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FRIZ IR APIS
Release Homepage (in Feb, 2016):

https://microsoft.sharepoint.com/teams/DMEI/SitePages/API Overview.aspx - —=

1. Document Parsing
a) Input: document in covered format (Word, PowerPoint, SharePoint, Web Page, PDF, etc.)
b) Output: XML file of input document
c) Detail: Office File Extractor Web API
2. Acronym Mining (entity discovery)
a) Input: document in target format
b) Output: acronym-expansion pairs
c) Detail: Acronym Web API
3. Entity Definition Mining (entity discovery and enrichment)
a) Input: document in target format, target entity (optional)
b) Output: definition of entities
c) Detail: Definition Web API 2.Acronym 3.Definition 5.Document
4. Entity Conceptualization (entity semantic representation and relation mining) Mining Tagging
a) Input: target entity or concept
b) Output: top concepts for this entity, or top entities for this concept
c) Detail: Concept Web API
5. Document Tagging
a) Input: document in target format
b) Output: semantic tags (phrases)
c) Detail: Tagging Web API
6. Table Mining (entity discovery and relation mining)
a) Input: document in target format contain tables (explicit table, visual table, logical table)
b) Output: a List of class that reflect the relation between people and projects
c) Detail: Work On Web API
7. QA Pair Mining
a) Input: document in target format
b) Output: explicit QA pairs, implicit QA pairs
c) Detail: QA Extractor Web API

Adobe

1.Document

Converter

v

6.Table

Mining

4 Entity
Conceptualization
& Semantic
Computing

Your own
knowledge base



https://microsoft.sharepoint.com/teams/DMEI/SitePages/API_Overview.aspx
https://microsoft.sharepoint.com/teams/DMEI/SitePages/Office_File_Extractor_Web_API.aspx
https://microsoft.sharepoint.com/teams/DMEI/SitePages/Acronym_Web_API.aspx
https://microsoft.sharepoint.com/teams/DMEI/SitePages/Definition_Web_API.aspx
https://microsoft.sharepoint.com/teams/DMEI/SitePages/Microsoft_Concept_Web_API.aspx
https://microsoft.sharepoint.com/teams/DMEI/SitePages/Tagging_Web_API.aspx
https://microsoft.sharepoint.com/teams/DMEI/SitePages/WorkOn_Web_API.aspx
https://microsoft.sharepoint.com/teams/DMEI/SitePages/QAExtractor_Web_API.aspx

a1 FIR B i

Connect two graphs
* Entity level
* Intent vs knowledge

¢

KG
(Inference)

Knowledge Graph (KG) KG < UIT

Kable 1.0 * Conceptualization (Probase)
Knowledge Mining API (Enterprise Dictionary) * Knowledge & Text embedding

HERIRER, 1764, , T, &R

AT
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IR
User Intent Taxonomy (UIT)

Kable 2.0 (FAQ Mining)
Conceptualization (Text Similarity)
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FAQ Extractor
Web/Input Docs « QA pair

* Context meta

Semantic Tagging Question Linking
Domain, entity, * Knowledge powered
Intent, schema, condition e Un-structure + structure

Facts KB
Extractor

Data Source Tool with user interaction

Source Discovery
* Auto
* Manual

Intent Taxonomy
Domain, entity,
Intent, schema, condition

Semantic
KB Learner

QA Extractor

Active FAQ Builder
Pairs

* Manually add/select data source (URL, documents)

* Insite example labeling for auto extraction

Learning models and tool Knowledge service:
* QA pairindex * Intent taxonomy learning, question classification, knowledge + Knowledge bases
* With context meta powered question similarity learning, user interaction tool

A\ 4

Output

Domain * Question + paraphrasing
Entity + semantics * Conditions
Intent * Answer

Connection

O Digital
+ ERFSRRR R MR ) Socter ot eene
iﬁj H:Il : Bot framework

- BATESESAEMNERESRE Customer Bot kit

LIS IR

o —RMEHNEY, fEATn)E200077 5%
« HIZE27H%

- AFITESAEEIORERE

Service

Web/Enter

prise QA

Applications

API.Al

Chatfuel

Layer.com

Facebook Messenger

Bot Frameworks

Deliverable
A unified service + tools with Ul
High quality domain data in e2e scenario
Large scale open domain data available to use

QA Knowledge Base
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Web Documents
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Personal Knowledge
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Knowledge (base) Manager (Editing, Confirmation)

A

Question Clustering
Ranking
Recommendation
(Active Learning)

What is this medication and its most common uses?
What should | know when beginning and continuing on this
medication?

What are the possible side effects of this medication?
Who should not take this medication?

What should | tell my healihcare provider before | take the first dose of
this

FAQ Extraction

What is the usual dosage?

How should | take this

v

Dictionary Knowledge Mining
* Entity Attributes (definition etc.)
* Entity Relation
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< /FRRAEIR>
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</RAERIZE>
<GHIT B> =PERLL (2000 — 50007T)
GHREEE>95%< /SHRREE>
<GHTAE>EWITE. ZXMEEE R8T AE
<H 25>

Medical Dictionary (Knowledge Graph)

Semantic Computation
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55% open 10+ times a day
20% open 30+ times a day [ ™"

<ToUserName>gh_6c65e56ad5d7</ToUserName>

@ 39% M} <FromUserName>008tKszmulmyldPSg1GsYKwE2Y</FromUserName>
ARE 424 <CreateTime>1459326201</CreateTime>
£ A —yw A;L%j(g <MsgType>TEXT</MsgType>
9\{&? <Content>= X #1298 F A % /> gk</Content>
</xml>
User Input through ”
User put throug HTTP Post
() =smemmurmzase WeChat Client
BIRAATT BUABR S EB R -- M i
MEMEAR (micorvascular R ICroso
decompression, MVD) F{ eSponse
BREFER, BNERDER Answer th rough < .. Azure
RS ER AT, Hp
AREEEASHEETRY WeChat xmi>
'JE{, gﬁggg’%igﬂgﬁg ' i <ToUserName>008tKszmulmyldPSglGsYKwWEGc2Y</ToUserName>
BIFER, TR, (fag N NSEFT7EEH1.5—1.6 AT ' . <FromUserName>gh_6c65e56ad5d7</FromUserName> .
pattern) RCVIPSEIE ;ﬁﬁ . ﬁjl: WeChat Server | <createTime>635949230017133444</CreateTime> Service Server
ANBB£1577T, ZRDHN, <MsgType>TEXT</MsgType>
<Content>ff BN NJBT 8 H1.5—1.6 57T, ..., </Content> TOOI
</xml> API ( )
HI

) monrsrams—ienn
. NRAZ15F7, SBHH

e Knowledge Learning Knowledge Computing Knowledge Service
@@ e FAQ discovery and extraction * Question understanding * FAQ

=)
< )

* Medical dictionary learning * Answer understanding * Feedback collection
* Active knowledge learning * Active conversation modeling  Al+HI
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Human Knowledge QA Extraction QA Data Index ‘Knowledge Interence Healthcare Management
IR T KRR (e IR 2 B & MR RS BRI BEEESESTHEY
From entity to semantics * Knowledge sharing From entity to semantics
« Concept ontology management * Intent learning
=l * Entity variances e Cross domain common * Knowledge powered text
« Metaphor learning sense knowledge similarity
* Knowledge translation integration * Distributed Knowledge
. o« . representation ...
Clinical Data Deep Knowledge Extraction Knowledge Sharing Deep Knowledge Computing Medical Research Assistant
F LB FRD REMREZHE FIRART BREMRAAE REMAITE I PR &= S R 4 B
Extensibility: Core technologies: Powered by: Core technologies: Channels:
* Unstructured text data * Kable * Azure storage * QAintent learning * Azure could service
* Semi-structured documents * Probase  Trinity graph engine on Azure * Domain Probase * As mobile app
+ Multimedia data QA (NL) understanding * Bingindex and retrieval * QA(NL) understanding * Social channel: WeChat

Data Sources Knowledge Mining Knowledge Management  Knowledge Computing Application
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Aims to give response to users for Conversation Aims to get response from users
satisfying intents of users Model according to goal of machine

Passive ) User does not know goal of
Retrieve existing text as Generating response User knows goal of the Active Model the conversation, bad
response from donversation (Response) through triining on conversation, actiyely give response (RIS PSRN PRt experience if upnatural
data collgction Model conversatfon data for requests ffom machine request from

Hybrid : User . _
[ On Single Topic,
Retrieval Based (with rules, KBQA and Learning Based Cooperative nd NEE Opic, 1o User .
manual) (DNN) need fopic transition Uncooperative

in donversation
Conversation Whether jext request

history rely on|previous
dependent responsg from user

Open domain, need to
drive convprsation to
targef topic

One input - one response model
Select l

deterministicdlly
from a fixed spt
of possible
responses

Single Loop Session Model

(Response) (Context) Single Topic Multiple Topic

Response transition

Y Independent

Sensitive question for user,
combine with prediction model

Implicit

RLMT, DCGM [3] Dirélct question
: 4 froln machine

NRM for STC [1] NRM for STC [2] AWI based on encoder-decoder([4] .
esponse

Sequence to Sequence [5]

Dependent (Predictive)

Challenges:

1. How to lead the conversation from source topic to target topic

2. How to propose request naturally during conversation (Timing)

3. How to combine with prediction model by decomposing machine goal into new requests
4

5

Academic Work Academic Work
Academic Work

Mi ft Xiaolce, F k M, Baidu Dumi... . . .
lcrosoft Xiaolce, Facebook M, Baidu Dumi How to adaptively determine next request for hidden goals

How to generate natural language question according to goal of machine

Industry Work (Most are hybrid models)
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