异常

什么是异常，因为某些原因，使得程序无法继续执行下去
怎么处理异常：
程序员有意识的去处理一些可能会出现问题的地方（补漏洞（事前发生的）），但是这种意识不是常态。
但是程序当中，终究会发生一些无法预料的问题。
甚至有些问题我即便是预料到，但是人力有穷时
异常处理机制，处理那些你无法预料的问题。
当发生异常之后该怎么补救。（事后诸葛亮）
JAVA中异常处理的方式
捕获
自动抛出
手动抛出
捕获：
Try-catch-finally
Try-catch当中，在try的代码块当中，如果没有发生异常，则跳过catch，继续执行后续内容;如果发生异常，则对异常进行匹配，如果能匹配上，执行对应catch，执行catch完毕，则继续执行后续内容。
Exception：无论哪一种异常，其本质就是一个命名不同的异常类，只是对出现的异常进行标注，没有其他的作用。
Exception：是所有异常的父类
如果不能准确的匹配异常，那么和没有处理异常的效果是一致的
异常的堆栈信息（帮助定位异常所在和异常原因）
所在类
所处方法
发生异常的行数
异常信息
调用关系
Finally
无论如何都会被执行
如果没有finally，当没有匹配上异常的时候，这个时候程序会中断
优先级非常高，return是无法阻止finally执行的
能阻止finally的方式只有一个，就是关闭虚拟机
多重catch
某个try代码块当中，可能会存在多种类型的异常
那么这个时候，针对这些异常，需要一一甄别
异常的捕获也是有顺序的，自上而下，由小到大
catch和finally至少要有一种存在
一个方法当中不要把所有的内容都放入一个try-catch当中，这么做还不如不放。
在处理异常的时候是有策略的，并非一定要捕获。
异常是一种处理的手段，但是毕竟是事后，所以能预见的问题，还是要提前处理。
异常类需要注意的地方：
有意识的去了解一些特殊的，不那么常见的，有价值的异常。
在面试的时候，有帮助
当你的程序发生异常之后，如果要寻求帮助，千万千万不要只把异常名告诉别人。
自动抛出
Throws：如果不想对发生的异常进行处理，那么可以选择抛出异常
抛出异常，即谁调用，谁处理
继续抛出
自己处理
但凡在调用栈当中，有方法捕获了这个异常，那么后续调用则无需处理
捕获异常是异常处理的终点
当异常抛无可抛的时候，终归要有地方处理
main方法的异常抛给虚拟机处理了
手动抛出
Throw：由开发人员，自行决定，是否需要抛出异常，抛出何种异常。
在程序开发过程当中，如果某些原因会导致后续的数据出现不可逆的错误，完全可以自行决定抛出异常，帮助调用者定位。
异常的结构
Error：不可逆的错误，无法补救，通常是程序无法通过编译。
Exception：通常是在程序执行过程当中发生的问题，这个问题是语法可以通过编译，可以通过程序补救，或者修改的，逻辑上的漏洞
CheckedException：必须被处理的异常，直接继承Exception类的异常
RuntimeException：可以不用被处理的异常，直接或者间接的父类异常当中，一定会有RuntimeException
当异常无法准确的描述问题，那么这个时候需要自定义异常。
一般正轨的项目，通常是有自己的异常库
一般异常的命名规则，需要在末尾添加Exception字眼。
继承Exception/RuntimeException
调用父类构造，可以更加精细的描述异常的问题。
不一定非要调用父类构造，但是不调用的情况下，则没有带参数的构造
异常处理是一门艺术
真正使用好异常机制，能解决很多的现实问题
