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Arhiidy (BPy=1) FIHEEL) (BRI y=0) W B G AELE . DI040 4 5 O 4
X AE T 10T S AR E 7 23 PR 2 S AR W 7 220 B 2 A R PR, 1710 /5 3 B ASAH ] o X T AR,
DU S0 0 43 AT IR TR 22 9 0.81, T IR HI A BRI IERAZ 0 0.78. — R F , SEdE 12k
RSB E L A PAL oeTEE F 5I N st i S =T e/ €2 7| g P PR TR E e el 0
IR A SC B B AT B0 W I MR AE
6+ Logistic 5 Probit E[JHZ5HE

BATIR A REAAH Logistic A1 Probit [A1)H, [5]JA45 540N & Fs:
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F#& 3 Logistic #1 Probit BJI&ER (£#HA)

o Rl b 2 f PrOlz))

s Logistic Probit |Logistic Probit |Logistic Probit | Logistic Probit

AEE | -1.884 -1.136 0. 795 0.455 | —2.368 —2.498 | 0.018 0.013"
x1 0.035 0.019 0.017 0.010 2.000  1.925 0. 046" 0.054
X2 0. 043 0.023 0. 046 0. 027 0.920  0.871 0. 358 0. 384
x3 -0.257 -0.141 0. 033 0.018 | -7.771 -7.924 | 0.000™  0.000™
x4 -0.105 -0.056 0. 023 0.013 | —4.534 -4.335| 0.000™  0.000™
x5 -0.009  -0.004 0. 008 0.004 | -1.102 -0.923 | 0.270 0. 356
x6 0. 068 0. 043 0. 031 0.017 2.235  2.465 0. 025" 0.014"
x7 0. 624 0. 346 0.113 0. 062 5.539  5.601 | 0.000™  0.000™
x8 0. 060 0.021 0.078 0. 043 0.771  0.476 0. 441 0.634

H 3R n %1, Logistic 1 Probit [FIA L L AA — 3tk TRAKMWIESN S, BHEEMH
SR/ AR R IR EM S IR B R R E RN R, X e R K
SR XT3 Tl x4, 4R S5RET WG R 2R, REARIEAR R x4 F1x8 .
TR R R, x8 RIEHEENALE. X T2FEA, Logistic (1152 IER %N 0.807, Probit
2R IERIZR N 0.81, FHZETE Lo
7. BIRR Logistic EIHZE

FATTER Logistic [A1H 25 R un F R FR:
= 4 1R Logistic EVAZER (&)

AHE brifEZE z 8 Pr>|z|)

EEOTRm mme | KA KAz | KWL KMz | KA1 X2
e -1.260 -0.664 1. 126 1. 695 -1.119 —-0. 392 0. 263 0. 695
<1 0.016  0.069 | 0.024  0.029 | 0.676  2.420 | 0.499  0.016"
<2 0.057 0.059 | 0.060  0.079 | 0.947  0.750 | 0.344  0.453
$3 | -0.222 -0.209 | 0.043  0.055 | -5.215 -5.399 | 0.000™ 0.000™
x4 -0.102 -0.128 0.033 0. 037 -3.099 -3. 454 0. 002" 0.001™
xb -0.013 -0.057 0.019 0.034 -0. 701 -1. 690 0.484 0.091"
x6 0.010 -0. 043 0. 092 0.075 0.104 —-0. 575 0.917 0. 565
x7 0.751 0. 877 0. 288 0.219 2.611 4. 007 0. 009" 0. 000™
<8 0.081  0.323 | 0.267 0.180 | 0.305  1.794 | 0.761  0.073
I PR A & x6 (KEEHHER)
IRR At THE 12. 40

SHEHRBRUGIT AR, HFB BB ERET B, AR E AR N TR A
. BRI, HIR Logistic [FIHA IR THEDY 12.40, HREMAIEER (12.45) +
R MAETTHEE SR KA, HTTIR Logistic [A1)H 53 5@ Logistic [2] A28 & R BUE 53 A
—8, HEFEEA—EZEN: WAXE R THERBT S BUERN BEESE Z,
FH AR R A RHE /NPT N, 0] ) 2 S e K ) =N B0 X [R] 11 508 X7+ X3 Fl x4; %)
(X 8] 2 & AN x7. x8 Fll x3, 54 Logistic [#1V14 2R . X T4FEA, TR Logistic
5> FRIERZ N 0.82, BT Logistic [1115.

12



8. 12 MAR A ABITERILE
& 5 2 MREEHREBITERILE

G’ B B | BEEN=ATE HEZHH
1 el 0. 80 x6, x3, X7 -
2 Bagging 1. 00 x6, x3, x7 P %0160
3 FEHLARAR 1. 00 x6, x3, x7 BRI 100
4 Boosting 1. 00 x7, x6, x8 R RR%0>100
5 N LHER 4% 0. 82 - [& i ==3
6 CRFRE L 0. 82 - C=1' =022 y=01

K 140 0.82 - K=7
AL 53 b 0. 81 - -
ZRFN 0.78 - -
10 Logistic A5 0.81 x7, x3, x4 -
11 Probit [A]1)H 0. 81 x7, x3, x4 -
12 | [TBE Logistic A1 | 0.82 |x7,x3,x4; x7. x8. x3| ['PRME12.40 (FKEEMMEF)

B ERAED, ST HEGRA, IR 1 HARBAL LTI Logistic [HIJH 0. 82 A&
e, EER T ZIRA TSRS, AR IERRMAE 0.81 £4. fEREZE =N EIMH,
BRI E T x7 (BHRA6D 1 x3 GRIREMMEAFERR ), 3 B RET-5E TR A
RUIEHE T x6 (Hfi/KEEWRN) , —In B BUE B RABAR E T x4 CRHAEFFERRD
Boosting 5171BR Logistic FIHLME T x8. 28R, AR WA H T 388 — L 5 VL RrE
R0 ()45 F V23 6 77 bR 75 a0k P2 0 T VR B 4 5

5. BEERF R
Ay, BATEETE 10 H738 XIAIE K TS 4 KA PR SCRI 2 S 7
K LH5E 12 MEREAST R T S FRE A B R S
(—) 10 TR XBAEHE:

12 MR P RIET R B RIEMER (R RHUONIFR T BIEEB]D FEs — 2K B
O ORE S HHINRE PG ~FME T R s
Fi& 6 12 MRAE 10 IR NEIE TR FHIERRERBE

MR EE V%S
Al . R S St S ER K
EWE g Eme TOC Emx EmE
YRR 0.75 0.87 0.4 0.81 0.9 0.57
Bagging 0.78 0.89 0. 48 1 1 1
BENLARAK 0.8 0.92 0. 46 1 1 1
Boosting 0.79 0.89 0.5 1 1 1
BP 25 X 2% 0.75 0. 86 0. 45 0. 81 0.9 0. 54
SVM 0.79 0. 94 0. 37 0.83 0.95 0. 49
K 48 0.77 0.93 0. 32 0. 86 0. 94 0.63
Bt 53 B 0.81 0.93 0.47 0.81 0.94 0. 46
ZIRHN 5> B 0.77 0.92 0. 37 0.79 0.92 0.4
Logistic [A1H 0.8 0.91 0. 49 0. 81 0.92 0.5
Probit [ 0.81 0.92 0. 49 0. 81 0.92 0.5
Logistic I'TfREIH  0.81 0.92 0.51 0. 82 0.93 0.53
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NFRAVKIE 4 MRHERER G VPAIEAR SCH 5t R E T B T HE ST B LA

1. REFREE S VISESWREIERHE

DR AR ) =y IR A R B B S N — MR K5 VP4 e 0. I8 N, FRATATCAE W L e %
BEALERE SCIRAIE T FIR A i 2 R IE R

BALAT=: TR Logistic. Probit. Z&IEHIHIHH (=F I3

1.00 ~ —— — —
W A
0357 Ciisa
0.90 -
0.86
0.85 - 0.83 0.81 0.82
0.81 0.80 0.81 [ 0.810.81 nan0.81 | 0.810.81°:°
0.80 7777 0.78 079 1079 0.79 o 4
0.75 2 0.75 0.77 'l' \‘ 0.77 'l' \ 't
075 1 m : '.’ 1 ;' \ '.'
1 | 1 i
0.70 1 1 : 1 : 1
1 H H H
0.65 - T T T

HFEM Bagging %%& Boosting %ngﬁl VM KIE4E %JE%? ﬁr}ﬁ# ijﬂst\c\‘fggt \I'ho%g‘%,c
Bk 912 M7 AR A 5l 4B EFHRE
2. BEREE 1. JISGESIREN RS EFHEHILRERE
INZREE TIN5 MR I ) 22 53t W] DA S — MBS A 10, e M 22 RO LA 7 D AR
A7 SEBR B FH v 2352 2 R o
BT = ZRPEHIIS>HT. probit. Logistic 517FR Logistic (&) M%)
3. HBIAER: FREREMR
MIEERE, 12 BIEEH IR L ERIEAKR, I R FRIX 5
1M1 H., SeBrb 3 Z R RA AT SRS DEHUA T R I P R AR B 35 1 T30 — AR (West,
2000). S R, FRATAT AN S AR AE IR R AR R
BALAT=: ['JBE Logistic. Boosting. Logistic #1 Probit (# /& H3:%1)
Wl —EeRs GFHRT)
[Joes R

0.7 - 0.68
0.60 0.63 0.63
0.6 iy
054  .-a_ 055 0.53 P N s
_ cl's_z ] /70.50 % . / 0-_51\‘( 0.51 \‘," 0.49 ™
03 Py ok A2
M 1 S Y S B g \‘u-_’,
0.4 -
0.3 A
0.2 A
013 | o1 011 |04 | ™
0.1 ] I 0.08 . I .06 | 007 |007 |0.08 |[009 |o0.08 |0.08
0ol || (® =N NN BN BN BN BN W

RE Bagging Bl Boosting BPHFE sym KW seges) —yr)  Logistic propit Logistic
i % gatr gt EE ER IBRE
2

ElZ 10 12 #AEMIRE—£ S R E

4. BRIFRREME 2. 10 HA8 NIGIELE RN BIEE /D
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BT
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Tree Bagging Fifl Boosting BP ) SVM  KNN LDA QDA Legistic Probit [J% Tree Bagging Fifl Boosting BP i SVM  KNN LDA QDA Legistic Probit (]2
ot Logistic p3: Logistic
EHE — JI%E EFE — W&
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12 12 3 4 5 6 7 8 9 10 11 12
Tree Bagging ifl Boosting BPB SVM  KNN LDA QDA Logistic Probit &

12 3 4 5 6 7 8 9 10 N
Tree Bagging Wifl Boosting BP # SVM  KNN LDA QDA Logistic Probit (12

peday Logistic ot Logistic
FRERE — SR FRERE — WHKL
-2 : :
© | = - o T - E 2] T °
° - = = o0 @ | : e B | Q ;
= | === BHEIBLLT¢ ’
° EE%‘ : J : E ==
g 8 S T . T T
0 + 0
g ——— ° 0
— T T T T T T T T T T 1 T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Tree Bagging HiFl Boosting BP W SVM KNN LDA QDA Logistic Prebit (][R Tree Bagaing Hi#l Boosting BE [ SVM  KNN LDA QDA Logistic Probit [1[#
f:2: Logistic R Logistic
FBoRERE — JIHGKE FRERE — WiKE
Bk 1112 MEEE 10 iR XEIE RN S RER ST % E
MEL VU7 &, de B IR, FEA SR 10 758 Bk Hh R I AL () T LA S A
VK. T1BR Logistic (4) . Logistic (4) . Probit (4) . LDA (2) A Boosting (1) .
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() PSR RBATE

EAR T8 IE R 40 2 VPl 5 VR AR 7 40 2568 70 BB B4R 4, (HILA SOkt s 1
TN XTERCNIEIESR S AR F Bt L3 (Johnson & Wichern, 2002; West, 2000;
Lee, 2005; Akkog, 2012) o A (4) i T SRR 4> 2 A B E 1) 5 FE .

cost =c(2[)* p(21)* 7, +c(1]|2)* p(1|2) * =, (4)

b B, PR E S RT “H7 A7 AR, p2[) M p(|2) 4
BRI SRR (/M R P Wb b 2 B (3 R B " — ) I
BRI (— A IR AP W 4 5 5 11 R B — ), o(2)1) Bl e([2)

TS B SR AR AN G I IR AR B R 70 S BRAS o
N T HEAFEVE R R PR 72 AT, B 2 7 BER AR 70 FEME R AR 1R 7 2R

AMAMTHE. p(2[0) M p(1]2) BH R B THE A, 5 RAFHBE 8o 0O E ALK

ELA, RS FIASGE BB i RN D91 T R A b o ol TARMESRAS A At T, RIoR A R
TP RN THE R — DR ki B2 AR S5 . 2R, FE(E PP R, K2 AW
55— R R RN Z IR AN R I AR BRI 1o AR, 558 REIRF AR
(IR 7> SR A LT iy T 15 5 — IR R A R AR R A - T2 2B 18 B P Ml I R 2
T, B — R AN S AR R 7 AR A2 1 EE B 55 & (West, 2000), X
IR ISR R AL Lee (2005) ZEIBTFUITRIN . A SCTRHERATE AN A Lh AR
ﬁﬁﬁiu%ﬁ%ﬁ%ﬁﬂmﬁﬁﬁﬁﬁﬁﬁﬁ
THERR TR —REHR R IR A KA R FUP R 70 AR

[ mRETmgrERE
0.95 - 0.94

0.90 1 0.88 0.87 0.88

0.85 0.82
0.80 -

0.75 - ] 0.73 074 073 073
1 a’.m\

0.70

-

0.65 1
0.60 +
0.55 4

]
——
-
.. -
e L T p——

0.50
M Bagging FAEHL Boosting BP"]“WE_.ZE SVM  KIT4E kit —yR¥l Llogistic Probit \ogistic/
ik ZE siatr Bt HE EA NRE

\Jfll

Bk 12 12 #AENRESIIGHEERE

M EBEIRATAT A E A Y, 7E 12 RpEA ZIKIEﬁUz’UEEI’JI]KELoglstlc B, 7EAER
Y IERA IR 7T, RIS T SRS RV e /. DLk Sm v B filiid it boosting 414
TR EAS FH VR BE TR AL, DL K %38 Logistic [81YF. Probit [a] 9t B T ASES 1 RS0

R, TSR RARE, HER AT/ MEALZ: TFR Logistic. boosting.
Logistic. Probit.
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(=) BEEHBUNG

NG, BATTZARIE RS V21 45 R AT a1 B I BCRAE i Ja A B PP . BT
10 P78 X UEVEA 5> T 4 NAFE, NGRS M 4 57 (ES A ERAPER B 4 7O
B 14 CHIL LK), AT FSERE PR IELE R, BATTHE TR R 20 S A A PPt A
RURHAE AR 20~ . TTPR Logistic (4) . boosting (3) . Logistic (3) . Probit (3) .

R, 256 10 $7 38 IRUFIE LA R TIUHAR = 0 AR KR, AR NN, A
12 MY A FH VP2 BE IR IR «

I'JFR Logistic (8) . Logistic (7) . Probit (7) . Boosting (4) 1 LDA (2) .

N ERGREH—PHARE

A E WAE T, WA 7k 2 e BT GeI& A T/ Ak 3245 A P2 A i) 2 AN A
(St 12 4, A Logistic A7 At BT - TR Logistic #571) , F LASEBRZ 65k
X3 ey LR A R )45 FHPE 0 PR RE AN H A T 2 WA ™ 1 LS, AT A ] P R L BRAT AR SR A
U /N A5 PR B R () g ST A N R 3R — e 255

TERR LR b, FRATTI8 I SCHER 1 A A%, adid 10 $7 28 SCHGUE A HA 73 45 1% Al
AR, RAGK: 12 MEAI IS e T BRI, AT TR Logistic 7
RULERIRL T BE 77« Ao M JRES R S AR 12 0 SR A 18 2 7 R I TR LR G R
775 MME Logistic, Probit R IIANMA; 11 Boosting [ A 17 43 A A R B IR T TTBR
Logistic, &7~ HEGRIEAVERET, BAERUFHIHET M St A0 WIAE I 2585 IE i % 0
BRRRE N G SMRE D F B B FMIERERD ERIHE A,

AR T B T ™ ILA 7 : (D I FLREEESE CReale BN RATEE
KA RHE M () WhREEZWAREE, MM BRESENBRASG T (3
P52 E IR Logistic [A1 AR, EIEET TR SEIEDORN, 5838 AR RIS

)5 s RTINS A PR B R S S 6 R T S BUR 4 Rk
T AR BR Gt TAE . —J5 T, o TR 0 28 57 5 S 75 2 s M AR AT A = m A 5L 1)
D3 SRR PR AE BAE N, FRAT RS T B O E I e att TAE; 5— 5,
P MV ARAT O G - H s 1 5 3 AR A R T 2 WU & Ze T 5838, RSk dn Al BEEk
AT A L B /N Al G R R 2 [ 25 46 2 IR 4 R s v 250 A6 S N IBURT U SR JE R AR Ok 4
AT L R L S
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B

B 1. St 45 2R

node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 700 804.400 0 ( 0.73857 0.26143 )
2) x6 < 12.45 477 411.700 0 ( 0.84486 0. 15514 )
4) x3 < 5.5 179 217.500 0 ( 0.70391 0.29609 )
8) x4 < 6.5 116 154.900 0 ( 0.61207 0.38793 )
16) x6 < 2.35 8 0.000 0 ( 1.00000 0.00000 ) *
17) x6 > 2.35 108 146.700 0 ( 0.58333 0.41667 ) *
9) x4 > 6.5 63 47.960 0 ( 0.87302 0. 12698 ) *
5) x3 > 5.5 298 151.900 0 ( 0.92953 0.07047 )
10) x7 < 0.25 52 0.000 0 ( 1.00000 0.00000 ) *
11) x7 > 0.25 246 143.500 0 ( 0.91463 0.08537 )
22) x3 < 14.5 158 116.100 0 ( 0.87975 0.12025 ) *
23) x3 > 14.5 88 19.090 0 ( 0.97727 0.02273 )
46) x7 < 5.155 83  0.000 0 ( 1.00000 0.00000 ) *
47) x7 > 5.155 5  6.730 0 ( 0.60000 0.40000 ) *
3) x6 > 12.45 223 309.000 0 ( 0.51121 0.48879 )
6) x3 < 9.5 141 189.500 1 ( 0.39716 0.60284 )
12) x6 < 26.15 130 177.700 1 ( 0.43077 0.56923 )
24) x4 < 2.529 29.570 1 ( 0.20690 0.79310 ) *
25) x4 > 2.5 101 140.000 1 ( 0.49505 0.50495 ) *
13) x6 > 26.15 11~ 0.000 1 ( 0.00000 1.00000 ) *
7) x3 > 9.582 99.140 0 ( 0.70732 0.29268 )
14) x7 < 4.905 55 37.910 0 ( 0.89091 0.10909 ) *
15) x7 > 4.905 27 34.370 1 ( 0.33333 0.66667 )
30) x8 < 9.225 16 21.930 0 ( 0.56250 0.43750 )
60) x5 < 739 9.535 1 ( 0.22222 0.77778 ) *
61) x5 > 73 7 0.000 0 ( 1.00000 0.00000 ) *
31) x8 > 9.225 11 0.000 1 ( 0.00000 1.00000 ) *

20



B 2. 12 MR 10 IR X HAEHRE R E

MiZ2 1 10 472 XA R A%

Hk| PIER Bagging BENLARIR Boosting BP #1450 2% SVM

B3

e |V e e | L st gt s e [
| 9| 4
1 10.81 0.77 1.00 0.74 1.00 0.79 1.00 0.80 0.82 0.83 0.81 0.83
2 10.80 0.69 1.00 0.80 1.00 0.81 1.00 0.77 0.74 0.69 0.80 0.77
3 10.81 0.74 1.00 0.79 1.00 0.83 1.00 0.84 0.84 0.8 0.83 0.806
4 10.83 0.73 1.00 0.74 1.00 0.77 1.00 0.81 0.84 0.73 0.8 0.76
5 10.81 0.74 1.00 0.77 1.00 0.77 1.00 0.77 0.80 0.74 0.82 0.77
6 |0.83 0.80 1.00 0.83 1.00 0.76 1.00 0.79 0.7 0.76 0.806 0.76
7 10.81 0.76 1.00 0.77 1.00 0.79 1.00 0.80 0.79 0.67 0.83 0.74
8 10.79 0.73 1.00 0.84 1.00 0.89 1.00 0.79 0.84 0.76 0.82 0.80
9 10.84 0.76 1.00 0.76 1.00 0.80 1.00 0.76 0.83 0.77 0.82 0.81
10 (0.81 0.74 1.00 0.79 1.00 0.80 1.00 0.76 0.78 0.69 0.83 0.79

1S L 10 475 RE I R
B s Logistic mua | T gt | probic iy |LOEIStic TR
B3 7 oI
NE ——

%;” "'s‘ BRI |12k st “g‘ “ﬂ‘g 1250 st | 1t e e | ke
1 10.86 0.74 0.81 0.83 0.80 0.84 0.78 0.80 0.81 0.83 0.82 0.83
2 10.87 0.74 0.81 0.80 0.81 0.79 0.79 0.74 0.81 0.80 0.83 0.80
3 10.85 0.81 0.80 0.81 0.81 0.81 0.78 0.81 0.81 0.80 0.82 0.81
4 10.87 0.79 0.81 0.80 0.82 0.81 0.78 0.80 0.81 0.8 0.82 0.81
5 10.85 0.79 0.81 0.80 0.82 0.79 0.80 0.76 0.82 0.80 0.83 0.81
6 |0.86 0.76 0.81 0.83 0.81 0.83 0.79 0.77 0.80 0.83 0.82 0.86
7 10.86 0.74 0.82 0.74 0.82 0.74 0.79 0.71 0.82 0.76 0.83 0.74
8 10.86 0.80 0.81 0.83 0.81 0.86 0.78 0.80 0.81 0.83 0.82 0.84
9 10.86 0.79 0.81 0.80 0.81 0.84 0.79 0.79 0.81 0. 81 0.82 0.83
10 |0.87 0.76 0.81 0.79 0.82 0.80 0.79 0.76 0.81 0.80 0.83 0.80
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B 2 10 o SIRUER) 2R —SRERIRE

Fk| REN Bagging BEHLAR IR Boosting BP #1458 X 4% SVM

e

5 [ e ot s YR e e e |t s [
N P % | %
1 10.11 0.12 0.00 O0.16 0.00 0.11 0.00 o0O.11 0.09 0.07 0.05 0.07
2 10.11 0.17 0.00 0.08 0.00 0.06 0.00 0.13 0.00 0.00 0.05 0.006
3 10.07 0.09 0.00 0.09 0.00 0.02 0.00 0.06 0.08 0.04 0.05 0.00
4 10.05 0.12 0.00 0.12 0.00 0.10 0.00 0.04 0.08 0.14 0.05 o0.08
5 (0.11 0.17 0.00 0.10 0.00 0.10 0.00 0.13 0.13 0.17 0.05 0.08
6 (0.08 0.04 0.00 0.06 0.00 0.08 0.00 0.12 0.10 0.12 0.04 0.06
7 10.08 0.06 0.00 0.06 0.00 0.04 0.00 0.06 0.23 0.40 0.05 0.04
8 10.20 0.25 0.00 0.12 0.00 0.06 0.00 0.10 0.05 0.10 0.05 o0.08
9 10.11 0.16 0.00 0.14 0.00 0.10 0.00 0.16 0.08 0.12 0.05 0.006
10 (0.08 0.15 0.00 0.17 0.00 0.15 0.00 0.21 0.17 0.29 0.04 0.12

2 2 1 10 474 NIE RO 25— a g
B e [Logistic i | T imint | probic iy | FOEISHC TR
B3 i 1
e ——

%;” "'g IS | 1258 A s “f “ﬂ‘g it | e 1t e e e
1 (0.05 0.14 0.09 0.05 0.07 0.07 0.07 0.11 0.08 0.05 0.08 0.07
2 10.05 0.08 0.08 0.06 0.07 0.06 0.08 0.06 0.08 0.06 0.07 0.006
3 (0.06 0.04 0.08 0.08 0.06 0.06 0.08 0.06 0.07 0.08 0.08 0.08
4 10.05 0.04 0.09 0.08 0.06 0.08 0.08 0.06 0.09 0.08 0.08 0.08
5 10.06 0.08 0.08 0.10 0.06 0.10 0.09 0.10 0.07 0.10 0.06 0.08
6 |0.06 0.04 0.08 0.06 0.07 0.04 0.08 0.06 0.08 0.06 0.07 0.04
7 10.05 0.04 0.08 0.08 0.06 0.04 0.07 0.06 0.07 0.06 0.07 0.006
8 10.05 0.04 0.08 0.10 0.06 0.06 0.07 0.10 0.08 0.10 0.07 o0.10
9 10.05 0.06 0.09 0.08 0.07 0.04 0.07 0.08 0.08 0.08 0.08 0.006
10 (0.06 0.13 0.08 0.19 0.06 0.12 0.07 0.13 0.08 0.17 0.06 0.15
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PR 3 10 Hrac IRUER) 2 —SRERIRE

Fk| REN Bagging BEHLAR IR Boosting BP #1285 [ 26 SVM

iz —

5 [ e ot s YR e e e |t s [
o | % | %
1 10.42 0.69 0.00 0.69 0.00 0.69 0.00 0.62 0.41 0.62 0.58 0.62
2 10.48 0.64 0.00 0.45 0.00 0.45 0.00 0.45 1. 00 1.00 0.41 0.59
3 10.54 0.76 0.00 0.59 0.00 0.65 0.00 0.47 0.40 0.47 0.51 0.59
4 10.52 0.68 0.00 0.63 0.00 0.58 0.00 0.58 0.37 0.63 0.43 0.68
5 10.43 0.50 0.00 0.61 0.00 0.61 0.00 0.50 0.39 0.50 0.54 0.67
6 10.44 0.63 0.00 0.47 0.00 0.68 0.00 0.47 0.55 0.58 0.41 0.74
7 10.48 0.70 0.00 0.65 0.00 0.65 0.00 0.55 0.16 0.15 0.52 0.80
8 10.23 0.33 0.00 0.28 0.00 0.28 0.00 0.56 0.46 0.67 0.55 0.56
9 10.28 0.47 0.00 0.53 0.00 0.47 0.00 0.47 0.46 0.53 0.57 0.53
10 (0.50 0.56 0.00 0.33 0.00 0.33 0.00 0.33 0.36 0.39 0.54 0.50

M 346 1 10 977 XURE M — R
BE wiran [Logistic HI BN | osimioti | proviv myy | 08istic TR
% i EIE
N ——

%;” "'g Bt | 1258 A s ”f “ﬂ‘g it |t e e e e
1 (0.36 0.77 0.48 0.69 0.54 0.54 0.62 0.62 0.49 0.69 0.46 0.62
2 10.37 0.64 0.50 0.50 0.54 0.55 0.60 0.68 0.50 0.50 0.46 0.50
3 10.38 0.65 0.51 0.53 0.53 0.59 0.62 0.59 0.50 0.59 0.48 0.53
4 10.34 0.68 0.48 0.53 0.53 0.47 0.60 0.58 0.49 0.53 0.47 0.47
5 10.38 0.61 0.50 0.50 0.52 0.56 0.53 0.67 0.50 0.50 0.48 0.50
6 10.36 0.79 0.52 0.47 0.55 0.53 0.60 0.68 0.52 0.47 0.49 0.42
7 10.40 0.80 0.47 0.70 0.52 0.80 0.60 0.8 0.48 0.70 0.45 0.75
8 10.41 0.67 0.50 0.39 0.55 0.39 0.64 0.50 0.52 0.39 0.50 0.33
9 10.39 0.63 0.50 0.53 0.55 0.47 0.61 0.58 0.51 0.47 0.46 0.47
10 10.35 0.56 0.50 0.28 0.53 0.44 0.60 0.56 0.51 0.28 0.46 0.33
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B 4 10 Hra2 XEGIE N IR R K HR it

BP $H1Z5 WX
R Bagging BEATLARAR Boosting 1‘33%3: K SVM
Grit it -
PR T | g | IR | s | IR | s | IR | gk | R | I0gR | ik
£ £ £ £ £ % % % % £ £ £
FME 081 0.75 1.00 078 1.00 080 100 0.79 081 075 0.83 0.79
FrifE 72 0.02 0.03 000 003 000 004 000 003 003 006 002 0.04
/ME 0.79 0.69 1.00 074 100 076 100 0.76 074 067 081 074
ENL R
(250/)‘ 0.81 073 100 076 100 0.78 1.00 077 078 070 0.82 0.76
0
FRA 2
5o 0.81 074 100 078 100 079 100 079 081 075 0.83 0.78
VU3
(750 0.82 076 100 080 100 081 1.00 080 083 0.77 085 081
0
R E 0.84 080 1.00 084 100 089 100 084 084 086 086 0.86
PR 429238 1 10 738 XEGUE N IE R R g it
. . . o ) Logistic ][R
KAEAR [P 2050 5047 | Uk 51407 Logistic 14 | Probit [y gw g
it &=
Yk MK | gk | Ik | gk | Ik | gk | ek | UIgk | R | gk | s
£ £ £E £E £E £ £ £ £ £ £ £
518 0.86 077 081 081 079 077 081 080 081 081 082 081
PR ZE 0.01 003 001 003 001 003 000 003 000 0.02 0.01 0.03
w/ME 085 0.74 080 074 078 071 080 0.74 080 076 082 074
VivE"
VA
ti?){‘ﬁo.se 075 081 079 078 076 081 080 081 080 082 0.80
0
FRAT #
(50%) 0.86 077 081 081 079 078 081 080 081 080 082 081
0
L
(750 0.87 079 082 084 079 080 081 083 081 083 083 0.83
SN 0.87 081 082 08 080 081l 082 083 082 083 083 0.86
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PR 5 10 738 XIGAE T 28— R R R A g it
BP fH1Z5 WX
R Bagging BEATLARAR Boosting 1(23%1'—] SVM
it -
Yk M | gk | Ik | gk | Ik | gk | ek | gk |k | gk | s
A 0.10 013 000 011 000 0.08 000 011 0.10 0.14 0.05 0.06
bR 22 0.04 006 000 004 000 004 000 005 006 012 0.00 0.03
w/ME 0.05 0.04 0.00 0.06 000 002 000 0.04 0.00 0.00 0.04 0.00
I LR DA
Co5) 0.08 0.10 000 009 000 006 000 007 008 0.08 0.05 0.06
0
FRAr #
(500 0.09 014 000 011 000 0.09 000 011 0.09 0.12 0.05 0.07
I B A4
(750/)‘ 0.11 016 000 013 000 010 0.00 013 0.13 0.16 0.05 0.08
0
YN 020 025 000 017 000 015 000 021 023 040 0.05 0.12
M2 5 2238 1 10 7138 XEGAE T 28 — R R R ik g it
. . . . Logistic [ JBE
K AR [R50 4017 | 215143 H7| Logistic 1) | Probit 15 g@ 8
it &=
1S W 2 1 W 1 2 1 o 11 2 15 o 1 2 R 15 o 1 2 N 5
£ £ £ £ £ 5% % % % £ £ £
E¥9{E |0.06 0.07 0.06 0.07 0.08 008 008 0.09 0.08 0.08 0.07 0.08
FrEZE 001 0.04 0.00 0.03 0.00 0.03 0.00 0.04 0.00 003 001 0.03
B/MA |0.05 0.04 006 004 007 006 008 005 007 005 006 0.04
ek
DA
Wf];;j\)ﬁo.os 0.04 006 004 007 006 008 007 008 006 007 006
0
FRA
(500 0.05 005 006 006 007 007 008 008 008 0.08 0.07 0.08
LB A
(7]; 0 0.06 0.08 007 008 008 010 0.09 0.09 0.08 0.09 0.08 0.08
BK{i |0.06 0.14 007 012 009 013 009 019 009 017 008 0.15
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P2 6 10 428 XIRIE T 55— REHR R AR S 1

BP $H1Z5 WX
R Bagging BEATLARAR Boosting 1(23%1'—] SVM
it -
Pk M | gk | Ik | gk | Ik | UIgk | ek | gk | sk | DIgk | s
A 043 060 000 052 000 054 000 050 046 055 051 0.63
bR 22 0.10 013 000 014 000 015 0.00 0.08 022 0.22 0.06 0.09
w/ME 0.23 0.33 0.00 028 000 028 000 0.33 016 015 041 050
I LR DA
Co5) 042 051 000 046 000 046 000 047 038 048 045 0.56
0
FRAr #
(500 046 063 000 056 000 060 000 049 040 055 053 0.60
I B A4
(750/)‘ 050 069 000 063 000 065 000 055 046 0.63 055 0.68
0
YN 054 076 000 069 000 069 000 062 1.00 1.00 0.58 0.80
Ml 6 2:32 1 10 #7238 XEGAE N 28 —ReE AR iR ge it
. . . . Logistic [ JBE
K AR [R50 4017 | 215143 H7| Logistic 1) | Probit 15 g@ 8
it =
B S W 2 1 W 1 2 1 o 11 2 S 1 o 1 2 R 15 o [ 2 N 5
£ £ £ £ £ 5% % % % £ £ £
FEIME 0.37 0.68 054 053 060 063 050 051 050 051 047 0.49
PR ZE 0.02 008 001 011 003 010 001 012 0.01 013 0.02 0.13
w/ME 034 056 052 039 053 050 047 028 048 0.28 045 0.33
VivE"
VA
ti?fﬁose 0.63 053 047 060 058 049 048 049 047 046 0.43
0
FRA7 8
5o 0.37 066 054 053 060 060 050 051 050 050 047 0.49
L
(750 039 075 055 055 062 068 050 053 051 057 048 0.52
PN 041 080 055 080 064 08 052 070 052 070 050 0.75
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3 RBMHEERERF

HUFRLAFEA N IR 25 R

HU I 1Y) SRS

rtree2<-tree(y ., datal) #ilZM
ryy2<{-predict (rtree2, newdata=datal, type="class”) it Tiill{E
rtest2<{-datall, "y”] #5ZPrME

rbiaoge2<{-table (ryy2, rtest2) #& . Fi{E 5 sZPr{E 5B
rcorrate2<{-sum(diag(rbiaoge2))/sum(rbiaoge2) #X}HIZ LR Z TN

= AL

#

#Bagging

rtree3<{-randomForest (v ., datal, mtry=8) #mtry H{E NTHE HEZEN

ryy2<-predict (rtree3, newdata=datal, type="class”)
rtest2<{-datall[, "y”]
rbiaoge2<{-table (ryy2, rtest2)

rcorrate2<{-sum(diag (rbiaoge2))/sum(rbiaoge2)

HEEHLARAR

rtree4<{-randomForest (y ., datal)
ryy2<{-predict (rtree4, newdata=datal, type="class”)
rtest2<{-datall, "y”]

rbiaoge2<{-table (ryy2, rtest2)

rcorrate2<-sum(diag (rbiaoge2))/sum(rbiaoge2)

#K 141

ryy2<-knn(datal, datal, datall, "y”], k=3) #tknn (J|Zx4E, MLEE, %

ERbrs, EAH0

rtest2<{-datall[, "y”] #5ZfnE
rbiaoge2<-table (ryy2, rtest2) #% 7. (G5 sSLPr{E 7R
rcorrate2<{-sum(diag (rbiaoge2))/sum(rbiaoge2) #XHIZICEZ FI N

73 KA H
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#SVM

svmtrain{—tune (svm, y ., data=datal, kernel="radial”, ranges=1ist (cost=c (
0.1, 1, 10, 100, 1000), gamma=c (0. 1,0. 5, 1, 2, 3,4,5,7,7,8,9, 10))) #i#id4 X
ISUFIEHUE1E R cost Al gamma {H
ryy2<{-predict (svmtrain$best. model, newdata=datal) #ifH Fi{E
rtest2<{-datall, "y”] #5ZPrME
rbiaoge2<{-table (ryy2, rtest2) ## 7 F{E 5 52 FRAE 15 B
rcorrate2<-sum(diag(rbiaoge2))/sum(rbiaoge2) #X}HIZ LR Z TN
R R

#l.ogistic [A]I4

rglmtrain{-glm(y"., datal, family=binomial) #3E£i%5E familiy H{H
rglmpred2<{-predict (rglmtrain, newdata=datal, type="response”) #3K
Hoy=1 [P
ryy2<-ifelse (rglmpred2>.5,1,0) #MER{E KT 0.5 FHANE T 1 28
rtest2<{-datall, "y”]
rbiaoge2<{-table (ryy2, rtest2)

rcorrate2<-sum(diag (rbiaoge2))/sum(rbiaoge2)

HEGPEF B 70 1da

rldatrain<-lda(y"., datal) #illZRFEAR

rldapred2<{-predict (rldatrain, newdata=datal) #it5 FMI{E

rlyy2<-rldapred2$class

rltest2<{-datall, "y”] #3ZFrE

rlbiaoge2<-table (rlyy2, rltest2) #& 7 FM{E 5 LPrE 5 R

rlcorrate2<{-sum(diag(rlbiaoge2))/sum(rlbiaoge?) #X}IZTHE 2
RIER 7 IR EL

HEGPEH B 70 M ada

qdatrain<-qda(y"., datal) #illZrFEA
qdapred2<{-predict (qdatrain, newdata=datal) #ifH FIME
rqyy2<{-qdapred2$§class

rqtest2<{-datall[, "y”] #5ZFrH

rgbiaoge2<{-table (rqyy2, rqtest2) #Z 7 TIIE 5 SLPR{E )5 BEE

28



rqcorrate2<{—sum(diag (rgbiaoge2))/sum(rqbiaoge?) #XfIZ L HE
RIERR S R EI A E

#Probit [A] 4

rpglmtrain{—glm(y"., datal, family=binomial (1ink="probit”)) #3Ei%
€ familiy H{E

rpglmpred2<-predict (rpglmtrain, newdata=datal, type="response”) #
K y=1 =R

rpyy2<{-ifelse (rpglmpred2>.5,1,0) #¥LX(EH KT 0.5 K ANE T 1
e

” ”

rptest2<{-datall[, "y”]

rpbiaoge2<{-table (rpyy2, rptest2) #& 7 Fi{E 5 sZPrE )5 Bk

rpcorrate2<{—sum(diag (rpbiaoge2))/sum(rpbiaoge?) #XfIZtHE 2
RIERE5 RN 3

#Boosting

rboostingtrain{-boosting(y ., datal) #iIlZf

rboostingpred2<{-predict (rboostingtrain, newdata=datal) #it % il
(N

ryy2<-rboostingpred2$class

rtest2<{-datall, "y”] #3ZPFrH

rbiaoge2<-table (ryy2, rtest2) #& 7 FM{E 5 LhrE 7R

rcorrate2<-sum(diag(rbiaoge2))/sum(rbiaoge2) #X}HZ&ILEZ N
B4 KA

#SVM

rsvmtrain{—tune (svm, y ., data=datal, kernel="radial”, ranges=1ist (cost=c
(0.1, 1, 10, 100, 1000) , gamma=c (0. 1, 0.5, 1,2, 3,4,5,7,7,8,9, 10))) #i#IzR X
ISVEIE B A& cost 1 gamma B
ryy2<{-predict (rsvmtrain§best. model, newdata=datal) #it 5 Fiill{E
rtest2<{-datall, "y”] #3ZPFrH
rbiaoge2<-table (ryy2, rtest2) #& 7 FM{E 5 LhrE 7R
rcorrate2<{-sum(diag (rbiaoge2))/sum(rbiaoge2) #XHIZICEZFI N
IEf 3 RN

#BP N T AH 25 o 28
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rbb<{-class. ind (datal$y) g4 pldan HE A8 5 %0 %

rnnettrain{-nnet (datal[, —1], rbb, size=3, rang=0. 1, decay=5e—4, maxit=200)
#HZEN %% nnet (X, Y, ...)
rnnetpred2<{-predict (rnnettrain, datall, -1]) #1+& FNE
ryy2<-max. col (rnnetpred2)
rtest2<-max. col (rbb) #5ZFRr{H
rbiaoge2<{-table (ryy2, rtest2) #& . FM{E 5 LZPr{E 7B
rcorrate2<-sum(diag(rbiaoge2))/sum(rbiaoge2) #X}HIZ LR TN
B R

BN A P e 905 1 10
nshushu=100
for (i in 1:nshushu) {
nboostingtrain{-boosting(y ., datal[-nceshi, ], mfinal=1) #iIlZf
nboostingpred<{-predict (nboostingtrain, newdata=datal[nceshi, ]) #
THE PAE
nyy<-nboostingpred$class
ntest<{-datal[nceshi, "y”] #5ZFr{E
nbiaoge[[1]]<-table (nyy, ntest) #% 37 FMI{E 5 SZBRE )51 R
ncorrate[[1]]<-sum(diag (nbiaoge[[1]]))/sum(nbiaogel[[1]]) #Xf
ZICER Z AN IER 7 AL

nresult[[1]]<-c(nresult[[1]], ncorrate[[1]]<-sum(diag(nbiaoge[[1]]))/s
um (nbiaoge[[1]])) #7EZZ X EE T =R %547 I IEAH %
nboostingpred2<{-predict (nboostingtrain, newdata=datal[-nceshi, ])
#F S NE
nyy2<-nboostingpred2$class
ntest2<-datal [-nceshi, "y”] #5ZPrE
nbiaoge2[[1]]<{-table (nyy2, ntest2) #% 7 HIM{E 5 SLFRE ) FI LR
ncorrate2[[1]]<-sum(diag(nbiaoge2[[1]]))/sum(nbiaoge2[[1]]) #X}
I 7T 2 2 FUR IR 70 2R AN 4K

nresult2[[1]]<-c(nresult2[[1]], ncorrate2[[1]]<-sum(diag(nbiaoge2[[1]]
))/sum(nbiaoge2[[1]])) #7EAZ XIGAE T 3K H 2537 10 IE A %
}

#Bagging
for (i in 1:nshu) {
ntree3<{-randomForest (y ., datal [-nceshi, ], mtry=8, ntree=i) #mtry
PHE T B SN
nyy<{-predict (ntree3, newdata=datal [nceshi, |, type="class”)
ntest<{-datal [nceshi, "y”]
nbiaoge[[2]]<{-table (nyy, ntest)
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ncorratel[[2]]<-sum(diag (nbiaoge[[2]]))/sum(nbiaoge[[2]])

nresult[[2]]<{-c(nresult[[2]], ncorrate[[2]]<-sum(diag(nbiaoge[[2]]))/s
um(nbiaoge[[2]]))
nyy2<{-predict (ntree3, newdata=datal [-nceshi, ], type="class”)
ntest2<{-datal [-nceshi, "y”]
nbiaoge2[[2]]<-table(nyy2, ntest2)
ncorrate2[[2]]<{-sum(diag(nbiaoge2[[2]]))/sum(nbiaoge2[[2]])

nresult2[[2]]<-c(nresult2[[2]], ncorrate2[[2]]<{-sum(diag(nbiaoge2[[2]]
)) /sum(nbiaoge2[[2]]))
}

#EEHLARAR

for (i in 1:nshu) {
ntree4<{-randomForest (v ., datal[-nceshi, ], ntree=i)
nyy<{-predict (ntree4, newdata=datal [nceshi, ], type="class”)
ntest<{-datal [nceshi, "y”]
nbiaoge[[3]]<{-table (nyy, ntest)
ncorratel[3]]<-sum(diag (nbiaoge[[3]]))/sum(nbiaogel[3]])

nresult[[3]]<-c(nresult[[3]], ncorrate[[3]]<-sum(diag(nbiaoge[[3]1]))/s
um (nbiaogel[[3]]))
nyy2<-predict (ntree4, newdata=datal[-nceshi, ], type="class”)
ntest2<-datal[-nceshi, "y”]
nbiaoge2[[3]]<-table(nyy2, ntest2)

ncorrate2[ [3]]<-sum(diag(nbiaoge2[[3]]))/sum(nbiaoge2[[3]])

nresult2[[3]]<-c(nresult2[[3]], ncorrate2[[3]]<{-sum(diag(nbiaoge2[ [3]]
)) /sum(nbiaoge2[[3]]))

}
#BP N T 48 2%
nceng=10

for(i in 1:nceng) {

nbb<{-class. ind (datal$y) &4 sl A b 5 50 FE

nnnettrain{-nnet (datal[-nceshi, -1], nbb[-nceshi, ], size=1, rang=0. 1, deca
y=be—4, maxit=200) #IZMNZ% nnet (X, Y,...)
nnnetpred<{-predict (nnnettrain, datal[nceshi, -1]) #it5& FMN1E
nyy<{-max. col (nnnetpred)
ntest<-max. col (nbb[nceshi, ])
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nbiaoge[[4]]<- table(nyy, ntest) #& ZTINME S SLFRE M HIEEER
ncorrate[ [4]]<-sum(diag(nbiaoge[[4]]))/sum(nbiaoge[[4]]) #X]H
R8I0 R Z AN IERA 3 R AN L

nresult[[4]]<-c(nresult[[4]], ncorrate[[4]]<{-sum(diag(nbiaoge[[4]]))/s
um (nbiaoge[[4]])) #7EAZ XEUE T =R 257 I IEA %
nnnetpred2<{-predict (nnnettrain, datal[-nceshi, -1]) #it+HE HMNIE
nyy2<-max. col (nnnetpred2)
ntest2<-max. col (nbb[-nceshi, ]) #5ZFr{H
nbiaoge2[[4]]<{—table (nyy2, ntest2) #ZE 7 TRIMIE 5 9LPrE I FIBLE
ncorrate2[ [4]]1<-sum(diag (nbiaoge2[[4]]))/sum(nbiaoge2[[4]]) #X}
28 76 3R 2 AR IE 0 IR N 5

nresult2[[4]]<-c(nresult2[[4]], ncorrate2[[4]]<{-sum(diag(nbiaoge2[ [4]]
))/sum(nbiaoge2[[4]])) #7EAZ XIGAE T 3R H 2547 1 IR %
}

#K 140
jinlin<-10
for(i in 1:jinlin) {
nyy<-knn (datal [-nceshi, ], datal [nceshi, ], datal [-nceshi, "y”], k=1)
#knn (YIIZREE, MREE, IWHEF T, T
ntest<{-datal[nceshi, "y”] #5ZFr{E
nbiaoge[ [5]1<-table (nyy, ntest) #% 37 FMI{E 5 SZBRE ) 51 R
ncorrate4<-sum(diag (nbiaoge[[5]]))/sum(nbiaoge[[5]]) #XfHIZIC
RN IER R

nresult[[5]]<-c(nresult[[5]], ncorrate[[5]]<-sum(diag(nbiaoge[[5]]))/s
um(nbiaoge[[5]])) #IEAZ XIGUE T 3R H &1 EAf R

nyy2<-knn(datal [-nceshi, ], datal[-nceshi, ], datal[-nceshi, "y”], k=1)
#knn (YIIZREE, MAREE, IWNEEFT, T

ntest2<-datal [-nceshi, "y”] #5ZPrE

nbiaoge2[[5]]<-table (nyy2, ntest2) & 7 IRIMIE 5 SZBRE IIFIH:E

ncorrate2[ [5]]<-sum(diag (nbiaoge2[[5]]))/sum(nbiaoge2[[4]]) #X}
I T 2 2 FUCOR IR 70 2R AN 4K

nresult2[[5]]<-c(nresult2[[5]], ncorrate2[[5]]<{-sum(diag(nbiaoge2[ [5]]

))/sum(nbiaoge2[[5]])) #TEAZ X IGUE T >R H &7 i) 1A %
}

#HAZ X B6IE
H E 1 e SRR
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for(i in 1:k){
tree2<{-tree(y ., datal[-dat[,i], ]) #JIIZE#
yy<{-predict (tree2, newdata=datal[dat[, i, ], type="class”) #itH i
MAE
test<{-datal[datl[, i], "y”] #=ZPr{E
biaoge[[1]]<-table (yy, test) ## 7 Fi{E 5 52 brfE 51 B
typeil[[1]]<=c(typeil[1]], biaoge[[1]][2, 1]/sum(biaogel[1]][, 1]))
#UT S PR 1 58 — SRR F

typeiil[[1]]<-c(typeiil[1]], biaoge[[1]][1, 2]/sum(biaoge[[1]][, 2])) #it
ST Y 28 R R R

corrate[[1]]<-sum(diag(biaogel[[1]]))/sum(biaogel[[1]]) #XJHIZk T
RN IER T R

result[[1]]<-c(result[[1]], corrate[[1]]<-sum(diag(biaogel[[1]]))/sum(b
iaoge[[1]])) #7EAZ XEGAE T 3K HH & IERf 2

yy2<{-predict (tree2, newdata=datal[—datl[, i], ], type="class”) #itH&
THMAE

test2<{-datal[~dat[, i], "y”] #3ZPrH

biaoge2[[1]]<~table (yy2, test2) #%7 7 FMI{E 5 L FRE K HIBER

typei2[[1]]<—c (typei2[[1]], biaoge2[[1]]1[2, 1]/sum(biaoge2[[1]][, 1])) #
VBN ZAE I 5 — R R R

typeii2[[1]]<-c (typeii2[[1]], biaoge2[[1]][1, 2]/sum(biaoge2[[1]][, 2]))
B E IR RS R R

corrate2[[1]]<-sum(diag(biaoge2[[1]]))/sum(biaoge2[[1]]) #X i
LR IC = 2 FUNIER 2R BN 5

result2[[1]]<-c(result2[[1]], corrate2[[1]]<-sum(diag(biaoge2[[1]1]))/s
um (biaoge2[[1]1])) #AEAS XIGUE T 3K H &I IEH R
}

#Bagging

for(i in 1:k) {
tree3<-randomForest (y ., datal[-dat[, i], ], mtry=8) #mtry KME NI

HHZEN

yy<{-predict (tree3, newdata=datal[dat[, i], ], type="class”)
test<{-datall[dat[, i], "y”]
biaoge[ [2]]<{-table (yy, test)
typeil[[2]]<~c(typeil[2]], biaoge[[2]]1[2, 1]/sum(biaogel[2]][, 1]))

typeiil[[2]]<-c(typeiil[2]], biaoge[[2]][1, 2]/sum(biaoge[[2]][, 2]))
corrate[ [2]]<-sum(diag(biaoge[[2]]))/sum(biaoge[[2]])
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result[[2]]<-c (result[[2]], corrate[[2]]<-sum(diag(biaogel[[2]]))/sum(b
iaoge[[2]]))
yy2<{-predict (tree3, newdata=datal [-dat[, i], ], type="class”)
test2<-datal[-dat[, i], "y”]
biaoge2[[2]]<{-table (yy2, test2)

typei2[[2]]<-c(typei2[[2]], biaoge2[[2]][2, 1]/sum(biaoge2[[2]][, 1]))

typeii2[[2]]<-c (typeii2[[2]], biaoge2[[2]][1, 2]/sum(biaoge2[[2]][, 2]))
corrate2[[2]]<-sum(diag(biaoge2[[2]]))/sum(biaoge2[[2]])

result2[[2]]<-c(result2[[2]], corrate2[[2]]<-sum(diag(biaoge2[[2]]))/s
um(biaoge2[[2]]))
}

#EEHLARAR

for (i in 1:k) {
tree4<-randomForest (y ., datal[-dat[, i], ])
yy<{-predict (tree4, newdata=datal[dat[, i], ], type="class”)
test<{-datall[dat[, i], "y”]
biaoge[ [3]]<{-table (yy, test)
typei[[3]]<-c(typeil[[3]], biaoge[[3]][2, 1]/sum(biaoge[[3]][, 1]))

typeiil[[3]]<-c(typeiil[3]], biaoge[[3]1][1, 2]/sum(biaogel[[3]][,2]))
corrate[ [3]]<{-sum(diag(biaoge[[3]]))/sum(biaoge[[3]])

result[[3]]1<-c (result[[3]], corrate[[3]]<-sum(diag(biaogel[[3]]))/sum(b
iaoge[[3]]))
yy2<{-predict (tree4, newdata=datal[-dat[, i], ], type="class”)

test2<{-datal[-dat[, i], "y"]
biaoge2[[3]]<{-table (yy2, test2)
typei2[[3]]<-c(typei2[[3]], biaoge2[[3]1][2, 1]/sum(biaoge2[[3]][, 1]))

typeii2[[3]1<-c (typeii2[[3]], biaoge2[[3]]1[1,2]/sum(biaoge2[[3]1]1[, 21))
corrate2[[3]]<-sum(diag(biaoge2[[3]]))/sum(biaoge2[[3]])

result2[[3]]<-c(result2[[3]], corrate2[[3]]<-sum(diag(biaoge2[[3]1]))/s
um (biaoge2[[3]]))

}

#K T4
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for(i in 1:k) {

yy<{-knn(datal[-dat[, i], ], datalldatl[, il, ], datal[-dat[, i], "v”], k=7)
#knn (YIIZR4E, ML, IWNZGLEFRT, ELED
test<{-datal[datl[, i], "y”] #=ZPFr{E
biaoge[[4]]<-table(yy, test) #% 7 FME 552 BRE I 51 Bk
typei[[4]]<-c(typeil[[4]], biaoge[[4]][2, 1]/sum(biaoge[[4]][, 1]))

typeiil[4]]<-c(typeiil[4]], biaoge[[4]][1,2]/sum(biaogel[4]][, 2]))
corrate4<-sum(diag (biaoge[[4]]))/sum(biaoge[[4]]) #XIHZ L&
AR IER 7 A5

result[[4]]<-c (result[[4]], corrate[[4]]<-sum(diag(biaoge[[4]]))/sum(b
iaoge[[4]]1)) #EAZ XIGAE T 3K H &7 B IE AR

yy2<{-knn (datal[-dat[, il, ], datal[-datl[, i]l, ], datal[-dat[, i], "y”], k=3)

#knn (YIIZREE, MAREE, IWEEFT, T
test2<-datal[-dat[, i], "y”] #5ZPFrH
biaoge2[[4]]<-table(yy2, test2) #& . F{E 5 LFrE K7 BER

typei2[[4]]<-c(typei2[[4]], biaoge2[[4]][2, 1]/sum(biaoge2[[4]][, 1]))

typeii2[[4]]<-c (typeii2[[4]], biaoge2[[4]][1, 2]/sum(biaoge2[[4]][, 2]))
corrate2[[4]]<-sum(diag(biaoge2[[4]]))/sum(biaoge2[[4]]) #X}}iil
2 IC R Z AN IEM RN

result2[[4]]<{-c(result2[[4]], corrate2[[4]]<-sum(diag(biaoge2[[4]]))/s
um (biaoge2[[4]1])) #IEAZ XIGUE TR H AT IEHI R
}

HSVM
for(i in 1:k){

svmtrain{—tune (svm, y ., data=datal[-dat[, i], ], kernel="radial”, ranges=1
ist (cost=c(0.1, 1, 10, 100, 1000), gamma=c (0. 1, 0.5, 1, 2, 3,4,5,7,7,8,9, 10)))
M A YIGUEIR A& T cost Al gamma {E

yy<{-predict (svmtrain$§best. model, newdata=datall[dat[, i], ]) #it5&
MUELED

test<{-datalldat[, i], "y”] #5ZFr{H

biaoge[[5]]<{~table (yy, test) #&H 7 FM{E 5 SZBRE K2 BR

typeil[[5]]<~c(typeil[5]], biaoge[[5]]1[2, 1]/sum(biaogel[5]][,1]))

typeiil[5]]<~c(typeiil[5]], biaogel[[5]][1,2]/sum(biaogel[5]][,2]))

35



corrate[[5]]<-sum(diag (biaoge[[5]]))/sum(biaogel[[5]]) #X}[HIZIC
R AN IER /2RI

result[[5]]<-c (result[[5]], corrate[[5]]<-sum(diag(biaogel[[5]]))/sum(b
iaoge[[5]1)) #EAS XIGAE T 3K H & B IERH %R

yy2<{-predict (svmtrain$best. model, newdata=datal[-dat[, i], ]) #it
ELTNAE

test2<{-datal[-datl[, i], "y”] #3ZPrH

biaoge2[[5]]<~table (yy2, test2) #%7 7 TMI{E 5 bR EHIHIBER

typei2[[5]]<-c(typei2[[5]], biaoge2[[5]][2, 1]/sum(biaoge2[[5]][, 1]))

typeii2[[5]]<-c (typeii2[[5]], biaoge2[[5]][1, 2]/sum(biaoge2[[5]][, 2]))
corrate2[[5]]<-sum(diag(biaoge2[[5]]))/sum(biaoge2[[5]]) #X}fiil
2 IC R 2 AN IR RN

result2[[5]]<-c(result2[[5]], corrate2[[5]]<-sum(diag(biaoge2[[5]]))/s
um(biaoge2[[5]])) H#IEAZ XIGUE N 3R H &1 IEAf %
}

#Logistic [A]l
for (i in 1:k) {
glmtrain<-glm(y ., datal[-dat[, i], ], family=binomial) #Z ¥ E
familiy HI{E

glmpred<-predict (glmtrain, newdata=datal[dat[, i], ], type="response”) #
K y=1 R
yy<{-ifelse(glmpred>.5,1,0) #MEF(E KT 0.5 FAABETH 1 2%
test<{-datall[dat[, i], "y”]
biaoge[ [6]]<{-table (yy, test)
typeil [6]]<-c(typeil[6]], biaogel[[6]][2, 1]/sum(biaogel[6]][,1]))

typeiil[[6]]<-c(typeiil[6]], biaoge[[6]1][1,2]/sum(biaogel[[6]][,2]))
corrate[ [6]]<-sum(diag(biaoge[[6]]))/sum(biaoge[[6]])

result[[6]]1<-c(result[[6]], corrate[[6]]<-sum(diag(biaogel[[6]]))/sum(b
iaoge[[6]]))

glmpred2<{-predict (glmtrain, newdata=datal[-dat[, i], ], type="response”)
3R y=1 BN
yy2<-ifelse (glmpred2>. 5, 1,0) #MEZ{E KT 0.5 BN NE T 1K
test2<-datal[-dat[, i], "y”]
biaoge2[[6]]<-table (yy2, test2)
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typei2[[6]]<-c(typei2[[6]], biaoge2[[6]][2, 1]/sum(biaoge2[[6]][, 1]))

typeii2[[6]1<-c (typeii2[[6]], biaoge2[[6]]1[1,2]/sum(biaoge2[[6]1]1[, 2]))
corrate2[[6]]<-sum(diag(biaoge2[[6]]))/sum(biaoge2[[6]])

result2[[6]]<—c(result2[[6]], corrate2[[6]]<-sum(diag(biaoge2[[6]]))/s
um(biaoge2[[6]]))
}

#A M 534 1da

for(i in 1:k){
ldatrain<-lda(y"., datal[-dat[,i], ]) #JIZrEEAR
ldapred<{-predict (ldatrain, newdata=datal[dat[, i], ]) #itH& HME
yy<{-ldapred$class
test<{-datalldat[, i], "y”] #3LZFx{E
biaoge[[7]]<-table(yy, test) #% 7FME 5 5L BR{E 1) 51 B R
typei[[7]]<-=c(typeil[[7]], biaoge[[7]][2, 1]/sum(biaoge[[7]][, 1]))

typeiil[[7]]<-c(typeiil[[7]], biaoge[[7]][1,2]/sum(biaogel[7]][, 2]))
corrate[ [7]]<-sum(diag(biaoge[[7]]))/sum(biaoge[[7]]) #XIHIZIC
R AN IEM 50N L

result[[7]]<-c (result[[7]], corrate[[7]]<-sum(diag(biaoge[[7]]))/sum(b
iaoge[[71])) #AEAE XIUE 3K H &3 1) IR %
ldapred2<-predict (1datrain, newdata=datal[-dat[, i], ]) #it%& T
(N
yy2<{-1dapred2$class
test2<-datall-dat[,i], "y”] #5ZPFrHE
biaoge2[[7]]<-table(yy2, test2) #ZE /TG 5 SLFrE )P BEER

typei2[[7]]<~c (typei2[[7]], biaoge2[[7]1]1[2, 1]/sum(biaoge2[[7]][, 1]))

typeii2[[7]]<=c (typeii2[[7]], biaoge2[[7]1][1, 2]/sum(biaoge2[[7]1][, 2]))
corrate2[[7]]<{-sum(diag(biaoge2[[7]]))/sum(biaoge2[[7]1]) #X
2 IC R Z AN IER AN L

result2[[7]]<-c(result2[[7]], corrate2[[7]]<-sum(diag(biaoge2[[7]1]))/s
um(biaoge2[[7]])) #LEAZ XIGUE T =R H &4 1 IEAf =
}

HEGPEF B 0 M ada

for(i in 1:k) {
qdatrain<-qda(y ., datall[-dat[, i],]) #JIZFEA
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gdapred<{-predict (qdatrain, newdata=datal [dat[, i], ]) #it+HINNME
yy<{-qdapred$class

test<{-datalldatl[, i], "y”] #=ZPr{E

biaoge[[8]]<-table(yy, test) ##E N TMIE 5L FrE K FIHR
typei[[8]]<-c(typeil[[8]], biaoge[[8]][2, 1]/sum(biaoge[[8]][, 1]))

typeiil[[8]]1<-c(typeiil[8]], biaoge[[8]][1, 2]/sum(biaoge[[8]][, 2]))
corrate[[8]]<-sum(diag(biaoge[[8]]))/sum(biaogel[[8]]) #XTHIZk T
R AN IER 0N L

result[[8]]1<-c (result[[8]], corrate[[8]]<-sum(diag(biaogel[[8]]))/sum(b
iaoge[[8]1)) #EAS XIEGAE T 3K H & B IERH R

qdapred2<{-predict (qdatrain, newdata=datal[-dat[, i], ]) #itEL i
(I

yy2<-qdapred2$class

test2<-datall-dat[,i], "y"] #3LZFrHE

biaoge2[[8]]<~table (yy2, test2) #& 7 FMIME 5 SLPRE K5 E

typei2[[8]]<-c(typei2[[8]], biaoge2[[8]][2, 1]/sum(biaoge2[[8]][, 1]))

typeii2 [[8]1<~c (typeii2[[8]], biaoge2[[8]][1, 2]/sum(biaoge2[[8]][, 2]))
corrate2[[8]]<-sum(diag(biaoge2[[8]]))/sum(biaoge2[[8]]) #Xifiil
2L R Z AN IEM RN

result2[[8]]<—c(result2[[8]], corrate2[[8]]<-sum(diag(biaoge2[[8]]))/s
um (biaoge2[[8]1)) #IEAZ XIGUE T 3K H &I IEHI R
}

#Probit [A] 4
for(i in 1:k){

glmtrain<-glm(y"., datal[-dat[, i], ], family=binomial (1ink="probit”)) #
B familiy HI{E

glmpred<-predict (glmtrain, newdata=datal[dat[, i], ], type="response”) #
K y=1 R
yy<{-ifelse(glmpred>.5,1,0) #MEF(E KT 0.5 FAANBTH 124
test<{-datall[dat[, i], "y”]
biaoge[[9]]<~table (yy, test) #EH 7 FME 5 SZBRE K3 BR
typeil[[9]]<~c(typeil[9]], biaoge[[9]]1[2, 1]/sum(biaogel[[9]][, 1]))

typeiil[9]]<-c (typeiil[9]], biaogel[[9]]1[1, 2]/sum(biaogel[[9]]1,2]))
corrate[[9]1<-sum(diag (biaoge[[9]]))/sum(biaoge[[9]]) #X}[HIZIT
AR IE RN
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result[[9]]1<-c (result[[9]], corrate[[9]]<-sum(diag(biaogel[[9]]))/sum(b
iaoge[[9]11)) #EAZ XIGAE T 3K H & BT IERH %R

glmpred2<-predict (glmtrain, newdata=datal[-dat[, i], ], type="response”)
#aR =1 =R
yy2<{-ifelse(glmpred2>.5,1,0) ##EF{E KT 0.5 BHANETHE 135
test2<{-datal[-dat[, i], "y"]
biaoge2[[9]]<-table(yy2, test2) #& . FM{E 5 LFrE K7 BCER

typei2[[9]]<-c (typei2[[9]], biaoge2[[9]][2, 1]/sum(biaoge2[[9]][, 1]))

typeii2[[9]]<—c (typeii2[[9]], biaoge2[[9]][1, 2]/sum(biaoge2[[9]][, 2]))
corrate2[[9]]<-sum(diag(biaoge2[[9]]))/sum(biaoge2[[9]]) #X}fiil
2 IC R 2 AN IR RN

result2[[9]]<—c(result2[[9]], corrate2[[9]]<-sum(diag(biaoge2[[9]]))/s
um(biaoge2[[9]11)) H#IEAZ XIGUE N 3K H &1 IEAf %
}

#Boosting
for (i in 1:k) {
boostingtrain{-boosting(y ., datal[-dat[,i],]) #JIlZf
boostingpred<{-predict (boostingtrain, newdata=datal[dat[,i],]) #
THE PN AR
yy<{-boostingpred$class
test<{-datalldat[, i], "y”] #3EZFx{E
biaoge[[10]]<-table (yy, test) #% 7 FUM{E 5 S2PrE ) 5B

typei[[10]]<-=c (typeil[[10]], biaoge[[10]][2, 1]/sum(biaoge[[10]][, 11))

typeiil[10]]1<=c (typeiil[10]], biaoge[[10]1][1, 2]/sum(biaoge[[10]][, 2]))
corrate[[10]]<-sum(diag(biaoge[[10]]))/sum(biaoge[[10]]) #XF il
2 IC R Z AN IER AN

result[[10]]<-c(result[[10]], corrate[[10]]<-sum(diag(biaoge[[10]]))/s
um (biaoge[[10]])) #7EAZ X EE T =R - I IEAf %
boostingpred2<{-predict (boostingtrain, newdata=datal[-dat[,i], ])
#F S NAE
yy2<-boostingpred2$class
test2<-datal[-dat[, i], "y”] #5ZBrMHE
biaoge2[[10]]<-table (yy2, test2) #& 7 THMME 52 Fr{E I 7 BL R
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typei2[[10]]1<~c (typei2[[10]], biaoge2[[10]][2, 1]/sum(biaoge2[[10]][, 1]
))

typeii2[[10]]<—c (typeii2[[10]], biaoge2[[10]][1, 2]/sum(biaoge2[[10]][,
2]))

corrate2[[10]]<-sum(diag(biaoge2[[10]]))/sum(biaoge2[[10]1]) #X}
JEIZR 02 2 RN TE A 0 SR AN 5L

result2[[10]]<-c (result2[[10]], corrate2[[10]]<{-sum(diag(biaoge2[[10]]
)) /sum(biaoge2[[10]])) #{EAZ XEGIE N =R B & Hr i IEFf %
}

#BP A T2 X 2%
for(i in 1:k){
bb<{-class. ind (datal$y) #4= sl % H{E b5 HFE

nnettrain{-nnet (datal[-dat[, i],-1], bb[-dat[, i], ], size=3, rang=0. 1, deca
y=be—4, maxit=200) #IZEM & nnet (X,Y,...)
nnetpred<{-predict (nnettrain, datal [dat[, i], -1]) #i+HTRM{E
yy<{-max. col (nnetpred)
test<{-max. col (bb[dat[, i], ])
biaoge[[11]]<~ table(yy, test) #ZE 7 FNE 5 SLFrE R FBER

typeil[[11]]<=if (nrow(biaoge[[11]])==1) {c (typeil[11]], 0)}else{c (typeil
[11]], biaoge[[11]1[2, 1]/sum(biaoge[[11]][,1]))}

typeiil[[11]]1<=if (ncol (biaogel[[11]])==1) {c (typeiil[[11]], 0)}else{c (type
ii[[11]], biaoge[[11]1][1, 2]/sum(biaoge[[11]][, 2]))}

corrate[[11]]<-sum(diag(biaoge[[11]]))/sum(biaoge[[11]]) #XFHi
ZICER Z AN IERA 7 AL

result[[11]]<-c(result[[11]], corrate[[11]]<-sum(diag(biaoge[[11]]))/s
um (biaoge[[11]])) #7EAZ X EuE T =R - IERH %
nnetpred2<-predict (nnettrain, datal[—-dat[, i], —-1]) #it& FM{E
yy2<{-max. col (nnetpred2)
test2<-max. col (bb[-dat[, i], ]) #LZPrE
biaoge2[[11]]<-table (yy2, test2) ## ZHIMIE 5 bR I FIHER

typei2[[11]]<~if (nrow(biaoge2[[11]])==1) {c (typei2[[11]], 0) }else{c (typ
ei2[[11]], biaoge2[[11]][2, 1]/sum(biaoge2[[11]][,1]))}

typeii2[[11]]1<=if (ncol (biaoge2[[11]])==1) {c (typeii2[[11]], 0)}else{c(t
ypeii2[[11]], biaoge2[[11]][1, 2]/sum(biaoge2[[11]1][,2]))}
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corrate2[[11]]<-sum(diag(biaoge2[[11]]))/sum(biaoge2[[11]]) #X}
FHIZR 70 2 2 FUR IERf 7 R A4

result2[[11]]<-c(result2[[11]], corrate2[[11]]<{-sum(diag(biaoge2[[11]]
)) /sum(biaoge2[[11]])) #{EAZ XEGIE N =R B & i IEFf %
}

#AE Ry TIIE 45 SRR A

result<-as. data. frame (result) #f list R H NEIEHE

colnames (result) <-c ("#ZEMH", "Bagging”, "BEHLARAR”, K IT4E
", 7SW”, “Logistic [EIVH”, “EAERIR 34T 1da”, "Btk H0 534 ada”, “Probit
[B]97, “Boosting”, "BP #HZ2M4%”) #E Fram 44 5 b il

rownames (result) <-1:k #E Hy 44 ¥ 5

#AE A B 45 SRR
result2<-as. data. frame (result2) #{8 list &R H NEIEHE
colnames (result2) <{—c ("R, "Bagging”, "FENLARAR”, “K 1T 4D
7, "SW”, “Logistic [FIA”, “ZRAEFI BT 1da”, "L 43 HT ada”, “Probit
[B])9”, “Boosting”, "BP #Z/2%") #E iy %4 51 br iR
rownames (result2) <-1:k #5 #5447 Ind

#AE R TIOIME 28 — SRR R 4 AR

typei<-as. data. frame (typei) #f list B EEH AEHEHE

colnames (typei)<—c ("#RIFEM", "Bagging”, "FENLARAR”, “K JT 4R
", "SW”, “Logistic [R)A”, “Ze Mt H I 73 M 1da”, "Lt H) 5 734 qda”, “Probit
[lJ3”, “Boosting”, "BP #HZE L") #EE Hi iy 44 51 br il

rownames (typei)<-1:k BEF iy 4 5Fn

#A: B TONAE 28 — AR R gt LR A%

typeii<-as. data. frame (typeii) #4f list B FEH NEHEHE

colnames (typeii)<{—c ("HRFEM", “"Bagging”, "BENLARI”, K 114D
7, "SW”, “Logistic [RIH”, “Ze A FA 44T 1da”, “ 2t HA) 43 #T qda”, “Probit
897, “Boosting”, “BP #IZE M LE”) H#EL Hr iy 4 5| b @il

rownames (typeii)<-1:k #EEHraw 44 ¥ hn

#AE O ZRAE 28— SRR R g IR R A%

typei2<-as. data. frame (typei2) #4 list B\ FEH NEHEHE

colnames (typei2) <-c ("HZEM", "Bagging”, "BEHLARI", "K i 4
7, "SW”, “Logistic [H[JA”, “ZAEFIA M 1da”, “Ee ) H) 53 Hr ada”, “Probit
BlJ3”, “Boosting”, "BP #HZE M ZE”) #EE Hidin 44 51 bRl

rownames (typei2) <-1:k #EE a4 ¥ hn i

#E IR 26 — R RR R A R
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typeii2<-as. data. frame (typeii2) #f{ list 4L NEHEHE
colnames (typeii2) <-c ("HRHEM", "Bagging”, "BEHLARA", “K 120
7, "SW”, “Logistic [HA”, “ZRAEFI R T 1da”, "L 43 HT ada”, “Probit
[B]97, “Boosting”, "BP #HZ2 M 4%”) #E Fram 44 5 b il
rownames (typeii2) <-1:k &I H w44 ¥l hx

#AE A RS RR
stats<{-function(dafa) {
¢ CFI¥){E=mean (dafa), brifE Z=sd (dafa), f¢/ME=min (dafa), VU5 Hr%k

=quantile (dafa, 0. 25), F{7¥(=median (dafa), b PU4r{7 %L
=quantile (dafa, 0. 75), i K{H=max (dafa))

}

resultstats<-apply (result, 2, stats)

resultstats2<-apply (result2, 2, stats)

typeistats<-apply (typei, 2, stats)

typeiistats<-apply (typeii, 2, stats)

typeistats2<-apply (typei2, 2, stats)

typeiistats2<{-apply (typeii2, 2, stats)

colnames (resultstats)<{-colnames (result) #EHy 41T hr R

colnames (resultstats2)<-colnames (result2)

colnames (typeistats)<-colnames (typei)

colnames (typeiistats)<-colnames (typeii)

colnames (typeistats2)<{-colnames (typei?2)

colnames (typeiistats2)<-colnames (typeii2)
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