
大明

极客时间Go初级工程师第一课

Golang 基础语法和 Web 框架起步

关于本课程

• 掌握 Go 的基本语法
• 类型、方法、控制结构

• 接口与结构体

• 基本库与并发编程入门

• 掌握 Go Web 框架设计要点
• 如何设计路由树

• 掌握 Go 常用的设计模式

如何学习

• 上课听讲——有条件的跟着一起写代码

• 课后练习——编程不过是熟能生巧

多练习！！！！！！！

目录 1. 环境安装

2. 创建项目

3. Hello Go!

4. 基础语法

5. 最简单的 Web 服务器

目录 1. 环境安装

2. 创建项目

3. Hello Go!

4. 基础语法

5. 最简单的 Web 服务器

Hello Go! —— 第一个 Go 程序
• 创建 main.go 文件

Hello Go! —— 写下第一行代码

输入 m，按下 enter
依赖于goland的强大提示

Hello Go! —— 输出 Hello, Go

输入 pr，按下 enter

Hello Go! —— 第一次运行 Go

字面意思：无法在非main包
下运行

好用的翻译网站: https://www.deepl.com/en/translator

Hello Go! —— 第一次运行 Go

Hello Go! —— 第一次运行 Go

Hello Go! —— IDE 运行程序

目录 1. 环境安装

2. 创建项目

3. Hello Go!

4. 基础语法

5. 最简单的 Web 服务器

目录 1. main 函数概览

2. package 声明

3. string 和 基础类型

4. 变量声明

5. 方法声明与调用

基础语法 —— main 函数概览

基础语法 —— main 函数要点

• 无参数、无返回值

• main 方法必须要在 main 包里面

• `go run main.go` 就可以执行

• 如果文件不叫 `main.go`，则需要

`go build` 之后再 `go run`

目录 1. main 函数概览

2. package 声明

3. string 和 基础类型

4. 变量声明

5. 方法声明与调用

基础语法 —— 包声明

• 语法形式：package xxxx

• 字母和下划线的组合

• 可以和文件夹不同名字

• 同一个文件夹下的声明一致

Tip：使用Goland来创建文件夹，它会自动加上package

基础语法 —— 包声明

• 引入包语法形式：import [alias] xxx

• 如果一个包引入了但是没有使用，会报

错

• 匿名引入：前面多一个下划线

Tip：除了匿名引用，Goland 会帮你自动引入你代码里面用得
包，在你不用之后也会删除

目录 1. main 函数概览

2. package 声明

3. string 和 基础类型

4. 变量声明

5. 方法声明与调用

基础语法 —— string声明

• string：

• 双引号引起来，则内部双引号需要使用\转

义

• `引号引起来，则内部`需要\转义

Tip：不建议自己手写转义，而是自己先写好，然后复制过去
Goland，IDE 会自动完成转义。

基础语法 —— string 长度

• string 的长度很特殊：

• 字节长度：和编码无关，用 len(str)获取

• 字符数量：和编码有关，用编码库来计算

Tip：如果你觉得字符串里边会出现非 ASC II 的字符，就记得
用 utf8 库来计算“长度”

基础语法 —— strings 包

• string 的拼接直接使用 + 号就可以。注意的是，

某些语言支持 string 和别的类型拼接，但是

golang 不可以

• strings 主要方法（你所需要的全部都可以找

到）：

• 查找和替换

• 大小写转换

• 子字符串相关

• 相等

Tip：同样不需要死记硬背，依赖于 Goland 的提示

基础语法 —— rune 类型

• rune，直观理解，就是字符

• rune 不是 byte!

• rune 本质是 int32，一个 rune 四个字节

• rune 在很多语言里面是没有的，与之对应的

是，golang 没有 char 类型。rune 不是数字，

也不是 char，也不是 byte！

• 实际中不太常用

基础语法 ——bool, int, uint, float 家族

• bool: true, false

• int8, int16, int32, int64, int

• uint8, uint16, uint32, uint64, uint

• float32, float64

Tip: 不必死记硬背，依赖于 Goland 的提示

基础语法 —— byte 类型

• byte，字节，本质是 uint8

• 对应的操作包在 bytes 上

基础语法 —— 类型总结

• golang 的数字类型明确标注了长度、有无符号

• golang 不会帮你做类型转换，类型不同无法通过编译。也因此，string 只能和string 拼接

• golang 有一个很特殊的 rune 类型，接近一般语言的 char 或者 character 的概念，非面试情况下，可以

理解为 “rune = 字符”

• string 遇事不决找 strings 包

目录 1. main 函数概览

2. package 声明

3. string 和 基础类型

4. 变量声明

5. 方法声明与调用

基础语法 —— 变量声明 var

• var，语法：var name type = value

• 局部变量

• 包变量

• 块声明

• 驼峰命名

• 首字符是否大写控制了访问性：大写包外可

访问；

• golang 支持类型推断

基础语法 —— 变量声明 :=

• 只能用于局部变量，即方法内部

• golang 使用类型推断来推断类型。数字会被理

解为 int 或者 float64。（所以要其它类型的数

字，就得用 var 来声明）

基础语法 —— 变量声明易错点

• 变量声明了没有使用

• 类型不匹配

• 同作用域下，变量只能声明一次

Tip: 不必死记硬背，编译不了了看 Goland IDE 的提示

基础语法 —— 常量声明 const

• 首字符是否大写控制了访问性：大写包

外可访问；

• 驼峰命名

• 支持类型推断

• 无法修改值

目录 1. main 函数概览

2. package 声明

3. string 和 基础类型

4. 变量声明

5. 方法声明与调用

Golang 语法 —— 方法声明

• 四个部分：

• 关键字 func

• 方法名字：首字母是否大写决定了作

用域

• 参数列表：[<name type>]

• 返回列表: [<name type>]

Tip：使用Goland来创建文件夹，它会自动加上package

输入 fu，按下 enter

Golang 语法 —— 方法声明（推荐写法）

• 参数列表含有参数名

• 返回值不具有返回值名

Tip：我个人偏好的写法，比较接近其它语言的习惯

Golang 语法 —— 方法声明（看看就好）

Tip：具体怎么写，看公司规范和个人偏好，实际上没啥最佳
实践

Golang 语法 —— 方法调用

• 使用 _ 忽略返回值

Golang 语法 —— 方法声明与调用总结

• golang 支持多返回值，这是一个很大的不同点

• golang 方法的作用域和变量作用域一样，通过大小写控制

• golang 的返回值是可以有名字的，可以通过给予名字让调用方清楚知道你返回的是什么

Q & A

目录 1. 环境安装

2. 创建项目

3. Hello Go!

4. 基础语法

5. 最简单的 Web 服务器

最简单的 web 服务器 —— 官网例子

Tip：要熟练掌握找官网，找靠谱例子的能力

最简单的 web 服务器

• 直接 Goland 启动 main 函数

• 浏览器输入 http://localhost:8080/golang

最简单的 web 服务器 —— 增加几个路由

 哎 呀 ， 我 想 知 道 怎 么 操
作 h t t p 请 求 ， 怎 么 返 回 复
杂 响 应 ~ ~

fmt 格式化输出

fmt 格式化输出

fmt 包有完整的说明

• 掌握常用的：%s, %d, %v, %+v, %#v

• 不仅仅是 `fmt`的调用，所有格式化字符串
的 API 都可以用

• 因为golang字符串拼接只能在 string 之间，
所以这个包非常常用

Tip：如果不知道使用哪个占位符，就一个个试过去

fmt 格式化输出

目录 1. 数组和切片

2. for

3. if - else

4. switch

基础语法 —— 数组和切片

数组和别的语言的数组差不多，语法

是：[cap]type

1. 初始化要指定长度（或者叫做容量）

2. 直接初始化

3. arr[i]的形式访问元素

4. len 和 cap 操作用于获取数组长度

Tip：数组的len 和 cap 结果是一样的，就是数组的长度

基础语法 —— 数组和切片

切片,语法：[]type

1. 直接初始化

2. make初始化:make([]type, length, capacity)

3. arr[i] 的形式访问元素

4. append 追加元素

5. len 获取元素数量

6. cap 获取切片容容量

7. 推荐写法：s1 := make([]type, 0, capacity)

Tip：初学的时候不必关心什么时候扩容，什么时候不扩容

基础语法 —— 数组和切片

数组 切片

直接初始化 支持 支持

make 不支持 支持

访问元素 arr[i] arr[i]

len 长度 已有元素个数

cap 长度 容量

append 不支持 支持

是否可以扩容 不可以 可以

Tip：遇事不决用切片，基本不会出错

基础语法 —— 子切片

数组和切片都可以通过[start:end] 的形式来获取

子切片：

1. arr[start:end]，获得[start, end)之间的元素

2. arr[:end]，获得[0, end) 之间的元素

3. arr[start:]，获得[start, len(arr))之间的元素

Tip：左闭右开原则

基础语法 —— 如何理解切片

最直观的对比：ArrayList，即基于数组的 List 的实现，切片的底层也是数组

跟 ArrayList 的区别：

1. 切片操作是有限的，不支持随机增删（即没有 add, delete 方法，需要自己写代码）

2. 只有 append 操作

3. 切片支持子切片操作，和原本切片是共享底层数组

Tip：遇事不决用切片，不容易错

基础语法 —— 共享底层（optional）

核心：共享数组

子切片和切片究竟会不会互相影响，就抓住一点：它们是不是还共享数组？

什么意思？就是如果它们结构没有变化，那肯定是共享的；

但是结构变化了，就可能不是共享了

有余力的同学可以运行一下 ShareSlice()

基础语法 —— 共享底层（optional）

目录 1. 数组和切片

2. for

3. if - else

4. switch

基础语法 —— for

for 和别的语言差不多，有三种形式：

1. for {} ，类似 while 的无限循环

2. fori，一般的按照下标循环

3. for range 最为特殊的 range 遍历

4. break 和 continue 和别的语言一样

基础语法 —— for

基础语法 —— for

目录 1. 数组和切片

2. for

3. if - else

4. switch

基础语法 —— if - else

if-else 和别的语言也差不多

基础语法 —— if - else

带局部变量声明的 if- else：

1. distance 只能在 if 块，或者后边

所有的 else 块里面使用

2. 脱离了 if - else 块，则不能再使

用

目录 1. 数组和切片

2. for

3. if - else

4. switch

基础语法 —— switch

switch 和别的语言差不多

switch 后面可以是基础类型和字符

串，或者满足特定条件的结构体

最大的差别：

终于不用加 break 了！

Tip：大多数时候，switch 后面只会用基础类型或者字符串

要点总结

1. string 类型 —— 和别的语言没啥区别

2. 基础类型 —— 不必死记硬背，Goland IDE 会提示你

3. 切片 —— make, [i], len, cap, append

4. 数组 —— 和别的语言没啥区别

5. for, if, switch —— 和别的语言区别不大，IDE 会提示你

课后练习

• 计算斐波那契数列

• 实现切片的 Add 和 Delete 方法

• 去 leetcode 上试试（先看答案，再尝试用 go 写出来）：
• https://leetcode-cn.com/problems/two-sum/

• https://leetcode-cn.com/problems/search-insert-position/

• 我们课上用了很多 fmt 来格式化字符串，那么如何输出：

• 3.1 保留两位小数的数字

• 3.2 将[]byte 输出为16进制

• 预习 type 的用法

最简单的 web 服务器 —— go mod 管理依赖

• 配置 Goland

最简单的 web 服务器 —— go mod 管理依赖

• 直接开发设置配置也可以

最简单的 web 服务器 —— go mod 管理依赖

• 直接开发设置配置也可以

