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= The Knowledge Graph is a system that understands

facts about people, places and things and how
these entities are all connected.
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* RDF & SPARQL
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Wang, et al. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of AAAI 2014

Lin, et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of AAAI 2015

Ji, et al. Knowledge graph embedding via dynamic mapping matrix. In Proceedings of ACL 2015
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Going Up Against a Deadly Disease
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Task 2

1. Character representation

2. Word segmentation

Bi-RNN-CRF . Vote

Consistency check
Re-train
Results integration

Hanlp word segmentation

GloVe embedding training

Reseg

Character embedding + word embedding

Multiple model (rule-based, crf, rnn)
Entity classification modification
Using unlabeled datasets



For journal paper

Focus on Character Representation
* Character representation is a basic but crucial step in NLP tasks
* We have drawn the conclusion that n-gram representation is better

* We can study different character representation methods can
influence the clinical NER results or not, and HOW

* We could add some necessary post-processing steps

 Transform Task to Tool
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Best English Paper

» Attention-based Event Relevance Model for Stock Price
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