
学成在线 第8天 讲义-课程图片管理 分布式文件系
统

1 FastDFS研究
参考 “分布式文件系统 fastDFS研究.md”

2 上传图片开发

1.1.1 需求分析

在很多系统都有上传图片/上传文件的需求，比如：上传课程图片、上传课程资料、上传用户头像等，为了提供系
统的可重用性专门设立文件系统服务承担图片/文件的管理，文件系统服务实现对文件的上传、删除、查询等功能
进行管理。

各各子系统不再开发上传文件的请求，各各子系统通过文件系统服务进行文件的上传、删除等操作。文件系统服务
最终会将文件存储到fastDSF文件系统中。

下图是各各子系统与文件系统服务之间的关系：

下图是课程管理中上传图片处理流程：

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n2
af://n5
af://n42
af://n43

执行流程如下：

1、管理员进入教学管理前端，点击上传图片

2、图片上传至文件系统服务，文件系统请求fastDFS上传文件

3、文件系统将文件入库，存储到文件系统服务数据库中。

4、文件系统服务向前端返回文件上传结果，如果成功则包括文件的Url路径。

5、课程管理前端请求课程管理进行保存课程图片信息到课程数据库。

6、课程管理服务将课程图片保存在课程数据库。

1.1.2 创建文件系统服务工程

导入xc-service-base-filesystem.zip工程。

1）工程目录结构

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n72

pom.xml

 <?xml version="1.0" encoding="UTF‐8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven‐4.0.0.xsd">
 <parent>
 <artifactId>xc‐framework‐parent</artifactId>
 <groupId>com.xuecheng</groupId>
 <version>1.0‐SNAPSHOT</version>
 <relativePath>../xc‐framework‐parent/pom.xml</relativePath>
 </parent>
 <modelVersion>4.0.0</modelVersion>

 <artifactId>xc‐service‐base‐filesystem</artifactId>
 <dependencies>
 <dependency>
 <groupId>com.xuecheng</groupId>
 <artifactId>xc‐service‐api</artifactId>
 <version>1.0‐SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>com.xuecheng</groupId>
 <artifactId>xc‐framework‐model</artifactId>
 <version>1.0‐SNAPSHOT</version>
 </dependency>
 <dependency>

 <groupId>com.xuecheng</groupId>

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

2）配置文件

原测试程序中fastdfs-client.properties的配置信息统一放在application.yml

application.yml

 <artifactId>xc‐framework‐common</artifactId>
 <version>1.0‐SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring‐boot‐starter‐web</artifactId>
 </dependency>
 <dependency>
 <groupId>net.oschina.zcx7878</groupId>
 <artifactId>fastdfs‐client‐java</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring‐boot‐starter‐test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons‐io</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring‐boot‐starter‐data‐mongodb</artifactId>
 </dependency>
 </dependencies>

</project>

server:
 port: 22100
spring:
 application:
 name: xc‐service‐base‐filesystem
#mongo配置
 data:
 mongodb:
 database: xc_fs
 uri: mongodb://root:123@127.0.0.1:27017
#SpringMVC上传文件配置
 servlet:
 multipart:
 #默认支持文件上传.
 enabled: true

 #支持文件写入磁盘.

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

1.1.3 API接口

1.1.3.1模型类

系统的文件信息（图片、文档等小文件的信息）在mongodb中存储，下边是文件信息的模型类。

1) 模型如下：

 file‐size‐threshold: 0
 # 上传文件的临时目录
 location:
 # 最大支持文件大小
 max‐file‐size: 1MB
 # 最大支持请求大小
 max‐request‐size: 30MB
xuecheng:
 fastdfs:
 connect_timeout_in_seconds: 5
 network_timeout_in_seconds: 30
 charset: UTF‐8
 tracker_servers: 192.168.101.64:22122

@Data
@ToString
@Document(collection = "filesystem")
public class FileSystem {

 @Id
 private String fileId;
 //文件请求路径
 private String filePath;
 //文件大小
 private long fileSize;
 //文件名称
 private String fileName;
 //文件类型
 private String fileType;
 //图片宽度
 private int fileWidth;
 //图片高度
 private int fileHeight;
 //用户id，用于授权暂时不用
 private String userId;
 //业务key
 private String businesskey;
 //业务标签
 private String filetag;
 //文件元信息
 private Map metadata;

}

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n95
af://n96

说明：

fileId：fastDFS返回的文件ID。

filePath：请求fastDFS浏览文件URL。

filetag：文件标签，由于文件系统服务是公共服务，文件系统服务会为使用文件系统服务的子系统分配文件标签，
用于标识此文件来自哪个系统。

businesskey：文件系统服务为其它子系统提供的一个业务标识字段，各子系统根据自己的需求去使用，比如：课
程管理会在此字段中存储课程id用于标识该图片属于哪个课程。

metadata：文件相关的元信息。

2) collection

在mongodb创建数据库xc_fs（文件系统数据库），并创建集合 filesystem。

1.1.3.2 Api接口

在api工程下创建com.xuecheng.api.filesystem包，

public interface FileSystemControllerApi {

 /**
 * 上传文件
 * @param multipartFile 文件
 * @param filetag 文件标签
 * @param businesskey 业务key
 * @param metedata 元信息,json格式
 * @return
 */
 public UploadFileResult upload(MultipartFile multipartFile,
 String filetag,
 String businesskey,
 String metadata);

}

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n124

1.1.2.3 Dao

将文件信息存入数据库，主要存储文件系统中的文件路径。

1.1.2.4 Service

public interface FileSystemRepository extends MongoRepository<FileSystem,String> {

}

@Service
public class FileSystemService {

 private static final Logger LOGGER = LoggerFactory.getLogger(FileSystemService.class);

 @Value("${xuecheng.fastdfs.tracker_servers}")
 String tracker_servers;
 @Value("${xuecheng.fastdfs.connect_timeout_in_seconds}")
 int connect_timeout_in_seconds;
 @Value("${xuecheng.fastdfs.network_timeout_in_seconds}")
 int network_timeout_in_seconds;
 @Value("${xuecheng.fastdfs.charset}")
 String charset;

 @Autowired
 FileSystemRepository fileSystemRepository;

 //加载fdfs的配置
 private void initFdfsConfig(){
 try {
 ClientGlobal.initByTrackers(tracker_servers);
 ClientGlobal.setG_connect_timeout(connect_timeout_in_seconds);
 ClientGlobal.setG_network_timeout(network_timeout_in_seconds);
 ClientGlobal.setG_charset(charset);
 } catch (Exception e) {
 e.printStackTrace();
 //初始化文件系统出错
 ExceptionCast.cast(FileSystemCode.FS_INITFDFSERROR);
 }
 }
 //上传文件
 public UploadFileResult upload(MultipartFile file,
 String filetag,
 String businesskey,
 String metadata){

 if(file == null){
 ExceptionCast.cast(FileSystemCode.FS_UPLOADFILE_FILEISNULL);
 }

 //上传文件到fdfs

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n130
af://n136

 String fileId = fdfs_upload(file);
 //创建文件信息对象
 FileSystem fileSystem = new FileSystem();
 //文件id
 fileSystem.setFileId(fileId);
 //文件在文件系统中的路径
 fileSystem.setFilePath(fileId);
 //业务标识
 fileSystem.setBusinesskey(businesskey);
 //标签
 fileSystem.setFiletag(filetag);
 //元数据
 if(StringUtils.isNotEmpty(metadata)){
 try {
 Map map = JSON.parseObject(metadata, Map.class);
 fileSystem.setMetadata(map);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 //名称
 fileSystem.setFileName(file.getOriginalFilename());
 //大小
 fileSystem.setFileSize(file.getSize());
 //文件类型
 fileSystem.setFileType(file.getContentType());
 fileSystemRepository.save(fileSystem);
 return new UploadFileResult(CommonCode.SUCCESS,fileSystem);

 }

 //上传文件到fdfs，返回文件id
 public String fdfs_upload(MultipartFile file) {
 try {
 //加载fdfs的配置
 initFdfsConfig();
 //创建tracker client
 TrackerClient trackerClient = new TrackerClient();
 //获取trackerServer
 TrackerServer trackerServer = trackerClient.getConnection();
 //获取storage
 StorageServer storeStorage = trackerClient.getStoreStorage(trackerServer);
 //创建storage client
 StorageClient1 storageClient1 = new StorageClient1(trackerServer,storeStorage);
 //上传文件
 //文件字节
 byte[] bytes = file.getBytes();
 //文件原始名称
 String originalFilename = file.getOriginalFilename();
 //文件扩展名
 String extName = originalFilename.substring(originalFilename.lastIndexOf(".") + 1);
 //文件id

 String file1 = storageClient1.upload_file1(bytes, extName, null);

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

1.1.2.5 Controller

1.1.2.6 测试

使用swagger-ui或postman进行测试。

下图是使用swagger-ui进行测试的界面：

 return file1;
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

}

@RestController
@RequestMapping("/filesystem")
public class FileSystemController implements FileSystemControllerApi {
 @Autowired
 FileSystemService fileSystemService;

 @Override
 @PostMapping("/upload")
 public UploadFileResult upload(@RequestParam("file") MultipartFile file,
 @RequestParam(value = "filetag", required = true) String
filetag,
 @RequestParam(value = "businesskey", required = false) String
businesskey,
 @RequestParam(value = "metedata", required = false) String
metadata) {
 return fileSystemService.upload(file,filetag,businesskey,metadata);
 }
}

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n140
af://n142

1.1.3 上传课程图片前端

1.1.3.1 需求

上传图片界面如下图：

点击“加号”上传图片，图片上传成功自动显示；点击“删除”将删除图片。

1.1.3.2 页面

使用Element-UI的Upload上传组件实现上边的效果。

1) template

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n151
af://n152
af://n161

el-upload参数说明：

action：必选参数，上传的地址

list-type：文件列表的类型（text/picture/picture-card）

before-upload：上传前执行钩子方法 ，function(file)

on-success：上传成功 执行的钩子方法 ，function(response, file, fileList)

on-error：上传失败的钩子方法，function(err, file, fileList)

on-remove：文件删除的钩子方法，function(file, fileList)

file-list：文件列表，此列表为上传成功 的文件

limit：最大允许上传个数

on-exceed：文件超出个数限制时的钩子，方法为：function(files, fileList)

data：提交上传的额外参数，需要封装为json对象，最终提交给服务端为key/value串

2)数据模型

<el‐upload
 action="/filesystem/upload"
 list‐type="picture‐card"
 :before‐upload="setbusinesskey"
 :on‐success="handleSuccess"
 :file‐list="fileList"
 :limit="picmax"
 :on‐exceed="rejectupload"
 :data="uploadval">
 <i class="el‐icon‐plus"></i>
</el‐upload>

<script>
 import * as sysConfig from '@/../config/sysConfig';
 import * as courseApi from '../../api/course';
 import utilApi from '../../../../common/utils';
 import * as systemApi from '../../../../base/api/system';
 export default {
 data() {
 return {
 picmax:1,
 courseid:'',
 dialogImageUrl: '',
 dialogVisible: false,
 fileList:[],
 uploadval:{filetag:"course"},
 imgUrl:sysConfig.imgUrl
 }

 },

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

1.1.3.3 测试

1、点击“加号”测试上传图片。

 methods: {
 //超出文件上传个数提示信息
 rejectupload(){
 this.$message.error("最多上传"+this.picmax+"个图片");
 },
 //在上传前设置上传请求的数据
 setuploaddata(){

 },
 //删除图片
 handleRemove(file, fileList) {
 console.log(file)

 alert('删除')

 },
 //上传成功的钩子方法
 handleSuccess(response, file, fileList){
 console.log(response)
 alert('上传成功')

 },
 //上传失败执行的钩子方法
 handleError(err, file, fileList){
 this.$message.error('上传失败');
 //清空文件队列
 this.fileList = []
 }
 },
 mounted(){
 //课程id
 this.courseid = this.$route.params.courseid;

 }
 }
</script>

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n196

3 保存课程图片

1.2.1 需求分析

图片上传到文件系统后，其它子系统如果想使用图片可以引用图片的地址，课程管理模块使用图片的方式是将图片
地址保存到课程数据库中。

业务流程如下：

1、上传图片到文件系统服务

2、保存图片地址到课程管理服务

在课程管理服务创建保存课程与图片对应关系的表 course_pic。

3、在course_pic保存图片成功后方可查询课程图片信息。

通过查询course_pic表数据则查询到某课程的图片信息。

1.2.2 课程管理服务端开发

1.2.2.1 API

课程管理需要使用图片则在课程管理服务中要提供保存课程图片的api。

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n203
af://n204
af://n221
af://n222

1.2.2.2 Dao

模型：

API如下：

1.2.3.3 Service

@ApiOperation("添加课程图片")
public ResponseResult addCoursePic(String courseId,String pic);

@Data
@ToString
@Entity
@Table(name="course_pic")
@GenericGenerator(name = "jpa‐assigned", strategy = "assigned")
public class CoursePic implements Serializable {
 private static final long serialVersionUID = ‐916357110051689486L;

 @Id
 @GeneratedValue(generator = "jpa‐assigned")
 private String courseid;
 private String pic;
}

public interface CoursePicRepository extends JpaRepository<CoursePic, String> {

}

 //添加课程图片
 @Transactional
 public ResponseResult saveCoursePic(String courseId,String pic){
 //查询课程图片
 Optional<CoursePic> picOptional = coursePicRepository.findById(courseId);
 CoursePic coursePic = null;
 if(picOptional.isPresent()){
 coursePic = picOptional.get();
 }
 //没有课程图片则新建对象
 if(coursePic == null){
 coursePic = new CoursePic();
 }
 coursePic.setCourseid(courseId);
 coursePic.setPic(pic);

 //保存课程图片

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n226
af://n235

1.2.3.4 Controller

1.2.4前端开发

前端需要在上传图片成功后保存课程图片信息。

1.2.4.1 Api方法

1.2.4.2 页面

1）添加上传成功的钩子 :on-success="handleSuccess"

2）在钩子方法 中保存课程图片信息

如果保存图片失败则上传失败，清除文件列表。

 coursePicRepository.save(coursePic);
 return new ResponseResult(CommonCode.SUCCESS);
 }

 @Override
 @PostMapping("/coursepic/add")
 public ResponseResult addCoursePic(@RequestParam("courseId") String courseId,
@RequestParam("pic") String pic) {
 //保存课程图片
 return courseService.saveCoursePic(courseId,pic);
 }

//添加课程图片
export const addCoursePic= (courseId,pic) => {
 return http.requestPost(apiUrl+'/course/coursepic/add?courseId='+courseId+"&pic="+pic)
}

<el‐upload
 action="/api/filesystem/upload"
 list‐type="picture‐card"
 :on‐success="handleSuccess">
 <i class="el‐icon‐plus"></i>
</el‐upload>

 //上传成功的钩子方法
 handleSuccess(response, file, fileList){
 console.log(response)
 if(response.success){

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n239
af://n241
af://n244
af://n246

4 图片查询

1.3.1 需求分析

课程图片上传成功，再次进入课程上传页面应该显示出来已上传的图片。

1.3.2 API

在课程管理服务定义查询方法

1.3.2 课程管理服务开发

1.3.2.1Dao

使用CoursePicRepository即可，无需再开发。

1.3.2.2 Service

 //alert('上传成功')
 //图片上传成功将课程图片地址保存到课程数据库
 let pic = response.fileSystem.filePath
 courseApi.addCoursePic(this.courseid,pic).then((res) => {
 if(res.success){
 this.$message.success('上传成功');
 }else{
 this.handleError()
 }
 });
 }else{
 this.handleError()
 }
 },
 //上传失败执行的钩子方法
 handleError(err, file, fileList){
 this.$message.error('上传失败');
 //清空文件队列
 this.fileList = []
 }

@ApiOperation("获取课程基础信息")
public CoursePic findCoursePic(String courseId);

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n261
af://n262
af://n267
af://n273
af://n274
af://n277

根据课程id查询课程图片

1.3.2.3 Controller

1.3.3 前端开发

1.3.3.1API方法

1.3.3.2页面

在课程图片页面的mounted钩子方法 中查询课程图片信息，并将图片地址赋值给数据对象

1、定义图片查询方法

public CoursePic findCoursepic(String courseId) {
return coursePicRepository.findOne(courseId);

}

 @Override
 @GetMapping("/coursepic/list/{courseId}")
 public CoursePic findCoursePic(@PathVariable("courseId") String courseId) {
 return courseService.findCoursepic(courseId);
 }

//查询课程图片
export const findCoursePicList = courseId => {
 return http.requestQuickGet(apiUrl+'/course/coursepic/list/'+courseId)
}

 //查询图片
 list(){
 courseApi.findCoursePicList(this.courseid).then((res) => {
 console.log(res)
 if(res.pic){
 let name = '图片';
 let url = this.imgUrl+res.pic;
 let fileId = res.courseid;
 //先清空文件列表，再将图片放入文件列表
 this.fileList = []
 this.fileList.push({name:name,url:url,fileId:fileId});
 }
 console.log(this.fileList);
 });

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n283
af://n287
af://n288
af://n292

2）mounted钩子方法

在mounted钩子方法中调用服务端查询文件列表并绑定到数据对象。

1.3.3.3测试

测试流程：

1、上传图片成功

2、进入上传图片页面，观察图片是否显示

5 课程图片删除

1.4.1 需求分析

课程图片上传成功后，可以重新上传，方法是先删除现有图片再上传新图片。

注意：此删除只删除课程数据库的课程图片信息，不去删除文件数据库的文件信息及文件系统服务器上的文件，由
于课程图片来源于该用户的文件库，所以此图片可能存在多个地方共用的情况，所以要删除文件系统中的文件需要
到图片库由用户确认后再删除。

1.4.2API

在课程管理服务添加删除课程图片api：

 }

mounted(){
 //课程id
 this.courseid = this.$route.params.courseid;
 //查询图片
 this.list()
}

@ApiOperation("删除课程图片")
public ResponseResult deleteCoursePic(String courseId);

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n307
af://n318
af://n319
af://n326

1.4.3课程管理服务端开发

1.4.2.1 Dao

CoursePicRepository父类提供的delete方法没有返回值，无法知道是否删除成功，这里我们在
CoursePicRepository下边自定义方法：

1.4.2.2 Service

1.4.2.3 Controller

1.4.3 前端开发

1.4.3.1 API 调用

1.4.3.2 页面测试

1）before-remove钩子方法

在upload组件的before-remove钩子方法 中实现删除动作。

//删除成功返回1否则返回0
long deleteByCourseid(String courseid);

 //删除课程图片
 @Transactional
 public ResponseResult deleteCoursePic(String courseId) {
 //执行删除，返回1表示删除成功，返回0表示删除失败
 long result = coursePicRepository.deleteByCourseid(courseId);
 if(result>0){
 return new ResponseResult(CommonCode.SUCCESS);
 }
 return new ResponseResult(CommonCode.FAIL);
 }

 @Override
 @DeleteMapping("/coursepic/delete")
 public ResponseResult deleteCoursePic(@RequestParam("courseId") String courseId) {
 return courseService.deleteCoursePic(courseId);
 }

//删除课程图片
export const deleteCoursePic= courseId => {
 return http.requestDelete(apiUrl+'/course/coursepic/delete?courseId='+courseId)
}

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n332
af://n333
af://n337
af://n341
af://n345
af://n346
af://n348

before-remove说明：删除文件之前的钩子，参数为上传的文件和文件列表，若返回 false 或者返回 Promise 且被
reject，则停止删除。

定义handleRemove方法进行测试：

handleRemove 返回true则删除页面的图片，返回false则停止删除页面的图片。

1.4.3.3 promise异步调用

在handleRemove方法调用删除图片的api方法，删除成功时return true，删除失败时return false;

 //删除图片
 handleRemove(file, fileList) {
 console.log(file)
// alert('删除')
// return true;
 //删除图片
 courseApi.deleteCoursePic('1').then((res) => {
 if(res.success){
 this.$message.success('删除成功');
 return true;
 }else{
 this.$message.error(res.message);
 return false;
 }
 });
 },

在上边代码中将提交的课程id故意写错，按照我们预期应该是删除失败，而测试结果却是图片在页面上删除成功。

问题原因：

通过查询deleteCoursePic方法的底层代码，deleteCoursePic最终返回一个promise对象。

<el‐upload
 action="/filesystem/upload"
 list‐type="picture‐card"
 :before‐remove="handleRemove">
 <i class="el‐icon‐plus"></i>
</el‐upload>

//删除图片
handleRemove(file, fileList) {
 console.log(file)
 alert('删除成功')
 return true;

｝

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

af://n365

Promise是ES6提供的用于异步处理的对象，因为axios提交是异步提交，这里使用promise作为返回值。

Promise的使用方法如下：

Promise对象在处理过程中有三种状态：

pending：进行中

resolved：操作成功

rejected: 操作失败

Promise的构建方法如下：

上边的构造方法function(resolve,reject)执行流程如下：

1）方法执行一些业务逻辑。

2）如果操作成功将Promise的状态由pending变为resolved，并将操作结果传出去

3）如果操作失败会将promise的状态由pending变为rejected，并将失败结果传出去。

上边说的操作成功将操作结果传给谁了呢？操作失败将失败结果传给谁了呢？

通过promise的then、catch来指定

例子如下：

1、定义一个方法，返回promise对象

const promise = new Promise(function(resolve,reject){
 //...TODO...
 if(操作成功){
 resolve(value);
 }else{
 reject(error);
 }
})

promise.then(function (result) {
 console.log('操作成功：' + result);
});
promise.catch(function (reason) {
 console.log('操作失败：' + reason);
});

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

2、调用此方法

向方法传入偶数、奇数进行测试。

this.testpromise(3).then(res=>{//在then中对成功结果进行处理
 alert(res)
}).catch(res=>{//在catch中对操作失败结果进行处理
 alert(res)
})

3、最终将handleRemove方法修改如下

handleRemove方法返回promise对象，当删除成功则resolve，删除失败则reject。

 //删除图片
 handleRemove(file, fileList) {
 console.log(file)
 return new Promise((resolve,reject)=>{
 //删除图片
 courseApi.deleteCoursePic(this.courseid).then((res) => {
 if(res.success){
 this.$message.success('删除成功');
 resolve()//通过
 }else{
 this.$message.error(res.message);
 reject()//拒绝
 }
 });
 })

 }

testpromise(i){
 return new Promise((resolve,reject)=>{
 if(i % 2==0){
 resolve('成功了')
 }else{
 reject('拒绝了')
 }
 })
}

北京市昌平区建材城西路金燕龙办公楼一层 电话：400-618-9090

	学成在线 第8天 讲义-课程图片管理 分布式文件系统
	1 FastDFS研究
	2 上传图片开发
	1.1.1 需求分析
	1.1.2 创建文件系统服务工程
	1.1.3 API接口
	1.1.3.1模型类
	1.1.3.2 Api接口
	1.1.2.3 Dao
	1.1.2.4 Service
	1.1.2.5 Controller
	1.1.2.6 测试

	1.1.3 上传课程图片前端
	1.1.3.1 需求
	1.1.3.2 页面
	1.1.3.3 测试

	3 保存课程图片
	1.2.1 需求分析
	1.2.2 课程管理服务端开发
	1.2.2.1 API
	1.2.2.2 Dao
	1.2.3.3 Service
	1.2.3.4 Controller

	1.2.4前端开发
	1.2.4.1 Api方法
	1.2.4.2 页面

	4 图片查询
	1.3.1 需求分析
	1.3.2 API
	1.3.2 课程管理服务开发
	1.3.2.1Dao
	1.3.2.2 Service
	1.3.2.3 Controller

	1.3.3 前端开发
	1.3.3.1API方法
	1.3.3.2页面
	1.3.3.3测试

	5 课程图片删除
	1.4.1 需求分析
	1.4.2API
	1.4.3课程管理服务端开发
	1.4.2.1 Dao
	1.4.2.2 Service
	1.4.2.3 Controller

	1.4.3 前端开发
	1.4.3.1 API 调用
	1.4.3.2 页面测试
	1.4.3.3 promise异步调用

