
大明

极客时间Go初级工程师第二课

type 定义与 Server 抽象

目录 1. http 库

2. 基础语法 type

3. Server 与 Context 抽象

4. 简单支持 RESTFul API

http 库 —— Request 概览

• Body 和 GetBody

• URL

• Method

• Header

• Form

• ...

http 库 —— Request Body
• Body：只能读取一次，意味着你读了别人

就不能读了；别人读了你就不能读了；

http 库 —— Request Body - GetBody
• Body：只能读取一次，意味着你读了别人

就不能读了；别人读了你就不能读了；

• GetBody：原则上是可以多次读取，但是在
原生的http.Request里面，这个是 nil

• 在读取到 body 之后，我们就可以用于反
序列化，比如说将json格式的字符串转化
为一个对象等

http 库 —— Request Query

• 除了 Body，我们还可能传递参数的
地方是 Query

• 也就是
http://xxx.com/your/path?id=123
&b=456

• 所有的值都被解释为字符串，所以
需要自己解析为数字等

http 库 —— Request URL

• 包含路径方面的所有信息和一些很有用的
操作

http 库 —— Request URL

• URL 里面 Host 不一定有值

• r.Host 一般都有值，是Host这个header的
值

• RawPath 也是不一定有

• Path肯定有

Tip：实际中记得自己输出来看一下，确认有没有

http 库 —— Request Header

• header大体上是两类，一类是
http 预定义的；一类是自己定
义的

• Go 会自动将 header 名字转为
标准名字——其实就是大小写调
整

• 一般用 X 开头来表明是自己定
义的，比如说 X-mycompany-
your=header

http 库 —— Form

• Form 和 ParseForm

• 要先调用 ParseForm

• 建议加上 Content-Type:
application/x-www-form-
urlencoded

要点总结：http 库使用

• Body 和 GetBody：重点在于 Body 是一次性的，而 GetBody 默认情况下是没有，一般中间件
会考虑帮你注入这个方法

• URL：注意 URL 里面的字段的含义可能并不如你期望的那样

• Form：记得调用前先用 ParseForm，别忘了请求里面加上 http 头

如何使用 Golang Debug?

如何使用 Golang Debug?

如何使用 Golang Debug?

基础语法 —— type 定义

• type 定义

• type 名字 interface {}

• type 名字 struct {}

• type 名字 别的类型

• type 别名 = 别的类型

• 结构体初始化

• 指针与方法接收器

• 结构体如何实现接口

从 Http Server 开始

这个东西，缺乏一个逻辑上

的联系，至少联系不够紧密

Http Server 抽象

我想要一个 Server 的东西，表达一种逻

辑上的抽象，它代表的是对某个端口的进行

监听的实体，必要的时候，我可以开启多个

Server，来监听多个端口

Http Server 抽象 —— 接口定义

这两个方法直接来
源于这里

基础语法 —— interface 定义

• 基本语法 type 名字 interface {}

• 里面只能有方法，方法也不需要 func 关
键字

• 啥是接口（interface）：接口是一组行为
的抽象

• 尽量用接口，以实现面向接口编程

Tip：当你怀疑要不要用接口的时候，加上去总是很保险的

基础语法 —— struct 定义

• 基本语法:

type Name struct {

 fieldName FieldType

 // ...

}

• 结构体和结构体的字段都遵循大小写控制
访问性的原则

Tip：其实还有别的第三方 http 库，也可以用来实现一个
server

基础语法 —— type A B

• 基本语法: type TypeA TypeB

• 我一般是，在我使用第三方库又没有办法
修改源码的情况下，又想在扩展这个库的
结构体的方法，就会用这个

基础语法 —— type A B

Tip：这个不用记，属于那种看上去很复杂，但是实际你根本
不会这么写的东西。

基础语法 —— type A = B

• 基本语法: type TypeA = TypeB

• 别名，除了换了一个名字，没有任何区别

基础语法 —— type 定义

• type 定义

• type 名字 interface {}

• type 名字 struct {}

• type 名字 别的类型

• type 别名 = 别的类型

• 结构体初始化

• 指针与方法接收器

• 结构体如何实现接口

基础语法 —— 初始化

• Go 没有构造函数！！

• 初始化语法：Struct{}

• 获取指针： &Struct{}

• 获取指针2：new(Struct)

• new 可以理解为 Go 会为你的变
量分配内存，并且把内存都置为
0

基础语法 —— 初始化

基础语法 —— 字段赋值

基础语法 —— type 定义

• type 定义

• type 名字 interface {}

• type 名字 struct {}

• type 名字 别的类型

• type 别名 = 别的类型

• 结构体初始化

• 指针与方法接收器

• 结构体如何实现接口

基础语法 —— 指针

• 和 C，C++ 一样，*表示指针，
&取地址

• 如果声明了一个指针，但是没有
赋值，那么它是 nil

基础语法 —— 结构体自引用

• 结构体内部引用自己，只能使用
指针

• 准确来说，在整个引用链上，如
果构成循环，那就只能用指针

基础语法 —— 方法接收器

• 结构体接收器内部永远不要修
改字段

基础语法 —— 方法接收器

Tip：结构体和指针之间的方法可以互相调用

基础语法 —— 方法接收器用哪个？

• 设计不可变对象，用结构体接收器

• 其它用指针

• 总结：遇事不决用指针

基础语法 —— type 定义

• type 定义

• type 名字 interface {}

• type 名字 struct {}

• type 名字 别的类型

• type 别名 = 别的类型

• 结构体初始化

• 指针与方法接收器

• 结构体如何实现接口

基础语法 —— 结构体如何实现接口？

当看到一只鸟走起来像鸭子、游泳起来像
鸭子、叫起来也像鸭子，那么这只鸟就可
以被称为鸭子。

当一个结构体具备接口的所有的方法的时
候，它就实现了这个接口

基础语法 —— 结构体如何实现接口？

基础语法 —— 结构体如何实现接口？

基础语法 —— 结构体如何实现接口？

基础语法 —— 注释规范

• 以被注释的开头，后面跟着描述

要点总结： type

• type 定义熟记。其中 type A=B 这种别名，一般只用于兼容性处理，
所以不需要过多关注；

• 先有抽象再有实现，所以要先定义接口

• 鸭子类型：一个结构体有某个接口的所有方法，它就实现了这个接口；

• 指针：方法接收器，遇事不决用指针；

Http Server —— Server 和 Context

• Http Server 实现

• Context抽象与实现

• 读取数据

• 写入响应

• 创建 Context

Http Server 实现

Http Server —— 用这个实现一下用户注册

Http Server —— Server 和 Context

• Http Server 实现

• Context抽象与实现

• 读取数据

• 写入响应

• 创建 Context

Http Context—— Context 抽象

基础语法 —— 空接口 interface{}

• 空接口 interface{} 不包含任
何方法

• 所以任何结构体都实现了该接口

• 类似于 Java 的 Object， 即所谓的继承
树根节点

基础语法 —— json 库

• 用于处理 json 格式的字符串

• 字段后面的内容被称为 Tag，即
标签，运行期间可以反射拿到

• json库依据 json Tag 的内容来
完成json数据到结构体的映射

• 典型的声明式API设计

Tip：利用Goland提示来查看 json 库有哪些方法

Http Server —— Server 和 Context

• Http Server 实现

• Context抽象与实现

• 读取数据

• 写入响应

• 创建 Context

Http Server —— 写入响应

• 强耦合 fmt 库

• 难以输出格式化数据，比如说返
回一个 json 数据给客户端

• 没有处理 http 响应码

Http Server —— 写入响应

Http Server —— 写入响应

这里有个小差异，是我们不再使用 fmt，而是直接使用 Write 方法

Http Server —— 进一步封装

• 提供辅助方法

• 注意！它不是 Context
本身必须要提供的方法！
即如果你在设计真实的
web 框架的时候，你需要
考虑清楚，究竟要不要提
供这种辅助方法

Tip：严格来说，WriteJson也是辅助方法

Http Context—— 对比

Http Server —— Server 和 Context

• Http Server 实现

• Context抽象与实现

• 读取数据

• 写入响应

• 创建 Context

Http Context—— 让 web 框架来创建 context

框架来创建context，就可以完全控制什么时候
创建，context可以有什么字段。作为设计者，
这种东西不能交给用户自由发挥。

Http Context—— 让 web 框架来创建 context

原本的 Router 方法已经不行了，需要改造

Http Server 改造

要点总结：Server 和 Context

• 从 http.Request 中读取数据并解析

• 往 http.ResponseWriter 中写入数据和响应

• json 数据的序列化与反序列化

设计是一个循序渐进，逐步迭代，螺旋上升的过程。

Http Server —— 支持 RESTFul API

• RESTFul API 定义

• 路由设计 —— Handler 抽象

• map 语法

• 基于 map 的 Handler 实现

• 语法：组合

• 重构

Http Server —— RESTFul API 定义

简单来说，就是http method 决定了操作，http
path 决定了操作对象

Http Server —— 如何支持 RESTFul API

http method + http path = http handler

Http Server —— 如何支持 RESTFul API

Http Server —— 支持 RESTFul API

• RESTFul API 定义

• 路由设计 —— Handler 抽象

• map 语法

• 基于 map 的 Handler 实现

• 语法：组合

• 重构

Http Server —— Handler 抽象

• 实现一个 Handler，它负
责路由

• 如果找到了路由，就执行
业务代码

• 找不到就返回 404

Http Server —— 如何路由？

• 尝试用 map 写一个最简
单的版本

Http Server —— 如何路由？

• 尝试用 map 写一个最简
单的版本

基础语法 —— map

• 基本形式：map[KeyType]ValueType

• 创建 make 命令，或者直接初始化

• 取值：val, ok := m[key]

• 设值：m[key]=val

• key 类型：“可比较”类型

Tip：编译器会告诉你能不能做 key

Tip：尽量用基本类型和string做key，不要和自己过不去

基础语法 —— map 遍历

• for key, val := range m {}

• Go 一个 for 打天下

• Go 的 map 的遍历，顺序是不定的

Http Server —— 基于 map 的路由

Http Server —— 基于 map 的路由

这种实现有什么缺点？

Http Server —— 基于 map 的路由

• 和实现 HandlerBasedOnMap
强耦合

• Route 方法依赖于知道
HandlerBasedOnMap 的内部
细节

• 当我们想要扩展到利用路有
树来实现的时候，
sdkHttpServer 也要修改

Http Server —— 支持 RESTFul API

• RESTFul API 定义

• 路由设计 —— Handler 抽象

• map 语法

• 基于 map 的 Handler 实现

• 语法：组合

• 重构

Http Server —— Handler 抽象

• 我们给 HandlerBasedOnMap
加一个方法：Route

• 我们希望 sdkHttpServer
依赖于一个接口，所以我们
定义一个自己的接口

Http Server —— 组合

• 组合可以是接口组合，也可
以是结构体组合。结构体也
可以组合接口

Http Server —— 组合

• 组合可以是接口组合，也可
以是结构体组合。结构体也
可以组合接口

Http Server —— 组合与重写

• Go 没有重写

• main 函数会输出 I am
Parent

• 而在典型的支持重写的语言，
如Java，我们可以期望它输
出 I am Son

Tip：当你写下类似继承的代码的时候，千万要先试试它会调
过去哪个方法

Http Server —— 支持 RESTFul API

• RESTFul API 定义

• 路由设计 —— Handler 抽象

• map 语法

• 基于 map 的 Handler 实现

• 语法：组合

• 重构

Http Server —— 实现 Handler 接口

Http Server —— 引入新接口

• Handler 和 Server 都有
Route 方法，就间接说明了
我们需要引入一个新的接口

Tip：设计不是凭空而来，而是不断重构而来的

Http Server —— 引入新接口

• Handler 和 Server 都有
Route 方法，就间接说明了
我们需要引入一个新的接口

Tip：设计不是凭空而来，而是不断重构而来的

Http Server —— 小技巧

Http Server —— 重构效果

课后练习

• 尝试设计树结构。设计 Tree 的顶级接口，并定义二叉树和多叉树的结构体。不要求实现接
口的方法；

• 实现二叉树的深度优先遍历或者广度优先遍历。可以使用递归；

• 利用 map 来实现一个 set

• leetcode 练习题（先看答案，再尝试用 Go 写出来）

• https://leetcode-cn.com/problems/binary-tree-preorder-traversal/

• https://leetcode-cn.com/problems/invert-binary-tree/

• https://leetcode-cn.com/problems/maximum-depth-of-n-ary-tree/solution/ncha-shu-de-zui-da-
shen-du-by-leetcode/

• 预习：sync 包和树的知识

