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极客时间Go初级工程师第一课

Golang 基础语法和 Web 框架起步



关于本课程

• 掌握 Go 的基本语法
• 类型、方法、控制结构

• 接口与结构体

• 基本库与并发编程入门

• 掌握 Go Web 框架设计要点
• 如何设计路由树

• 掌握 Go 常用的设计模式



如何学习

• 上课听讲——有条件的跟着一起写代码

• 课后练习——编程不过是熟能生巧

多练习！！！！！！！



目录 1. 环境安装

2. 创建项目

3. Hello Go! 

4. 基础语法

5. 最简单的 Web 服务器
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Hello Go! —— 第一个 Go 程序
• 创建 main.go 文件



Hello Go! —— 写下第一行代码

输入 m，按下 enter
依赖于goland的强大提示



Hello Go! —— 输出 Hello, Go

输入 pr，按下 enter



Hello Go! —— 第一次运行 Go

字面意思：无法在非main包
下运行

好用的翻译网站: https://www.deepl.com/en/translator
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Hello Go! —— 第一次运行 Go



Hello Go! —— IDE 运行程序
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基础语法 —— main 函数概览



基础语法 —— main 函数要点

• 无参数、无返回值

• main 方法必须要在 main 包里面

• `go run main.go` 就可以执行

• 如果文件不叫 `main.go`，则需要 

`go build` 之后再 `go run`
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基础语法 —— 包声明

• 语法形式：package xxxx

• 字母和下划线的组合

• 可以和文件夹不同名字

• 同一个文件夹下的声明一致

Tip：使用Goland来创建文件夹，它会自动加上package



基础语法 —— 包声明

• 引入包语法形式：import [alias] xxx

• 如果一个包引入了但是没有使用，会报

错

• 匿名引入：前面多一个下划线

Tip：除了匿名引用，Goland 会帮你自动引入你代码里面用得
包，在你不用之后也会删除
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基础语法 —— string声明

• string：

• 双引号引起来，则内部双引号需要使用\转

义

• `引号引起来，则内部`需要\转义

Tip：不建议自己手写转义，而是自己先写好，然后复制过去 
Goland，IDE 会自动完成转义。



基础语法 —— string 长度

• string 的长度很特殊：

• 字节长度：和编码无关，用 len(str)获取

• 字符数量：和编码有关，用编码库来计算

Tip：如果你觉得字符串里边会出现非 ASC II 的字符，就记得
用 utf8 库来计算“长度”



基础语法 —— strings 包

• string 的拼接直接使用 + 号就可以。注意的是，

某些语言支持 string 和别的类型拼接，但是 

golang 不可以

• strings 主要方法（你所需要的全部都可以找

到）：

• 查找和替换

• 大小写转换

• 子字符串相关

• 相等

Tip：同样不需要死记硬背，依赖于 Goland 的提示



基础语法 —— rune 类型

• rune，直观理解，就是字符

• rune 不是 byte!

• rune 本质是 int32，一个 rune 四个字节

• rune 在很多语言里面是没有的，与之对应的

是，golang 没有 char 类型。rune 不是数字，

也不是 char，也不是 byte！

• 实际中不太常用



基础语法 ——bool, int, uint, float 家族

• bool: true, false

• int8, int16, int32, int64, int

• uint8, uint16, uint32, uint64, uint

• float32, float64

Tip: 不必死记硬背，依赖于 Goland 的提示



基础语法 —— byte 类型

• byte，字节，本质是 uint8

• 对应的操作包在 bytes 上



基础语法 —— 类型总结

• golang 的数字类型明确标注了长度、有无符号

• golang 不会帮你做类型转换，类型不同无法通过编译。也因此，string 只能和string 拼接

• golang 有一个很特殊的 rune 类型，接近一般语言的 char 或者 character 的概念，非面试情况下，可以

理解为 “rune = 字符”

• string 遇事不决找 strings 包
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基础语法 —— 变量声明 var

• var，语法：var name type = value

• 局部变量

• 包变量

• 块声明

• 驼峰命名

• 首字符是否大写控制了访问性：大写包外可

访问；

• golang 支持类型推断



基础语法 —— 变量声明 := 

• 只能用于局部变量，即方法内部

• golang 使用类型推断来推断类型。数字会被理

解为 int 或者 float64。（所以要其它类型的数

字，就得用 var 来声明）



基础语法 —— 变量声明易错点

• 变量声明了没有使用

• 类型不匹配

• 同作用域下，变量只能声明一次

Tip: 不必死记硬背，编译不了了看 Goland IDE 的提示



基础语法 —— 常量声明 const

• 首字符是否大写控制了访问性：大写包

外可访问；

• 驼峰命名

• 支持类型推断

• 无法修改值
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Golang 语法 —— 方法声明

• 四个部分：

• 关键字 func

• 方法名字：首字母是否大写决定了作

用域

• 参数列表：[<name type>]

• 返回列表: [<name type>]

Tip：使用Goland来创建文件夹，它会自动加上package

输入 fu，按下 enter



Golang 语法 —— 方法声明（推荐写法）

• 参数列表含有参数名

• 返回值不具有返回值名

Tip：我个人偏好的写法，比较接近其它语言的习惯



Golang 语法 —— 方法声明（看看就好）

Tip：具体怎么写，看公司规范和个人偏好，实际上没啥最佳
实践



Golang 语法 —— 方法调用

• 使用 _ 忽略返回值



Golang 语法 —— 方法声明与调用总结

• golang 支持多返回值，这是一个很大的不同点

• golang 方法的作用域和变量作用域一样，通过大小写控制

• golang 的返回值是可以有名字的，可以通过给予名字让调用方清楚知道你返回的是什么



Q & A
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最简单的 web 服务器 —— 官网例子

Tip：要熟练掌握找官网，找靠谱例子的能力



最简单的 web 服务器

• 直接 Goland 启动 main 函数

• 浏览器输入 http://localhost:8080/golang



最简单的 web 服务器 —— 增加几个路由

    哎 呀 ， 我 想 知 道 怎 么 操
作  h t t p  请 求 ， 怎 么 返 回 复
杂 响 应 ~ ~



fmt 格式化输出



fmt 格式化输出

fmt 包有完整的说明

• 掌握常用的：%s, %d, %v, %+v, %#v

• 不仅仅是 `fmt`的调用，所有格式化字符串
的 API 都可以用

• 因为golang字符串拼接只能在 string 之间，
所以这个包非常常用

Tip：如果不知道使用哪个占位符，就一个个试过去



fmt 格式化输出
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基础语法 —— 数组和切片

数组和别的语言的数组差不多，语法

是：[cap]type

1. 初始化要指定长度（或者叫做容量）

2. 直接初始化

3. arr[i]的形式访问元素

4. len 和 cap 操作用于获取数组长度

Tip：数组的len 和 cap 结果是一样的，就是数组的长度



基础语法 —— 数组和切片

切片,语法：[]type

1. 直接初始化

2. make初始化:make([]type, length, capacity)

3. arr[i] 的形式访问元素

4. append 追加元素

5. len 获取元素数量

6. cap 获取切片容容量

7. 推荐写法：s1 := make([]type, 0, capacity)

Tip：初学的时候不必关心什么时候扩容，什么时候不扩容



基础语法 —— 数组和切片

数组 切片

直接初始化 支持 支持

make 不支持 支持

访问元素 arr[i] arr[i]

len 长度 已有元素个数

cap 长度 容量

append 不支持 支持

是否可以扩容 不可以 可以

Tip：遇事不决用切片，基本不会出错



基础语法 —— 子切片

数组和切片都可以通过[start:end] 的形式来获取

子切片：

1. arr[start:end]，获得[start, end)之间的元素

2. arr[:end]，获得[0, end) 之间的元素

3. arr[start:]，获得[start, len(arr))之间的元素

Tip：左闭右开原则



基础语法 —— 如何理解切片

最直观的对比：ArrayList，即基于数组的 List 的实现，切片的底层也是数组

跟 ArrayList 的区别：

1. 切片操作是有限的，不支持随机增删（即没有 add, delete 方法，需要自己写代码）

2. 只有 append 操作

3. 切片支持子切片操作，和原本切片是共享底层数组

Tip：遇事不决用切片，不容易错



基础语法 —— 共享底层（optional）

核心：共享数组

子切片和切片究竟会不会互相影响，就抓住一点：它们是不是还共享数组？

什么意思？就是如果它们结构没有变化，那肯定是共享的；

但是结构变化了，就可能不是共享了

有余力的同学可以运行一下 ShareSlice()



基础语法 —— 共享底层（optional）
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基础语法 —— for 

for 和别的语言差不多，有三种形式：

1. for {} ，类似 while 的无限循环

2. fori，一般的按照下标循环

3. for range 最为特殊的 range 遍历

4. break 和 continue 和别的语言一样



基础语法 —— for 
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基础语法 —— if - else 

if-else 和别的语言也差不多



基础语法 —— if - else 

带局部变量声明的 if- else：

1. distance 只能在 if 块，或者后边

所有的 else 块里面使用

2. 脱离了 if - else 块，则不能再使

用
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基础语法 —— switch

switch 和别的语言差不多

switch 后面可以是基础类型和字符

串，或者满足特定条件的结构体

最大的差别：

终于不用加 break 了！

Tip：大多数时候，switch 后面只会用基础类型或者字符串



要点总结

1. string 类型 —— 和别的语言没啥区别

2. 基础类型 —— 不必死记硬背，Goland IDE 会提示你

3. 切片 —— make, [i], len, cap, append

4. 数组 —— 和别的语言没啥区别

5. for, if, switch —— 和别的语言区别不大，IDE 会提示你



课后练习

• 计算斐波那契数列

• 实现切片的 Add 和 Delete 方法

• 去 leetcode 上试试（先看答案，再尝试用 go 写出来）：
• https://leetcode-cn.com/problems/two-sum/

• https://leetcode-cn.com/problems/search-insert-position/

• 我们课上用了很多 fmt 来格式化字符串，那么如何输出：

• 3.1 保留两位小数的数字

•     3.2 将[]byte 输出为16进制

• 预习 type 的用法 



最简单的 web 服务器 —— go mod 管理依赖

• 配置 Goland



最简单的 web 服务器 —— go mod 管理依赖

• 直接开发设置配置也可以



最简单的 web 服务器 —— go mod 管理依赖

• 直接开发设置配置也可以




