

7

$ docker logs app
2th => 1
3th => 2
4th => 3
5th => 5
6th => 8
7th => 13

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

每隔 3 秒输出一组数据

$ vmstat 3
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 6601824 97620 1098784 0 0 0 0 62 322 0 0 100 0 0
0 0 0 6601700 97620 1098788 0 0 0 0 57 251 0 0 100 0 0
0 0 0 6601320 97620 1098788 0 0 0 3 52 306 0 0 100 0 0
0 0 0 6601452 97628 1098788 0 0 0 27 63 326 0 0 100 0 0
2 0 0 6601328 97628 1098788 0 0 0 44 52 299 0 0 100 0 0
0 0 0 6601080 97628 1098792 0 0 0 0 56 285 0 0 100 0 0

复制代码

未使用内存在逐渐减小，而 buffer 和 cache 基本不变，这说明，系统中使用的内存一直在

升高。但这并不能说明有内存泄漏，因为应用程序运行中需要的内存也可能会增大。比如

说，程序中如果用了一个动态增长的数组来缓存计算结果，占用内存自然会增长。

那怎么确定是不是内存泄漏呢？或者换句话说，有没有简单方法找出让内存增长的进程，并

定位增长内存用在哪儿呢？

根据前面内容，你应该想到了用 top 或 ps 来观察进程的内存使用情况，然后找出内存使用

一直增长的进程，最后再通过 pmap 查看进程的内存分布。

但这种方法并不太好用，因为要判断内存的变化情况，还需要你写一个脚本，来处理 top

或者 ps 的输出。

这里，我介绍一个专门用来检测内存泄漏的工具，memleak。memleak 可以跟踪系统或

指定进程的内存分配、释放请求，然后定期输出一个未释放内存和相应调用栈的汇总情况

（默认 5 秒）。

当然，memleak 是 bcc 软件包中的一个工具，我们一开始就装好了，执行

/usr/share/bcc/tools/memleak 就可以运行它。比如，我们运行下面的命令：

从 memleak 的输出可以看到，案例应用在不停地分配内存，并且这些分配的地址没有被回

收。

1

2

3

4

5

6

7

8

9

10

11

12

13

-a 表示显示每个内存分配请求的大小以及地址

-p 指定案例应用的 PID 号
$ /usr/share/bcc/tools/memleak -a -p $(pidof app)
WARNING: Couldn't find .text section in /app
WARNING: BCC can't handle sym look ups for /app
 addr = 7f8f704732b0 size = 8192
 addr = 7f8f704772d0 size = 8192
 addr = 7f8f704712a0 size = 8192
 addr = 7f8f704752c0 size = 8192
 32768 bytes in 4 allocations from stack
 [unknown] [app]
 [unknown] [app]
 start_thread+0xdb [libpthread-2.27.so]

复制代码

这里有一个问题，Couldn’t find .text section in /app，所以调用栈不能正常输出，最后

的调用栈部分只能看到 [unknown] 的标志。

为什么会有这个错误呢？实际上，这是由于案例应用运行在容器中导致的。memleak 工具

运行在容器之外，并不能直接访问进程路径 /app。

比方说，在终端中直接运行 ls 命令，你会发现，这个路径的确不存在：

类似的问题，我在 CPU 模块中的 perf 使用方法中已经提到好几个解决思路。最简单的方

法，就是在容器外部构建相同路径的文件以及依赖库。这个案例只有一个二进制文件，所以

只要把案例应用的二进制文件放到 /app 路径中，就可以修复这个问题。

比如，你可以运行下面的命令，把 app 二进制文件从容器中复制出来，然后重新运行

memleak 工具：

这一次，我们终于看到了内存分配的调用栈，原来是 fibonacci() 函数分配的内存没释放。

1

2

$ ls /app
ls: cannot access '/app': No such file or directory

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

$ docker cp app:/app /app
$ /usr/share/bcc/tools/memleak -p $(pidof app) -a
Attaching to pid 12512, Ctrl+C to quit.
[03:00:41] Top 10 stacks with outstanding allocations:
 addr = 7f8f70863220 size = 8192
 addr = 7f8f70861210 size = 8192
 addr = 7f8f7085b1e0 size = 8192
 addr = 7f8f7085f200 size = 8192
 addr = 7f8f7085d1f0 size = 8192
 40960 bytes in 5 allocations from stack
 fibonacci+0x1f [app]
 child+0x4f [app]
 start_thread+0xdb [libpthread-2.27.so]

复制代码

https://time.geekbang.org/column/article/73738

定位了内存泄漏的来源，下一步自然就应该查看源码，想办法修复它。我们一起来看案例应

用的源代码 app.c：

你会发现， child() 调用了 fibonacci() 函数，但并没有释放 fibonacci() 返回的内存。所

以，想要修复泄漏问题，在 child() 中加一个释放函数就可以了，比如：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

$ docker exec app cat /app.c
...
long long *fibonacci(long long *n0, long long *n1)
{
 // 分配 1024 个长整数空间方便观测内存的变化情况

 long long *v = (long long *) calloc(1024, sizeof(long long));
 *v = *n0 + *n1;
 return v;
}

void *child(void *arg)
{
 long long n0 = 0;
 long long n1 = 1;
 long long *v = NULL;
 for (int n = 2; n > 0; n++) {
 v = fibonacci(&n0, &n1);
 n0 = n1;
 n1 = *v;
 printf("%dth => %lld\n", n, *v);
 sleep(1);
 }
}
...

复制代码

1

2

3

4

5

6

7

8

9

10

11

void *child(void *arg)
{
 ...
 for (int n = 2; n > 0; n++) {
 v = fibonacci(&n0, &n1);
 n0 = n1;
 n1 = *v;
 printf("%dth => %lld\n", n, *v);
 free(v); // 释放内存

 sleep(1);
 }

复制代码

https://github.com/feiskyer/linux-perf-examples/blob/master/mem-leak/app.c

我把修复后的代码放到了 app-fix.c，也打包成了一个 Docker 镜像。你可以运行下面的命

令，验证一下内存泄漏是否修复：

现在，我们看到，案例应用已经没有遗留内存，证明我们的修复工作成功完成。

小结

总结一下今天的内容。

应用程序可以访问的用户内存空间，由只读段、数据段、堆、栈以及文件映射段等组成。其

中，堆内存和内存映射，需要应用程序来动态管理内存段，所以我们必须小心处理。不仅要

会用标准库函数 malloc() 来动态分配内存，还要记得在用完内存后，调用库函数 _free() 来

_ 释放它们。

今天的案例比较简单，只用加一个 free() 调用就能修复内存泄漏。不过，实际应用程序就

复杂多了。比如说，

12 }

1

2

3

4

5

6

7

8

9

10

11

清理原来的案例应用

$ docker rm -f app

运行修复后的应用

$ docker run --name=app -itd feisky/app:mem-leak-fix

重新执行 memleak 工具检查内存泄漏情况

$ /usr/share/bcc/tools/memleak -a -p $(pidof app)
Attaching to pid 18808, Ctrl+C to quit.
[10:23:18] Top 10 stacks with outstanding allocations:
[10:23:23] Top 10 stacks with outstanding allocations:

复制代码

malloc() 和 free() 通常并不是成对出现，而是需要你，在每个异常处理路径和成功路径

上都释放内存 。

在多线程程序中，一个线程中分配的内存，可能会在另一个线程中访问和释放。

https://github.com/feiskyer/linux-perf-examples/blob/master/mem-leak/app-fix.c

所以，为了避免内存泄漏，最重要的一点就是养成良好的编程习惯，比如分配内存后，一定

要先写好内存释放的代码，再去开发其他逻辑。还是那句话，有借有还，才能高效运转，再

借不难。

当然，如果已经完成了开发任务，你还可以用 memleak 工具，检查应用程序的运行中，内

存是否泄漏。如果发现了内存泄漏情况，再根据 memleak 输出的应用程序调用栈，定位内

存的分配位置，从而释放不再访问的内存。

思考

最后，给你留一个思考题。

今天的案例，我们通过增加 free() 调用，释放函数 fibonacci() 分配的内存，修复了内存泄

漏的问题。就这个案例而言，还有没有其他更好的修复方法呢？结合前面学习和你自己的工

作经验，相信你一定能有更多更好的方案。

欢迎留言和我讨论 ，写下你的答案和收获，也欢迎你把这篇文章分享给你的同事、朋友。

我们一起在实战中演练，在交流中进步。

更复杂的是，在第三方的库函数中，隐式分配的内存可能需要应用程序显式释放。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 17 | 案例篇：如何利用系统缓存优化程序的运行效率？

下一篇 19 | 案例篇：为什么系统的Swap变高了（上）

Scott
2019-01-01

 19

我比较关心老版本的Linux怎么做同样的事，毕竟没有办法升级公司服务器的内核。

作者回复: 另一个用的比较多的是valgrind

mj4ever
2019-01-01

 9

老师：
遇到了个问题，google也查不出所以然：
1、ubuntu 18.04，内核4.15.0-29-generic
2、运行 memleak -a -p $(pidof app)，报错：
Attaching to pid 14069, Ctrl+C to quit. …
展开

我来也
2018-12-31

 4

[D18打卡]
想不到又有神器可以直接分析出是哪个函数导致了内存泄露。
以前都是在申请和释放的地方加标记，然后用工具去分析。
思考题：
一般能预分配的空间都没必要去动态申请。 …
展开

郭江伟  3

精选留言 (62)  写留言

2018-12-31

本例中将动态分配内存改为使用数组，然后就不需要自己free了；
将app.c拷贝为app2.c 做如下修改，因为篇幅有限没法贴完全代码：
long long fibonacci(long long *n0, long long *n1)
{
 //分配1024个长整数空间方便观测内存的变化情况 …
// long long *v = (long long *) calloc(1024, sizeof(long long));
 long long v[1024];
然后执行memleak
gjw@gjw:~

(pidof app2c)
Attaching to pid 3463, Ctrl+C to quit.
[13:02:24] Top 10 stacks with outstanding allocations:
[13:02:29] Top 10 stacks with outstanding allocations:
^Cgjw@gjw:~

(pidof app2c)
Attaching to pid 3463, Ctrl+C to quit.
[13:02:43] Top 10 stacks with outstanding allocations:
[13:02:48] Top 10 stacks with outstanding allocations:
[13:02:53] Top 10 stacks with outstanding allocations: …
展开

阿西吧
2019-01-04

 2

老师，你这个例子是已经知道哪个进程有内存泄露了，请问如何找出哪个进程呢？

作者回复: 去掉进程号选项

付盼星
2018-12-31

 2

老师好，我有个问题想请教下，这里的堆栈和java虚拟机的堆栈是对应起来的么？

Vicky🐣...
2019-02-23

 1

1. 如果执行/usr/share/bcc/tools/memleak -a -p [pid] 就会报错Exception: Failed to
attach BPF to uprobe
但是执行/usr/share/bcc/tools/memleak -a，就不会报错，但是里面并没有和app相关函
数
2. free观察情况如下，新机器，并没有任何其他高占用内存的进程，很是奇怪 …
展开

sudo/usr/share/bcc/tools/memleak − p

sudo/usr/share/bcc/tools/memleak − p

作者回复: 看一下内核配置开启CONFIG_UPROBE_EVENTS了吗？

Vicky🐣...
2019-02-23

 1

老师，很多同学都问这个问题了，麻烦解答一下吧
ubuntu 4.15.0-29
/usr/share/bcc/tools/memleak -a -p 21642
Attaching to pid 21642, Ctrl+C to quit.
perf_event_open(/sys/kernel/debug/tracing/events/uprobes/p__lib_x86_64_linux_…
展开

作者回复: 内核中需要开启 CONFIG_UPROBE_EVENTS=y

仲鬼
2019-01-04

 1

老师好，之前哪节课讲过pmap？并没有找到

展开

作者回复: 没有专门讲它的使用方法，不过很容易查到它的使用手册

夜空中最亮...
2019-01-02

 1

老师，代码段里面可否把 代码前面的 $ 或 # 号，去掉。带着还的手动去掉下才能执行代码

作者回复: 还是需要留着，去掉就不容易区分注释、命令和输出了

划时代
2019-01-02

 1

memleak好像要比valgrind进行内存泄漏检测要方便很多。

作者回复: 是的

Maxwell
2019-01-02

 1

如果是java应用程序，也可以用这个方法定位么？

展开

作者回复: Java 看到的是JVM 的堆栈。其实，jmap这些Java原生的工具更好用

code2
2019-01-01

 1

防止内存泄露，在c中最好让malloc和free成对出现，不要在函数中分配，在函数外释放，
这样一不留神就忘了，检查时也不容易发现。也可使用一些源代码内存泄露检测工具。在
C++中除了成对出现外还要注意new和delete使用的一些要点。曾遇到过一个投资数千万
的大项目，java做的，因内存泄露不能查明原因，服务器不得不每月杀掉服务进程，重新
启动。

展开

David.cui
2018-12-31

 1

老师讲的都是进程和操作系统之间的内存问题，我想请教一下老师如果是进程里面有多线
程，如果怀疑发生了内存泄漏，有什么办法可以处理或分析

展开

Aaron Che...
2018-12-31

 1

坚持初衷，死磕就行，不退缩，不放弃！

展开

萧董
2018-12-31

 1

memleak输出中一直有addr就是内存没有释放吗

展开

espzest
2018-12-31

 1

程序长期运行后，VSZ一直增长，其中很绝大多数是匿名页导致的，有没有没法确定这些
匿名页是依然在用？ 如果没有再用，能有办法强制释放他们？

展开

姜小鱼
2019-05-07



老师，memleak只能检测用户程序的内存泄漏吧？如果检测内核态谋和模块内存泄漏呢，
Kmemleak能否讲一下呢？

展开

作者回复: 也支持内核的，看它的源码可以发现，kmalloc/kfree/kmem_cache_alloc等等也都在

TRACEPOINT_PROBE里面

小贝_No_7
2019-05-05



memleak -a -p 4493
Attaching to pid 4493, Ctrl+C to quit.
[16:38:27] Top 10 stacks with outstanding allocations:
[16:38:32] Top 10 stacks with outstanding allocations:
[16:38:37] Top 10 stacks with outstanding allocations: …
展开

枫林居士
2019-05-02



Traceback (most recent call last):
 File "/usr/share/bcc/tools/memleak", line 401, in <module>
 bpf = BPF(text=bpf_source)
 File "/usr/lib/python2.7/site-packages/bcc/__init__.py", line 318, in __init__
 raise Exception("Failed to compile BPF text") …

展开

作者回复: 什么版本的内核？注意 bcc 需要新版本的内核才可以使用(4.1)

