


阿良

资深运维工程师，51CTO知名博主。曾就职在IDC，大数据，
金融行业，现任职奇虎360公司。经重重磨炼，具有丰富的运
维实战经验。

技术博客：http://blog.51cto.com/lizhenliang

学员群： 545214087

http://shang.qq.com/wpa/qunwpa?idkey=60ce2b92edb6d0d2159e6aeaf3a5dc4f12b04ec8a32e7d274cc26545b0f54ddd


Playbook基本使用

Ad-hoc命令模式

Ansible常用模块

Ansible概述

Playbook定义变量与使用

Playbook流程控制

Playbook模板（jinja2）

Playbook文件复用

角色（Roles）

Ansible安装与配置

一

二

三

四

六

七

八

九

十

五



第 1 章 Ansible概述

1. IT自动化的好处

2. Ansible是什么

3. Ansible架构

4. 先来认识一下Ansible



IT自动化的好处

团队影响

• 节省时间，提高工作效率

• 消除重复任务

• 更少的错误风险

• 改善协作和工作满意度

企业影响

• 克服复杂性

• 更多创新资源

• 加强问责制和合规性



Ansible是什么

简单 – 减少学习成本

• 易读的描述语言

• 无需特殊编码技能

• 任务按顺序执行

强大 – 协调应用程序生命周期

• 应用部署

• 配置管理

• 工作流程编排

无代理 – 可预测，可靠和安全

• 无代理架构

• 使用OpenSSH通信

• 没有代理维护成本



Ansible架构



Ansible架构



第 2 章 Ansible安装与配置

1. Ansible使用要求

2. 安装Ansible

3. 配置文件

4. Inventory（主机清单）



Ansible使用要求

服务端要求

• Python2.6/2.7/3.x

• RedHat，Debian，CentOS，OS X等。不支持Windows

被管理端要求

• OpenSSH

• Python2.6/2.7/3.x



安装Ansible

 yum install ansible （推荐）

 pip install ansible

 https://releases.ansible.com/ansible or  https://github.com/ansible/ansible.git



配置文件

# vi /etc/ansible/ansible.cfg 
[defaults]
inventory = /etc/ansible/hosts
forks = 5
become = root
remote_port  = 22
host_key_checking = False
timeout = 10
log_path = /var/log/ansible.log
private_key_file = /root/.ssh/id_rsa



Inventory（主机清单）

# 示例1：未分组的主机
green.example.com
blue.example.com
192.168.100.1
192.168.100.10

# 示例2：属于webservers组主机集合
[webservers]
alpha.example.org
beta.example.org
192.168.1.100
192.168.1.110
www[001:006].example.com 

示例3：属于dbservers组主机集合
[dbservers]
db01.intranet.mydomain.net
db02.intranet.mydomain.net
10.25.1.56
10.25.1.57
db-[99:101]-node.example.com



Inventory（主机清单）

主机和主机组变量：

[webservers]
192.168.1.10 ansible_ssh_user=root ansible_ssh_pass='123456’ http_port=80
192.168.1.11 ansible_ssh_user=root ansible_ssh_pass='123456’ http_port=80

[webservers:vars]
http_port=8080
server_name=www.ctnrs.com

组变量分解到单个文件：

# cat /etc/ansible/group_vars/webservers.yml 
http_port: 8080
server_name: www.ctnrs.com



第 3 章 ad-hoc命令

1. 命令行工具常用选项

2. SSH密码认证

3. SSH秘钥对认证



命令行工具常用选项

格式：ansible <host-pattern> [ options ]

选项：
-a MODULE_ARGS, --args=MODULE_ARGS            模块参数
-C, --check                                 运行检查，不执行任何操作
-e EXTRA_VARS, --extra-vars=EXTRA_VARS        设置附加变量 key=value
-f FORKS, --forks=FORKS                       指定并行进程数量，默认5
-i INVENTORY, --inventory=INVENTORY           指定主机清单文件路径
--list-hosts                                  输出匹配的主机列表，不执行任何操作
-m MODULE_NAME, --module-name=MODULE_NAME    执行的模块名，默认command
--syntax-check                                语法检查playbook文件，不执行任何操作
-t TREE, --tree=TREE                          将日志输出到此目录
-v, --verbose                                 详细信息，-vvv更多, -vvvv debug
--version                                     查看程序版本

连接选项：控制谁连接主机和如何连接
-k, --ask-pass                                请求连接密码
--private-key=PRIVATE_KEY_FILE, --key-file=PRIVATE_KEY_FILE   私钥文件
-u REMOTE_USER, --user=REMOTE_USER            连接用户，默认None
-T TIMEOUT, --timeout=TIMEOUT                 覆盖连接超时时间，默认10秒

提权选项：控制在目标主机以什么用户身份运行
-b, --become                                  以另一个用户身份操作
--become-method=BECOME_METHOD                 提权方法，默认sudo
--become-user=BECOME_USER                    提权后的用户身份，默认root
-K, --ask-become-pass                         提权密码



SSH密码认证

[webservers]
192.168.1.10:22 ansible_ssh_user=root ansible_ssh_pass='123456’
192.168.1.11:22 ansible_ssh_user=root ansible_ssh_pass='123456’



SSH密钥对认证

[webservers]
192.168.1.10:22 ansible_ssh_user=root ansible_ssh_key=/root/.ssh/id_rsa
192.168.1.11:22 ansible_ssh_user=root 



第 4 章 Ansible常用模块

• 执行shell命令（command和shell）

• 文件传输（copy和file）

• 管理软件包（yum）

• 用户和组（user）

• 从源代码管理系统部署（git）

• 管理服务（service）

• 收集目标主机信息（setup）

模块文档：https://docs.ansible.com/ansible/latest/user_guide/intro_adhoc.html

ansible_nodename
ansible_os_family
ansible_pkg_mgr
ansible_processor
ansible_processor_cores



第 5 章 Playbook基本使用

1. 使用Playbook的好处

2. 先来认识一下Playbook（自动部署Nginx）

3. YAML语法

4. Playbook文件结构

5. 在变更时执行操作（handlers）

6. 任务控制（tags）

7. Playbook文件调试

8. 案例：自动部署Tomcat

模块文档：https://docs.ansible.com/ansible/latest/user_guide/intro_adhoc.html



使用Playbook有什么好处

特点

• 易读的编排语言 - YAML

• 适合配置管理和应用部署

• 非常适合部署复杂的工作

Playbook文档：https://docs.ansible.com/ansible/latest/user_guide/playbooks.html



先来认识一下Playbook
# main.yml
---
- hosts: webservers
vars:
hello: Ansible

tasks:
- name: Add repo 
yum_repository:
name: nginx
description: nginx repo
baseurl: http://nginx.org/packages/centos/7/$basearch/
gpgcheck: no
enabled: 1

- name: Install nginx
yum:
name: nginx
state: latest

- name: Copy nginx configuration file
copy:
src: ./site.conf
dest: /etc/nginx/conf.d/site.conf

- name: Start nginx
service:
name: nginx
state: started

- name: Create wwwroot directory
file:
dest: /var/www/html
state: directory

- name: Create test page index.html
shell: echo "hello {{hello}}" > /var/www/html/index.html

# site.conf
server {

listen 80;
server_name www.ctnrs.com;
location / {

root   /var/www/html;
index  index.html;

}
}

执行playbook：ansible-playbook main.yml 



YAML语法

 缩进表示层级关系

 不支持制表符“tab”缩进，使用空格缩进

 通常开头缩进 2 个空格

 字符后缩进 1 个空格，如冒号、逗号等

 “---” 表示YAML格式，一个文件的开始

 “#”注释



Playbook文件结构

---
- name: play1
hosts: webservers
remote_user: root
vars:

var_name: value
tasks:

- name: echo
shell: "echo {{var_name}}"

- name: play2
hosts: webservers
remote_user: root
vars:

var_name: value
tasks:

- name: echo
shell: "echo {{var_name}}"

---
- hosts: webservers
remote_user: root
vars:

var_name: value
tasks:

- name: echo
shell: "echo {{var_name}}"



在变更时执行操作（handlers）

---

- hosts: webservers
gather_facts: no

tasks:
- name: Copy nginx configuration file

copy:
src: ./site.conf
dest: /etc/nginx/conf.d/site.conf

notify:
- restart nginx

handlers:
- name: restart nginx

service: name=nginx state=reloaded

notify：在任务结束时触发
handlers：由特定条件触发Tasks



任务控制（tags）

---
- hosts: webservers

gather_facts: no

tasks:
- name: Install redis
yum: name=redis state=present
tags: install

- name: Copy redis configuration file
copy: src=redis.conf dest=/etc/redis/redis.conf

tags: configuration

- name: Restart redis
service: name=redis state=restarted
tags: restart

指定：ansible-playbook example.yml --tags "configuration,install"
跳过：ansible-playbook example.yml --skip-tags "install"



Playbook文件调试

语法检查：ansible-playbook  main.yml  --syntax-check

打印语句：
---
- hosts: webservers
tasks:
- debug:
msg: {{group_names}}

- debug: 
msg: {{inventory_hostname}}

- debug:
msg: {{ansible_hostname}}



案例：自动部署Tomcat

---
- hosts: webservers 
gather_facts: no
vars:

tomcat_version: 8.5.34
tomcat_install_dir: /usr/local

tasks:
- name: Install jdk1.8
yum: name=java-1.8.0-openjdk state=present

- name: Download tomcat
get_url: url=http://mirrors.hust.edu.cn/apache/tomcat/tomcat-

8/v{{ tomcat_version }}/bin/apache-tomcat-{{ tomcat_version }}.tar.gz dest=/tmp

- name: Unarchive tomcat-{{ tomcat_version }}.tar.gz
unarchive:
src: /tmp/apache-tomcat-{{ tomcat_version }}.tar.gz 
dest: "{{ tomcat_install_dir }}"
copy: no

- name: Start tomcat 
shell: cd {{ tomcat_install_dir }} &&

mv apache-tomcat-{{ tomcat_version }} tomcat8 &&
cd tomcat8/bin && nohup ./startup.sh &



第 6 章 Playbook变量定义与使用

1. 命令行

2. 在Inventory中定义

3. 在Playbook中定义

4. 在Roles中定义

5. 注册变量（register）

6. 系统信息变量（facts）



Playbook定义变量与使用

# 在Playbook中定义变量
---

- hosts: webservers
gather_facts: no
vars:
var_name: value
var_name: value

tasks:
- name: hello
shell: "echo {{var_name}}"

# 注册变量
---

- hosts: webservers
gather_facts: no
tasks:

- name: Get date 
command: date +"%F_%T"
register: date_output

- name: Echo date_output
command: touch /tmp/{{date_output.stdout}}

# 系统变量
---
- hosts: webservers
tasks:
- name: Get hostname
debug: msg={{ansible_hostname}}



第 7 章 Playbook文件复用

1. include & import 区别

2. import_playbook

3. include_tasks

4. import_tasks



include & import 区别

include*（动态）：在运行时导入

• --list-tags，--list-tasks不会显示到输出

• 不能使用notify触发来自include*内处理程序名称（handlers）

import*（静态）：在Playbook解析时预先导入

• 不能与循环一起使用

• 将变量用于目标文件或角色名称时，不能使用inventory（主机/主机组等）中的变量



import_playbook

# main.yml
---
- import_playbook: webservers.yml
- import_playbook: databases.yml

# webservers.yml
---
- hosts: webservers
tasks:
- debug: msg="test webserver"

# database.yml
---
- hosts: webservers
tasks:
- debug: msg="test database"



include_tasks & import_tasks

# main.yml
---
- hosts: webservers

gather_facts: no
tasks:
- include_tasks: task1.yml
vars:
user: zhangsan

- import_tasks: task2.yml
vars:
user: lisi

# task1.yml
---
- name: task1
debug: msg="hello {{user}}"

# task2.yml 
---
- name: task2
debug: msg="hello {{user}}"



第 8 章 Playbook流程控制

1. 条件

2. 循环



条件

- hosts: webservers

tasks:
- name: Host 192.168.1.12  run this task

debug: msg="{{ansible_default_ipv4.address}}"
when: ansible_default_ipv4.address == '192.168.1.12 '

- hosts: webservers

tasks:
- name: Update apache version - yum
yum: name=httpd state=present
when: ansible_pkg_mgr == 'yum'
notify: restart httpd

- name: Update apache version - apt
apt: name=apache2 state=present update_cache=yes
when: ansible_pkg_mgr == 'apt'
notify: restart apache2

handlers:
- name: restart httpd
service: name=httpd state=restarted

- name: restart apache2
service: name=apache2 state=restarted



条件

tasks:
- name: "shut down CentOS 6 and Debian 7 systems"

command: /sbin/shutdown -t now
when: (ansible_distribution == "CentOS" and ansible_distribution_major_version == "6") or

(ansible_distribution == "Debian" and ansible_distribution_major_version == "7")

tasks:
- name: "shut down CentOS 6 systems"

command: /sbin/shutdown -t now
when:
- ansible_distribution == "CentOS"
- ansible_distribution_major_version == "6"



循环

- name: with_list
debug:

msg: "{{ item }}"
with_list:

- one
- two

- name: with_list -> loop
debug:

msg: "{{ item }}"
loop:

- one
- two

- name: with_items
debug:

msg: "{{ item }}"
with_items: "{{ items }}"

- name: with_items -> loop
debug:

msg: "{{ item }}"
loop: "{{ items|flatten(levels=1) }}"



第 9 章 模板（jinja2）

1. 条件和循环

2. 案例：管理Nginx配置文件



条件和循环

# test.yml 
---
- hosts: webservers
vars:

hello: Ansible

tasks:
- template: src=f.j2 dest=/tmp/f.j2

# f.j2 
{% set list=['one', 'two', 'three'] %}

{% for i in list %}
{% if i == 'two' %}

-> two
{% elif loop.index == 3 %}

-> 3
{% else %}

{{i}}
{% endif %}

{% endfor %} 

{{ hello }}

{% set dict={'zhangsan': '26', 'lisi': '25'} %}
{% for key, value in dict.iteritems() %}

{{key}} -> {{value}}
{% endfor %}



案例：管理Nginx配置文件

# main.yml 
---
- hosts: webservers

gather_facts: no
vars:

http_port: 80
server_name: www.ctnrs.com

tasks:
- name: Copy nginx configuration file 

template: src=site.conf.j2 
dest=/etc/nginx/conf.d/www.ctnrs.com.conf

notify: reload nginx

handlers:
- name: reload nginx
service: name=nginx state=reloaded

# site.conf.j2 
{% set list=[10, 12, 13, 25, 31] %}
upstream {{server_name}} {

{% for i in list %}
server 192.168.1.{{i}}:80;

{% endfor %}
}
server {

listen       {{ http_port }};
server_name  {{ server_name }};

location / {
proxy_pass http://{{server_name}};

} 
}



第 10 章 角色（roles）

1. Roles目录结构

2. Roles基本使用

3. 案例：部署Web服务器



Roles目录结构

site.yml
webservers.yml
fooservers.yml
hosts
roles/

common/
files/
templates/
tasks/
handlers/
vars/
defaults/
meta/

webservers/
files/
templates/
tasks/
handlers/
vars/

• tasks - 包含角色要执行的主要任务列表

• handlers - 包含角色使用的处理程序

• defaults - 角色默认的变量

• vars - 角色其他的变量

• files - 角色部署时用到的文件

• templates - 角色部署时用到的模板

• meta - 角色定义的一些元数据



Roles基本使用

---
- hosts: webservers
roles:

- common
- nginx
- php

---
- hosts: webservers
roles:

- common
- role: nginx
vars:

dir: '/opt/a'
app_port: 5000

- role: php
vars:

dir: '/opt/b'
app_port: 5001

---
- hosts: webservers
roles:

- role: common
tags: ["common"]

- role: nginx
tags: ["nginx"]

- role: php
tags: ["php"]



案例：部署Web服务器



案例：部署Web服务器



参考文档

最佳实践：https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
示例参考：https://github.com/ansible/ansible-examples




