
52 | 案例篇：服务吞吐量下降很厉害，怎么分析？
2019-03-25 倪朋飞

Linux性能优化实战 进入课程

讲述：冯永吉
时长 16:42 大小 15.30M

你好，我是倪朋飞。

上一节，我们一起学习了怎么使用动态追踪来观察应用程序和内核的行为。先简单来回顾一

下。

所谓动态追踪，就是在系统或者应用程序还在正常运行的时候，通过内核中提供的探针，来

动态追踪它们的行为，从而辅助排查出性能问题的瓶颈。

使用动态追踪，便可以在不修改代码也不重启服务的情况下，动态了解应用程序或者内核的

行为。这对排查线上的问题、特别是不容易重现的问题尤其有效。





 下载APP 

在 Linux 系统中，常见的动态追踪方法包括 ftrace、perf、eBPF/BCC 以及 SystemTap

等。

在 网络请求延迟变大 的案例中，我带你一起分析了一个网络请求延迟增大的问题。当时我

们分析知道，那是由于服务器端开启 TCP 的 Nagle 算法，而客户端却开启了延迟确认所导

致的。

其实，除了延迟问题外，网络请求的吞吐量下降，是另一个常见的性能问题。那么，针对这

种吞吐量下降问题，我们又该如何进行分析呢？

接下来，我就以最常用的反向代理服务器 Nginx 为例，带你一起看看，如何分析服务吞吐

量下降的问题。

案例准备

今天的案例需要用到两台虚拟机，还是基于 Ubuntu 18.04，同样适用于其他的 Linux 系

统。我使用的案例环境如下所示：

使用 perf 配合火焰图寻找热点函数，是一个比较通用的性能定位方法，在很多场景中都

可以使用。

如果这仍满足不了你的要求，那么在新版的内核中，eBPF 和 BCC 是最灵活的动态追踪

方法。

而在旧版本内核，特别是在 RHEL 系统中，由于 eBPF 支持受限，SystemTap 和 ftrace

往往是更好的选择。

机器配置：2 CPU，8GB 内存。

预先安装 docker、curl、wrk、perf、FlameGraph 等工具，比如

1

2

3

4

5

6

7

安装必备 docker、curl 和 perf
$ apt-get install -y docker.io curl build-essential linux-tools-common
安装火焰图工具

$ git clone https://github.com/brendangregg/FlameGraph
安装 wrk
$ git clone https://github.com/wg/wrk
$ cd wrk && make && sudo cp wrk /usr/local/bin/

复制代码

https://time.geekbang.org/column/article/82833

这些工具，我们在前面的案例中已经多次使用，这儿就不再重复。你可以打开两个终端，分

别登录到这两台虚拟机中，并安装上述工具。

到这里，准备工作就完成了。接下来，我们正式进入操作环节。

案例分析

我们今天要分析的案例是一个 Nginx + PHP 应用，它们的关系如下图所示：

其中，wrk 和 curl 是 Nginx 的客户端，而 PHP 应用则是一个简单的 Hello World：

注意，以下所有命令都默认以 root 用户运行，如果你用普通用户身份登陆系

统，请运行 sudo su root 命令切换到 root 用户。

1

2

3

<?php
echo "Hello World!"
?>

复制代码

为了方便你运行，我已经把案例应用打包成了两个 Docker 镜像，并推送到 Docker Hub

中。你可以直接按照下面的步骤来运行它。

同时，为了分析方便，这两个容器都将运行在 host network 模式中。这样，我们就不用切

换到容器的网络命名空间，而可以直接观察它们的套接字状态。

我们先在终端一中，执行下面的命令，启动 Nginx 应用，并监听在 80 端口。如果一切正

常，你应该可以看到如下的输出：

然后，执行 docker ps 命令，查询容器的状态，你会发现，容器已经处于运行状态（Up）

了：

不过，从 docker ps 的输出，我们只能知道容器处于运行状态。至于 Nginx 能不能正常处

理外部的请求，还需要我们进一步确认。

接着，切换到终端二中，执行下面的 curl 命令，进一步验证 Nginx 能否正常访问。如果你

看到 “Hello World!” 的输出，说明 Nginx+PHP 的应用已经正常启动了：

1

2

3

4

$ docker run --name nginx --network host --privileged -itd feisky/nginx-tp
6477c607c13b37943234755a14987ffb3a31c33a7f04f75bb1c190e710bce19e
$ docker run --name phpfpm --network host --privileged -itd feisky/php-fpm-tp
09e0255159f0c8a647e22cd68bd097bec7efc48b21e5d91618ff29b882fa7c1f

复制代码

1

2

3

4

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STA
09e0255159f0 feisky/php-fpm-tp "php-fpm -F --pid /o…" 28 seconds ago Up
6477c607c13b feisky/nginx-tp "/init.sh" 29 seconds ago Up

复制代码

1

2

$ curl http://192.168.0.30
Hello World!

复制代码

接下来，我们就来测试一下，案例中 Nginx 的吞吐量。

我们继续在终端二中，执行 wrk 命令，来测试 Nginx 的性能：

从 wrk 的结果中，你可以看到吞吐量（也就是每秒请求数）只有 189，并且所有 1910 个

请求收到的都是异常响应（非 2xx 或 3xx）。这些数据显然表明，吞吐量太低了，并且请

求处理都失败了。这是怎么回事呢？

根据 wrk 输出的统计结果，我们可以看到，总共传输的数据量只有 573 KB，那就肯定不会

是带宽受限导致的。所以，我们应该从请求数的角度来分析。

分析请求数，特别是 HTTP 的请求数，有什么好思路吗？当然就要从 TCP 连接数入手。

连接数优化

提示：如果你看到不一样的结果，可以再次执行 docker ps -a 确认容器的状

态，并执行 docker logs < 容器名 > 来查看容器日志，从而找出原因。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

默认测试时间为 10s，请求超时 2s
$ wrk --latency -c 1000 http://192.168.0.30
Running 10s test @ http://192.168.0.30
 2 threads and 1000 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 14.82ms 42.47ms 874.96ms 98.43%
 Req/Sec 550.55 1.36k 5.70k 93.10%
 Latency Distribution
 50% 11.03ms
 75% 15.90ms
 90% 23.65ms
 99% 215.03ms
 1910 requests in 10.10s, 573.56KB read
 Non-2xx or 3xx responses: 1910
Requests/sec: 189.10
Transfer/sec: 56.78KB

复制代码

要查看 TCP 连接数的汇总情况，首选工具自然是 ss 命令。为了观察 wrk 测试时发生的问

题，我们在终端二中再次启动 wrk，并且把总的测试时间延长到 30 分钟：

然后，回到终端一中，观察 TCP 连接数：

从这里看出，wrk 并发 1000 请求时，建立连接数只有 5，而 closed 和 timewait 状态的

连接则有 1100 多 。其实从这儿你就可以发现两个问题：

分析问题，自然要先从相对简单的下手。我们先来看第二个关于 timewait 的问题。在之前

的 NAT 案例中，我已经提到过，内核中的连接跟踪模块，有可能会导致 timewait 问题。

我们今天的案例还是基于 Docker 运行，而 Docker 使用的 iptables ，就会使用连接跟踪

模块来管理 NAT。那么，怎么确认是不是连接跟踪导致的问题呢？

其实，最简单的方法，就是通过 dmesg 查看系统日志，如果有连接跟踪出了问题，应该会

看到 nf_conntrack 相关的日志。

1

2

测试时间 30 分钟

$ wrk --latency -c 1000 -d 1800 http://192.168.0.30

复制代码

1

2

3

4

5

6

7

8

9

10

11

$ ss -s
Total: 177 (kernel 1565)
TCP: 1193 (estab 5, closed 1178, orphaned 0, synrecv 0, timewait 1178/0), ports 0

Transport Total IP IPv6
* 1565 - -
RAW 1 0 1
UDP 2 2 0
TCP 15 12 3
INET 18 14 4
FRAG 0 0 0

复制代码

一个是建立连接数太少了；

另一个是 timewait 状态连接太多了。

我们可以继续在终端一中，运行下面的命令，查看系统日志：

从日志中，你可以看到 nf_conntrack: table full, dropping packet 的错误日志。这说明，

正是连接跟踪导致的问题。

这种情况下，我们应该想起前面学过的两个内核选项——连接跟踪数的最大限制

nf_conntrack_max ，以及当前的连接跟踪数 nf_conntrack_count。执行下面的命令，你

就可以查询这两个选项：

这次的输出中，你可以看到最大的连接跟踪限制只有 200，并且全部被占用了。200 的限

制显然太小，不过相应的优化也很简单，调大就可以了。

我们执行下面的命令，将 nf_conntrack_max 增大：

连接跟踪限制增大后，对 Nginx 吞吐量的优化效果如何呢？我们不妨再来测试一下。你可

以切换到终端二中，按下 Ctrl+C ；然后执行下面的 wrk 命令，重新测试 Nginx 的性能：

1

2

3

4

$ dmesg | tail
[88356.354329] nf_conntrack: nf_conntrack: table full, dropping packet
[88356.354374] nf_conntrack: nf_conntrack: table full, dropping packet

复制代码

1

2

3

4

$ sysctl net.netfilter.nf_conntrack_max
net.netfilter.nf_conntrack_max = 200
$ sysctl net.netfilter.nf_conntrack_count
net.netfilter.nf_conntrack_count = 200

复制代码

1

2

将连接跟踪限制增大到 1048576
$ sysctl -w net.netfilter.nf_conntrack_max=1048576

复制代码

从 wrk 的输出中，你可以看到，连接跟踪的优化效果非常好，吞吐量已经从刚才的 189 增

大到了 5382。看起来性能提升了将近 30 倍，

不过，这是不是就能说明，我们已经把 Nginx 的性能优化好了呢？

别急，我们再来看看 wrk 汇报的其他数据。果然，10s 内的总请求数虽然增大到了 5 万，

但是有 4 万多响应异常，说白了，真正成功的只有 8000 多个（54221-45577=8644）。

很明显，大部分请求的响应都是异常的。那么，该怎么分析响应异常的问题呢？

工作进程优化

由于这些响应并非 Socket error，说明 Nginx 已经收到了请求，只不过，响应的状态码并

不是我们期望的 2xx （表示成功）或 3xx（表示重定向）。所以，这种情况下，搞清楚

Nginx 真正的响应就很重要了。

不过这也不难，我们切换回终端一，执行下面的 docker 命令，查询 Nginx 容器日志就知

道了：

从 Nginx 的日志中，我们可以看到，响应状态码为 499。

1

2

3

4

5

6

7

8

默认测试时间为 10s，请求超时 2s
$ wrk --latency -c 1000 http://192.168.0.30
...
 54221 requests in 10.07s, 15.16MB read
 Socket errors: connect 0, read 7, write 0, timeout 110
 Non-2xx or 3xx responses: 45577
Requests/sec: 5382.21
Transfer/sec: 1.50MB

复制代码

1

2

3

4

$ docker logs nginx --tail 3
192.168.0.2 - - [15/Mar/2019:2243:27 +0000] "GET / HTTP/1.1" 499 0 "-" "-" "-"
192.168.0.2 - - [15/Mar/2019:22:43:27 +0000] "GET / HTTP/1.1" 499 0 "-" "-" "-"
192.168.0.2 - - [15/Mar/2019:22:43:27 +0000] "GET / HTTP/1.1" 499 0 "-" "-" "-"

复制代码

499 并非标准的 HTTP 状态码，而是由 Nginx 扩展而来，表示服务器端还没来得及响应

时，客户端就已经关闭连接了。换句话说，问题在于服务器端处理太慢，客户端因为超时

（wrk 超时时间为 2s），主动断开了连接。

既然问题出在了服务器端处理慢，而案例本身是 Nginx+PHP 的应用，那是不是可以猜

测，是因为 PHP 处理过慢呢？

我么可以在终端中，执行下面的 docker 命令，查询 PHP 容器日志：

从这个日志中，我们可以看到两条警告信息，server reached max_children setting (5)，

并建议增大 max_children。

max_children 表示 php-fpm 子进程的最大数量，当然是数值越大，可以同时处理的请求

数就越多。不过由于这是进程问题，数量增大，也会导致更多的内存和 CPU 占用。所以，

我们还不能设置得过大。

一般来说，每个 php-fpm 子进程可能会占用 20 MB 左右的内存。所以，你可以根据内存

和 CPU 个数，估算一个合理的值。这儿我把它设置成了 20，并将优化后的配置重新打包

成了 Docker 镜像。你可以执行下面的命令来执行它：

然后我们切换到终端二，再次执行下面的 wrk 命令，重新测试 Nginx 的性能：

1

2

3

$ docker logs phpfpm --tail 5
[15-Mar-2019 22:28:56] WARNING: [pool www] server reached max_children setting (5), cons
[15-Mar-2019 22:43:17] WARNING: [pool www] server reached max_children setting (5), cons

复制代码

1

2

3

4

5

6

停止旧的容器

$ docker rm -f nginx phpfpm

使用新镜像启动 Nginx 和 PHP
$ docker run --name nginx --network host --privileged -itd feisky/nginx-tp:1
$ docker run --name phpfpm --network host --privileged -itd feisky/php-fpm-tp:1

复制代码

从 wrk 的输出中，可以看到，虽然吞吐量只有 4683，比刚才的 5382 少了一些；但是测试

期间成功的请求数却多了不少，从原来的 8000，增长到了 15000（47210-

31692=15518）。

不过，虽然性能有所提升，可 4000 多的吞吐量显然还是比较差的，并且大部分请求的响应

依然还是异常。接下来，该怎么去进一步提升 Nginx 的吞吐量呢？

套接字优化

回想一下网络性能的分析套路，以及 Linux 协议栈的原理，我们可以从从套接字、TCP 协

议等逐层分析。而分析的第一步，自然还是要观察有没有发生丢包现象。

我们切换到终端二中，重新运行测试，这次还是要用 -d 参数延长测试时间，以便模拟性能

瓶颈的现场：

然后回到终端一中，观察有没有发生套接字的丢包现象：

1

2

3

4

5

6

7

8

默认测试时间为 10s，请求超时 2s
$ wrk --latency -c 1000 http://192.168.0.30
...
 47210 requests in 10.08s, 12.51MB read
 Socket errors: connect 0, read 4, write 0, timeout 91
 Non-2xx or 3xx responses: 31692
Requests/sec: 4683.82
Transfer/sec: 1.24MB

复制代码

1

2

测试时间 30 分钟

$ wrk --latency -c 1000 -d 1800 http://192.168.0.30

复制代码

1

2

3

4

5

只关注套接字统计

$ netstat -s | grep socket
 73 resets received for embryonic SYN_RECV sockets
 308582 TCP sockets finished time wait in fast timer
 8 delayed acks further delayed because of locked socket

复制代码

根据两次统计结果中 socket overflowed 和 sockets dropped 的变化，你可以看到，有大

量的套接字丢包，并且丢包都是套接字队列溢出导致的。所以，接下来，我们应该分析连接

队列的大小是不是有异常。

你可以执行下面的命令，查看套接字的队列大小：

这次可以看到，Nginx 和 php-fpm 的监听队列 （Send-Q）只有 10，而 nginx 的当前监

听队列长度 （Recv-Q）已经达到了最大值，php-fpm 也已经接近了最大值。很明显，套

接字监听队列的长度太小了，需要增大。

关于套接字监听队列长度的设置，既可以在应用程序中，通过套接字接口调整，也支持通过

内核选项来配置。我们继续在终端一中，执行下面的命令，分别查询 Nginx 和内核选项对

监听队列长度的配置：

6

7

8

9

10

11

12

13

14

15

 290566 times the listen queue of a socket overflowed
 290566 SYNs to LISTEN sockets dropped

稍等一会，再次运行

$ netstat -s | grep socket
 73 resets received for embryonic SYN_RECV sockets
 314722 TCP sockets finished time wait in fast timer
 8 delayed acks further delayed because of locked socket
 344440 times the listen queue of a socket overflowed
 344440 SYNs to LISTEN sockets dropped

1

2

3

4

$ ss -ltnp
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 10 10 0.0.0.0:80 0.0.0.0:*
LISTEN 7 10 *:9000 *:*

复制代码

1

2

3

4

5

6

查询 nginx 监听队列长度配置

$ docker exec nginx cat /etc/nginx/nginx.conf | grep backlog
 listen 80 backlog=10;

查询 php-fpm 监听队列长度

$ docker exec phpfpm cat /opt/bitnami/php/etc/php-fpm.d/www.conf | grep backlog

复制代码

从输出中可以看到，Nginx 和 somaxconn 的配置都是 10，而 php-fpm 的配置也只有

511，显然都太小了。那么，优化方法就是增大这三个配置，比如，可以把 Nginx 和 php-

fpm 的队列长度增大到 8192，而把 somaxconn 增大到 65536。

同样地，我也把这些优化后的 Nginx ，重新打包成了两个 Docker 镜像，你可以执行下面

的命令来运行它：

然后，切换到终端二中，重新测试 Nginx 的性能：

现在的吞吐量已经增大到了 6185，并且在测试的时候，如果你在终端一中重新执行

netstat -s | grep socket，还会发现，现在已经没有套接字丢包问题了。

7

8

9

10

11

12

; Set listen(2) backlog.
;listen.backlog = 511

somaxconn 是系统级套接字监听队列上限

$ sysctl net.core.somaxconn
net.core.somaxconn = 10

1

2

3

4

5

6

停止旧的容器

$ docker rm -f nginx phpfpm

使用新镜像启动 Nginx 和 PHP
$ docker run --name nginx --network host --privileged -itd feisky/nginx-tp:2
$ docker run --name phpfpm --network host --privileged -itd feisky/php-fpm-tp:2

复制代码

1

2

3

4

5

6

$ wrk --latency -c 1000 http://192.168.0.30
...
 62247 requests in 10.06s, 18.25MB read
 Non-2xx or 3xx responses: 62247
Requests/sec: 6185.65
Transfer/sec: 1.81MB

复制代码

不过，这次 Nginx 的响应，再一次全部失败了，都是 Non-2xx or 3xx。这是怎么回事

呢？我们再去终端一中，查看 Nginx 日志：

你可以看到，Nginx 报出了无法连接 fastcgi 的错误，错误消息是 Connect 时， Cannot

assign requested address。这个错误消息对应的错误代码为 EADDRNOTAVAIL，表示

IP 地址或者端口号不可用。

在这里，显然只能是端口号的问题。接下来，我们就来分析端口号的情况。

端口号优化

根据网络套接字的原理，当客户端连接服务器端时，需要分配一个临时端口号，而 Nginx

正是 PHP-FPM 的客户端。端口号的范围并不是无限的，最多也只有 6 万多。

我们执行下面的命令，就可以查询系统配置的临时端口号范围：

你可以看到，临时端口的范围只有 50 个，显然太小了 。优化方法很容易想到，增大这个

范围就可以了。比如，你可以执行下面的命令，把端口号范围扩展为 “10000 65535”：

优化完成后，我们再次切换到终端二中，测试性能：

1

2

$ docker logs nginx --tail 10
2019/03/15 16:52:39 [crit] 15#15: *999779 connect() to 127.0.0.1:9000 failed (99: Cannot

复制代码

1

2

$ sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range=20000 20050

复制代码

1

2

$ sysctl -w net.ipv4.ip_local_port_range="10000 65535"
net.ipv4.ip_local_port_range = 10000 65535

复制代码

这次，异常的响应少多了 ，不过，吞吐量也下降到了 3208。并且，这次还出现了很多

Socket read errors。显然，还得进一步优化。

火焰图

前面我们已经优化了很多配置。这些配置在优化网络的同时，却也会带来其他资源使用的上

升。这样来看，是不是说明其他资源遇到瓶颈了呢？

我们不妨在终端二中，执行下面的命令，重新启动长时间测试：

然后，切换回终端一中，执行 top ，观察 CPU 和内存的使用：

1

2

3

4

5

6

7

$ wrk --latency -c 1000 http://192.168.0.30/
...
 32308 requests in 10.07s, 6.71MB read
 Socket errors: connect 0, read 2027, write 0, timeout 433
 Non-2xx or 3xx responses: 30
Requests/sec: 3208.58
Transfer/sec: 682.15KB

复制代码

1

2

测试时间 30 分钟

$ wrk --latency -c 1000 -d 1800 http://192.168.0.30

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

$ top
...
%Cpu0 : 30.7 us, 48.7 sy, 0.0 ni, 2.3 id, 0.0 wa, 0.0 hi, 18.3 si, 0.0 st
%Cpu1 : 28.2 us, 46.5 sy, 0.0 ni, 2.0 id, 0.0 wa, 0.0 hi, 23.3 si, 0.0 st
KiB Mem : 8167020 total, 5867788 free, 490400 used, 1808832 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 7361172 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20379 systemd+ 20 0 38068 8692 2392 R 36.1 0.1 0:28.86 nginx
20381 systemd+ 20 0 38024 8700 2392 S 33.8 0.1 0:29.29 nginx
 1558 root 20 0 1118172 85868 39044 S 32.8 1.1 22:55.79 dockerd
20313 root 20 0 11024 5968 3956 S 27.2 0.1 0:22.78 docker-containe
13730 root 20 0 0 0 0 I 4.0 0.0 0:10.07 kworker/u4:0-ev

复制代码

从 top 的结果中可以看到，可用内存还是很充足的，但系统 CPU 使用率（sy）比较高，两

个 CPU 的系统 CPU 使用率都接近 50%，且空闲 CPU 使用率只有 2%。再看进程部分，

CPU 主要被两个 Nginx 进程和两个 docker 相关的进程占用，使用率都是 30% 左右。

CPU 使用率上升了，该怎么进行分析呢？我想，你已经还记得我们多次用到的 perf，再配

合前两节讲过的火焰图，很容易就能找到系统中的热点函数。

我们保持终端二中的 wrk 继续运行；在终端一中，执行 perf 和 flamegraph 脚本，生成火

焰图：

然后，使用浏览器打开生成的 nginx.svg ，你就可以看到下面的火焰图：

1

2

3

4

5

执行 perf 记录事件

$ perf record -g

切换到 FlameGraph 安装路径执行下面的命令生成火焰图

$ perf script -i ~/perf.data | ./stackcollapse-perf.pl --all | ./flamegraph.pl > nginx.s

复制代码

根据我们讲过的火焰图原理，这个图应该从下往上、沿着调用栈中最宽的函数，来分析执行

次数最多的函数。

这儿中间的 do_syscall_64、tcp_v4_connect、inet_hash_connect 这个堆栈，很明显就

是最需要关注的地方。inet_hash_connect() 是 Linux 内核中负责分配临时端口号的函数。

所以，这个瓶颈应该还在临时端口的分配上。

在上一步的“端口号”优化中，临时端口号的范围，已经优化成了 “10000 65535”。这

显然是一个非常大的范围，那么，端口号的分配为什么又成了瓶颈呢？

一时想不到也没关系，我们可以暂且放下，先看看其他因素的影响。再顺着

inet_hash_connect 往堆栈上面查看，下一个热点是 __init_check_established 函数。而

这个函数的目的，是检查端口号是否可用。结合这一点，你应该可以想到，如果有大量连接

占用着端口，那么检查端口号可用的函数，不就会消耗更多的 CPU 吗？

实际是否如此呢？我们可以继续在终端一中运行 ss 命令， 查看连接状态统计：

这回可以看到，有大量连接（这儿是 32768）处于 timewait 状态，而 timewait 状态的连

接，本身会继续占用端口号。如果这些端口号可以重用，那么自然就可以缩短

__init_check_established 的过程。而 Linux 内核中，恰好有一个 tcp_tw_reuse 选项，用

来控制端口号的重用。

我们在终端一中，运行下面的命令，查询它的配置：

你可以看到，tcp_tw_reuse 是 0，也就是禁止状态。其实看到这里，我们就能理解，为什

么临时端口号的分配会是系统运行的热点了。当然，优化方法也很容易，把它设置成 1 就

可以开启了。

我把优化后的应用，也打包成了两个 Docker 镜像，你可以执行下面的命令来运行：

1

2

3

$ ss -s
TCP: 32775 (estab 1, closed 32768, orphaned 0, synrecv 0, timewait 32768/0), ports 0
...

复制代码

1

2

$ sysctl net.ipv4.tcp_tw_reuse
net.ipv4.tcp_tw_reuse = 0

复制代码

1

2

3

4

5

6

停止旧的容器

$ docker rm -f nginx phpfpm

使用新镜像启动 Nginx 和 PHP
$ docker run --name nginx --network host --privileged -itd feisky/nginx-tp:3
$ docker run --name phpfpm --network host --privileged -itd feisky/php-fpm-tp:3

复制代码

容器启动后，切换到终端二中，再次测试优化后的效果：

现在的吞吐量已经达到了 5000 多，并且只有少量的 Socket errors，也不再有 Non-2xx

or 3xx 的响应了。说明一切终于正常了。

案例的最后，不要忘记执行下面的命令，删除案例应用：

小结

今天，我带你一起学习了服务吞吐量下降后的分析方法。其实，从这个案例你也可以看出，

性能问题的分析，总是离不开系统和应用程序的原理。

实际上，分析性能瓶颈，最核心的也正是掌握运用这些原理。

从这个角度出发，再进一步借助 perf、火焰图、bcc 等动态追踪工具，找出热点函数，就

可以定位瓶颈的来源，确定相应的优化方法。

思考

1

2

3

4

5

6

$ wrk --latency -c 1000 http://192.168.0.30/
...
 52119 requests in 10.06s, 10.81MB read
 Socket errors: connect 0, read 850, write 0, timeout 0
Requests/sec: 5180.48
Transfer/sec: 1.07MB

复制代码

1

2

停止 nginx 和 phpfpm 容器

$ docker rm -f nginx phpfpm

复制代码

首先，利用各种性能工具，收集想要的性能指标，从而清楚系统和应用程序的运行状态；

其次，拿目前状态跟系统原理进行比较，不一致的地方，就是我们要重点分析的对象。

最后，我想邀请你一起来聊聊，你碰到过的吞吐量下降问题。你是怎么分析它们的根源？又

是怎么解决的？你可以结合我的讲述，总结自己的思路。

欢迎在留言区和我讨论，也欢迎把这篇文章分享给你的同事、朋友。我们一起在实战中演

练，在交流中进步。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 51 | 案例篇：动态追踪怎么用？（下）

下一篇 用户故事 | “半路出家 ”，也要顺利拿下性能优化！

我来也
2019-03-26

 4

[D52打卡]
哈哈,看专栏的同时,也在生产环境中执行下查看套接字的命令.
居然还发现了一个高并发时的隐患.
`ss -ltnp`

精选留言 (21)  写留言

 有些监听端口半链接队列的值偏小,只有32.而有些都是128. …
展开

xfan
2019-03-28

 1

内核选项 tcp_tw_reuse，不是直接修改内核参数就好了么，为什么还有修改后的tag:3 ,这
里不太清楚

作者回复: 嗯 也可以的。打包成镜像的是最后优化的结果

泡泡
2019-03-26

 1

wrk命令-c参数用来模拟连接数为1000，
为什么输出中的连接数有1910，不理解

作者回复: -c是并发数，输出中是每秒请求数，不是一回事

2xshu
2019-03-25

 1

老师，有个疑问。
套接字优化部分，你用ss -s输出的两个队列，根据“关于 Linux 网络，你必须知道这些
（下）”你讲的内容，当链接处于listening状态是，Send-Q和Recv-Q都是半链接队列，
但是你这里却都是调的全连接队列啊？不是应该调整tcp_max_syn_backlog吗？

展开

作者回复: 嗯，谢谢指出，是文中的步骤不严谨了。实际上应该再加上两步

1. 查看调优 tcp_max_syn_backlog

2. 观察全连接的状况之后再调优全连接队列

Maxwell
2019-03-25

 1

在公司局域网下做性能测试，如何判断网络会不会成为压测的瓶颈呢？也就是说如果开了
500线程进行压测，会不会因为网络瓶颈，导致请求无法发送到服务器端？

展开

作者回复: 可以在测试的时候同时观察一下网络吞吐和丢包（比如使用sar）

Lane
2019-03-25

 1

一天看2篇，终于追上进度了

展开

ninuxer
2019-03-25

 1

打卡day55
缺乏由现象联想到可能原因的系统性思维～

作者回复: 还是需要加强原理的理解

陳先森
2019-05-06



打下卡。

展开

如果
2019-04-22



DAY52，打卡

展开

腾达
2019-04-15



net.ipv4.tcp_tw_reuse = 1 这里是影响到socket的客户端（nginx作为一个客户端连接

php的服务端）的行为吗？ 不是影响到服务端的time_wait数量？ 我弄了个tomcat，用ab
压测，tw_use=1, 用ss -s看time_wait 还很高啊，1万多。

展开

作者回复: 嗯 用在客户端上

腾达
2019-04-12



是的，都对比过了，还包括php的配置，都对比过了

展开

腾达
2019-04-08



老师，针对我提的问题，您的回复是：“不过你可以docker exec到容器内部查看”，我已
经逐一对比过容器内的、我已知的参数了。未发现不同。您能否把最后一次的配置参数上
传一下到github？

作者回复: 包括内核选项和Nginx配置吗？

腾达
2019-04-05



有2个问题：
1、在做perf，制作火焰图的部分，我自己本地看到的函数热点是类似：inet_sendmsg,
tcp_write_xmit, e1000_xmit_frame 之类的，后续再对内核参数net.ipv4.tcp_tw_reuse做
设置为1的处理后，函数热点依然是这几个。似乎我的机器上的热点是在发送数据，而不是
在端口重用？ …
2、老师最后1个步骤的镜像，即：
docker run --name phpfpm --network host --privileged -itd feisky/php-fpm-tp:3
这2个的配置能上传一下到github吗？我自己依照优化步骤修改的参数，放到镜像里去跑，

压测后Requests/sec只能达到： 1919，而是用老师的tag=3的镜像，压测后得到
Requests/sec是3107。我把我已知的参数都对比了一遍，如下： …
展开

作者回复: 优化后的配置没有上传到github里面，不过你可以docker exec到容器内部查看

dockerrun − −namenginx − −networkhost − −privileged − itdfeisky/ng

腾达
2019-04-01



有3个问题：
1.第一次运行 docker run --name nginx --network host --privileged -itd
feisky/nginx-tp这个命令，我参考的是对应的github.com/linux-perf-examples/nginx-
throughput/ 下的一些文件知道了参数配置，问题：nginx里的init.sh运行的时候，sysctl
修改的网络参数是作用在docker内的nginx？还是作用在宿主ubuntu上？ …
展开

作者回复: 1，2: 实际上修改的是Host的

3: 文章中有讲到，每个镜像使用之前的分析就是修改的内容

code2
2019-03-28



用桌面linux分析服务器性能，有些勉强。

展开

作者回复: 桌面Linux和服务器都适用的

夜空中最亮...
2019-03-26



报个到

展开

Maxwell
2019-03-26



Sar测试的只是网络的发送和接收数据吧，好像并不能发现网络的瓶颈导致压测请求无法发
送至服务器端？

作者回复: sar可以查看很多网络统计数据，可以看看-n选项的文档

Maxwell
2019-03-26



这个火焰图咋分析？我这边和你的好像不太一样，系统我也是ubantu18.04

作者回复: 火焰图的介绍在49篇，你可以照着分析下看看

Maxwell
2019-03-26



运行最后一次docker镜像，wrk测试结果中还是有很多error(read),请问这个error指的是
什么错误呢？
Running 10s test @ http://192.168.32.145
 2 threads and 1000 connections
 Thread Stats Avg Stdev Max +/- Stdev …
展开

作者回复: 看看socket errors这一行，有错误的类型。上面这个结果都是read错误

2xshu
2019-03-26



老师，怎么观察全链接的状况哇？ss -s？

展开

作者回复: ss -s 或者 ss -lnt

