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你好，我是倪朋飞。

上一节，我们梳理了，应用程序容器化后性能下降的分析方法。一起先简单回顾下。

容器利用 Linux 内核提供的命名空间技术，将不同应用程序的运行隔离起来，并用统一的

镜像，来管理应用程序的依赖环境。这为应用程序的管理和维护，带来了极大的便捷性，并

进一步催生了微服务、云原生等新一代技术架构。

不过，虽说有很多优势，但容器化也会对应用程序的性能带来一定影响。比如，上一节我们

一起分析的 Java 应用，就容易发生启动过慢、运行一段时间后 OOM 退出等问题。当你碰

到这种问题时，不要慌，我们前面四大基础模块中的各种思路，都依然适用。
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实际上，我们专栏中的很多案例都在容器中运行。容器化后，应用程序会通过命名空间进行

隔离。所以，你在分析时，不要忘了结合命名空间、cgroups、iptables 等来综合分析。比

如：

关于 NAT 的影响，我在网络模块的 如何优化 NAT 性能 文章中，已经为你介绍了很多优化

思路。今天，我们一起来看另一种情况，也就是丢包的分析方法。

所谓丢包，是指在网络数据的收发过程中，由于种种原因，数据包还没传输到应用程序中，

就被丢弃了。这些被丢弃包的数量，除以总的传输包数，也就是我们常说的丢包率。丢包率

是网络性能中最核心的指标之一。

丢包通常会带来严重的性能下降，特别是对 TCP 来说，丢包通常意味着网络拥塞和重传，

进而还会导致网络延迟增大、吞吐降低。

接下来，我就以最常用的反向代理服务器 Nginx 为例，带你一起看看，如何分析网络丢包

的问题。由于内容比较多，这个案例将分为上下两篇来讲解，今天我们先看第一部分内容。

案例准备

今天的案例需要用到两台虚拟机，还是基于 Ubuntu 18.04，同样适用于其他的 Linux 系

统。我使用的案例环境如下所示：

这些工具，我们在前面的案例中已经多次使用，这里就不再重复介绍。

现在，打开两个终端，分别登录到这两台虚拟机中，并安装上述工具。

注意，以下所有命令都默认以 root 用户运行，如果你用普通用户身份登陆系统，请运行

sudo su root 命令，切换到 root 用户。

cgroups 会影响容器应用的运行；

iptables 中的 NAT，会影响容器的网络性能；

叠加文件系统，会影响应用的 I/O 性能等。

机器配置：2 CPU，8GB 内存。

预先安装 docker、curl、hping3 等工具，如 apt install docker.io curl hping3。

https://time.geekbang.org/column/article/83189


到这里，准备工作就完成了。接下来，我们正式进入操作环节。

案例分析

我们今天要分析的案例是一个 Nginx 应用，如下图所示，hping3 和 curl 是 Nginx 的客户

端。

为了方便你运行，我已经把它打包成了一个 Docker 镜像，并推送到 Docker Hub 中。你

可以直接按照下面的步骤来运行它。

在终端一中执行下面的命令，启动 Nginx 应用，并在 80 端口监听。如果一切正常，你应

该可以看到如下的输出：

如果安装过程有问题，你可以先上网搜索解决，实在解决不了的，记得在留

言区向我提问。

1

2

$ docker run --name nginx --hostname nginx --privileged -p 80:80 -itd feisky/nginx:drop
dae0202cc27e5082b282a6aeeb1398fcec423c642e63322da2a97b9ebd7538e0
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然后，执行 docker ps 命令，查询容器的状态，你会发现容器已经处于运行状态（Up）

了：

不过，从 docker ps 的输出，我们只能知道容器处于运行状态，至于 Nginx 是否可以正常

处理外部请求，还需要进一步的确认。

接着，我们切换到终端二中，执行下面的 hping3 命令，进一步验证 Nginx 是不是真的可

以正常访问了。注意，这里我没有使用 ping，是因为 ping 基于 ICMP 协议，而 Nginx 使

用的是 TCP 协议。

从 hping3 的输出中，我们可以发现，发送了 10 个请求包，却只收到了 5 个回复，50%

的包都丢了。再观察每个请求的 RTT 可以发现，RTT 也有非常大的波动变化，小的时候只

有 3ms，而大的时候则有 3s。

根据这些输出，我们基本能判断，已经发生了丢包现象。可以猜测，3s 的 RTT ，很可能是

因为丢包后重传导致的。那到底是哪里发生了丢包呢？

1

2

3

$ docker ps
CONTAINER ID        IMAGE               COMMAND             CREATED             STATUS  
dae0202cc27e        feisky/nginx:drop   "/start.sh"         4 minutes ago       Up 4 min
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# -c 表示发送 10 个请求，-S 表示使用 TCP SYN，-p 指定端口为 80
$ hping3 -c 10 -S -p 80 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=3 win=5120 rtt=7.5 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=4 win=5120 rtt=7.4 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=5 win=5120 rtt=3.3 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=7 win=5120 rtt=3.0 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=6 win=5120 rtt=3027.2 ms
 
--- 192.168.0.30 hping statistic ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max = 3.0/609.7/3027.2 ms
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排查之前，我们可以回忆一下 Linux 的网络收发流程，先从理论上分析，哪里有可能会发

生丢包。你不妨拿出手边的笔和纸，边回忆边在纸上梳理，思考清楚再继续下面的内容。

在这里，为了帮你理解网络丢包的原理，我画了一张图，你可以保存并打印出来使用：

从图中你可以看出，可能发生丢包的位置，实际上贯穿了整个网络协议栈。换句话说，全程

都有丢包的可能。比如我们从下往上看：

在两台 VM 连接之间，可能会发生传输失败的错误，比如网络拥塞、线路错误等；

在网卡收包后，环形缓冲区可能会因为溢出而丢包；

在链路层，可能会因为网络帧校验失败、QoS 等而丢包；

在 IP 层，可能会因为路由失败、组包大小超过 MTU 等而丢包；

在传输层，可能会因为端口未监听、资源占用超过内核限制等而丢包；

在套接字层，可能会因为套接字缓冲区溢出而丢包；

在应用层，可能会因为应用程序异常而丢包；

此外，如果配置了 iptables 规则，这些网络包也可能因为 iptables 过滤规则而丢包。



当然，上面这些问题，还有可能同时发生在通信的两台机器中。不过，由于我们没对 VM2

做任何修改，并且 VM2 也只运行了一个最简单的 hping3 命令，这儿不妨假设它是没有问

题的。

为了简化整个排查过程，我们还可以进一步假设， VM1 的网络和内核配置也没问题。这样

一来，有可能发生问题的位置，就都在容器内部了。

现在我们切换回终端一，执行下面的命令，进入容器的终端中：

在这里简单说明一下，接下来的所有分析，前面带有 root@nginx:/# 的操作，都表示在容

器中进行。

那么， 接下来，我们就可以从协议栈中，逐层排查丢包问题。

链路层

首先，来看最底下的链路层。当缓冲区溢出等原因导致网卡丢包时，Linux 会在网卡收发数

据的统计信息中，记录下收发错误的次数。

你可以通过 ethtool 或者 netstat ，来查看网卡的丢包记录。比如，可以在容器中执行下面

的命令，查看丢包情况：

1

2

$ docker exec -it nginx bash
root@nginx:/#
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注意：实际环境中，容器内部和外部都有可能发生问题。不过不要担心，容

器内、外部的分析步骤和思路都是一样的，只不过要花更多的时间而已。
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root@nginx:/# netstat -i
Kernel Interface table
Iface      MTU    RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       100       31      0      0 0             8      0      0      0 BMRU
lo       65536        0      0      0 0             0      0      0      0 LRU
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输出中的 RX-OK、RX-ERR、RX-DRP、RX-OVR ，分别表示接收时的总包数、总错误数、

进入 Ring Buffer 后因其他原因（如内存不足）导致的丢包数以及 Ring Buffer 溢出导致的

丢包数。

TX-OK、TX-ERR、TX-DRP、TX-OVR 也代表类似的含义，只不过是指发送时对应的各个

指标。

从这个输出中，我们没有发现任何错误，说明容器的虚拟网卡没有丢包。不过要注意，如果

用 tc 等工具配置了 QoS，那么 tc 规则导致的丢包，就不会包含在网卡的统计信息中。

所以接下来，我们还要检查一下 eth0 上是否配置了 tc 规则，并查看有没有丢包。我们继

续容器终端中，执行下面的 tc 命令，不过这次注意添加 -s 选项，以输出统计信息：

从 tc 的输出中可以看到， eth0 上面配置了一个网络模拟排队规则（qdisc netem），并

且配置了丢包率为 30%（loss 30%）。再看后面的统计信息，发送了 8 个包，但是丢了 4

个。

看来，应该就是这里，导致 Nginx 回复的响应包，被 netem 模块给丢了。

既然发现了问题，解决方法也就很简单了，直接删掉 netem 模块就可以了。我们可以继续

在容器终端中，执行下面的命令，删除 tc 中的 netem 模块：

注意，由于 Docker 容器的虚拟网卡，实际上是一对 veth pair，一端接入容

器中用作 eth0，另一端在主机中接入 docker0 网桥中。veth 驱动并没有实

现网络统计的功能，所以使用 ethtool -S 命令，无法得到网卡收发数据的汇

总信息。
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3

4

root@nginx:/# tc -s qdisc show dev eth0
qdisc netem 800d: root refcnt 2 limit 1000 loss 30%
 Sent 432 bytes 8 pkt (dropped 4, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0
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删除后，问题到底解决了没？我们切换到终端二中，重新执行刚才的 hping3 命令，看看现

在还有没有问题：

不幸的是，从 hping3 的输出中，我们可以看到，跟前面现象一样，还是 50% 的丢包；

RTT 的波动也仍旧很大，从 3ms 到 1s。

显然，问题还是没解决，丢包还在继续发生。不过，既然链路层已经排查完了，我们就继续

向上层分析，看看网络层和传输层有没有问题。

网络层和传输层

我们知道，在网络层和传输层中，引发丢包的因素非常多。不过，其实想确认是否丢包，是

非常简单的事，因为 Linux 已经为我们提供了各个协议的收发汇总情况。

我们继续在容器终端中，执行下面的 netstat -s 命令，就可以看到协议的收发汇总，以及

错误信息了：

1 root@nginx:/# tc qdisc del dev eth0 root netem loss 30%
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$ hping3 -c 10 -S -p 80 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=7.9 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=2 win=5120 rtt=1003.8 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=5 win=5120 rtt=7.6 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=6 win=5120 rtt=7.4 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=9 win=5120 rtt=3.0 ms
 
--- 192.168.0.30 hping statistic ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max = 3.0/205.9/1003.8 ms
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root@nginx:/# netstat -s
Ip:
    Forwarding: 1     // 开启转发

    31 total packets received  // 总收包数
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netstat 汇总了 IP、ICMP、TCP、UDP 等各种协议的收发统计信息。不过，我们的目的是

排查丢包问题，所以这里主要观察的是错误数、丢包数以及重传数。

根据上面的输出，你可以看到，只有 TCP 协议发生了丢包和重传，分别是：
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    0 forwarded      // 转发包数

    0 incoming packets discarded // 接收丢包数

    25 incoming packets delivered // 接收的数据包数

    15 requests sent out   // 发出的数据包数

Icmp:
    0 ICMP messages received  // 收到的 ICMP 包数

    0 input ICMP message failed  // 收到 ICMP 失败数

    ICMP input histogram:
    0 ICMP messages sent   //ICMP 发送数

    0 ICMP messages failed   //ICMP 失败数

    ICMP output histogram:
Tcp:
    0 active connection openings // 主动连接数

    0 passive connection openings // 被动连接数

    11 failed connection attempts // 失败连接尝试数

    0 connection resets received // 接收的连接重置数

    0 connections established  // 建立连接数

    25 segments received   // 已接收报文数

    21 segments sent out   // 已发送报文数

    4 segments retransmitted  // 重传报文数

    0 bad segments received   // 错误报文数

    0 resets sent     // 发出的连接重置数

Udp:
    0 packets received
    ...
TcpExt:
    11 resets received for embryonic SYN_RECV sockets // 半连接重置数

    0 packet headers predicted
    TCPTimeouts: 7  // 超时数

    TCPSynRetrans: 4 //SYN 重传数

 ...

11 次连接失败重试（11 failed connection attempts）

4 次重传（4 segments retransmitted）

11 次半连接重置（11 resets received for embryonic SYN_RECV sockets）

4 次 SYN 重传（TCPSynRetrans）

7 次超时（TCPTimeouts）



这个结果告诉我们，TCP 协议有多次超时和失败重试，并且主要错误是半连接重置。换句

话说，主要的失败，都是三次握手失败。

不过，虽然在这儿看到了这么多失败，但具体失败的根源还是无法确定。所以，我们还需要

继续顺着协议栈来分析。接下来的几层又该如何分析呢？你不妨自己先来思考操作一下，下

一节我们继续来一起探讨。

小结

网络丢包，通常会带来严重的性能下降，特别是对 TCP 来说，丢包通常意味着网络拥塞和

重传，进一步还会导致网络延迟增大、吞吐降低。

今天的这个案例，我们学会了如何从链路层、网络层和传输层等入手，分析网络丢包的问

题。不过，案例最后，我们还没有找出最终的性能瓶颈，下一节，我将继续为你讲解。

思考

最后，给你留一个思考题，也是案例最后提到的问题。

今天我们只分析了链路层、网络层以及传输层等。而根据 TCP/IP 协议栈和 Linux 网络收发

原理，还有很多我们没分析到的地方。那么，接下来，我们又该如何分析，才能破获这个案

例，找出“真凶”呢？

欢迎在留言区和我讨论，也欢迎把这篇文章分享给你的同事、朋友。我们一起在实战中演

练，在交流中进步。
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上一篇 46 | 案例篇：为什么应用容器化后，启动慢了很多？

下一篇 48 | 案例篇：服务器总是时不时丢包，我该怎么办？（下）
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打卡day50 
还没来得及实践，思路是，在服务端用tcpdump抓包，然后导入wireshark分析～
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有可能nginx配置问题
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蓝雾里的部...
2019-03-13
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遇到过 ingress envoy -> 某组应用容器 时不时的容器访问 503的问题， 抓包放
wireshark 分析，发现有大量的 dup ack。 
2个容器的机器指标正常， pod 指标正常。 
 
至今不知道原因， 升级了操作系统内核后， 问题有所缓解，但是没有根本解决问题。 作…
展开

作者回复: 请参考文中（47和48篇）的思路分析

无名老卒
2019-05-04



经过一夜的思考，终于搞明白了，使用iptables做了限制，删除这2条规则就正常Ping了。 
 
root@nginx:/# iptables -nvL 
Chain INPUT (policy ACCEPT 84 packets, 3472 bytes) 
 pkts bytes target prot opt in out source destination …
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作者回复: 👍
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DAY47.打卡

展开

青石
2019-03-21
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TCP缓冲区在溢出后，数据会被阻塞并不会丢弃，从netstat可以看到Recv-Q的值很大。 
UDP缓冲区溢出，直接丢弃报文，从netstat -s可以看到UDP有大量的packet receive
errors错误。 
 
看了47、48节，并没有从套接字层排查问题是因为使用TCP协议的原因吗？
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作者回复: 我们这是丢包问题，只需要去分析netstat中有丢包的位置就可以了

cheyang
2019-03-20
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netstat -s中的failed connection attempts的ip源有办法定位到吗？

作者回复: ss 查看SYN-SENT状态的连接；或者，使用tcpdump抓包

亚洲-凯撒...
2019-03-16
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netstat -s 的数据怎么重置呢
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作者回复: 这是从proc文件系统读出来的，重置只能重启

H
2019-03-13



老师能详细解释下一TcpExt 里的指标分别是代表什么意思吗？

作者回复: 这儿指标太多了，大部分还都是完整的英语句子，应该很好理解。如果有哪个不懂的，

可以单独提出来

我来也
2019-03-13
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[D47打卡] 
不知为何,容器中的mtu值只有100, 即使`ifconfig eth0 mtu 1400`,丢包率也是依旧很高. 
我这边的hping3结果中,有些看不懂的地方: 
DUP! len=44 ip=192.168.1.128 ttl=63 DF id=0 sport=80 flags=SA seq=2



win=27200 rtt=1018.3 ms …
展开

作者回复: 你这容器中mtu只有100是更狠呀😊 

 

DUP表示收到了重复包

we
2019-03-13



老师 TcpExt: 表示什么项目哦？

展开

作者回复: 扩展TCP指标，相对于Tcp部分包含更多的指标




