
写书评，赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp

中国象棋将帅问题
★★★

下过中国象棋的朋友都知道，双方的“将”和“帅”相隔遥远，并且它们不能照面。在象棋
残局中，许多高手能利用这一规则走出精妙的杀招。假设棋盘上只有“将”和“帅”二子（如图
1-3 所示）（为了下面叙述方便，我们约定用 A 表示“将”，B 表示“帅”）：

图 1-3

A、B 二子被限制在己方 3×3 的格子里运动。例如,在如上的表格里，A 被正方形{d10, f10,

d8, f8}包围，而 B 被正方形{d3, f3, d1, f1}包围。每一步，A、B 分别可以横向或纵向移动一格，
但不能沿对角线移动。另外，A 不能面对 B，也就是说，A 和 B 不能处于同一纵向直线上（比
如 A 在 d10的位置，那么 B 就不能在 d1、d2以及 d3）。

请写出一个程序，输出 A、B 所有合法位置。要求在代码中只能使用一个变量。

1.2

写书评，赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp

分析与解法

问题的本身并不复杂，只要把所有 A、B 互相排斥的条件列举出来就可以完成本题的要
求。由于本题要求只能使用一个变量，所以必须首先想清楚在写代码的时候，有哪些信息需
要存储，并且尽量高效率地存储信息。稍微思考一下，可以知道这个程序的大体框架是：

遍历A的位置
 遍历B的位置
 判断A、B的位置组合是否满足要求。
 如果满足，则输出。

因此，需要存储的是 A、B 的位置信息，并且每次循环都要更新。为了能够进行判断，
首先需要创建一个逻辑的坐标系统，以便检测 A 何时会面对 B。这里我们想到的方法是用
1~9 的数字，按照行优先的顺序来表示每个格点的位置（如图 1-4 所示）。这样，只需要用
模余运算就可以得到当前的列号，从而判断 A、B 是否互斥。

1 2 3

654

987

图 1-4 用 1~9 的数字表示 A、B 的坐标

第二，题目要求只用一个变量，但是我们却要存储 A 和 B 两个子的位置信息，该怎么
办呢？

可以先把已知变量类型列举一下，然后做些分析。

对于 bool 类型，估计没有办法做任何扩展了，因为它只能表示 true 和 false 两个值；而
byte 或者 int 类型，它们能够表达的信息则更多。事实上，对本题来说，每个子都只需要 9

个数字就可以表达它的全部位置。

一个 8 位的 byte 类型能够表达 28=256 个值，所以用它来表示 A、B 的位置信息绰绰有余，
因此可以把这个字节的变量（设为 b）分成两部分。用前面的 4 bit 表示 A 的位置，用后面的
4 bit 表示 B 的位置，那么 4 个 bit 可以表示 16 个数，这已经足够了。

问题在于：如何使用 bit级的运算将数据从这一 byte变量的左边和右边分别存入和读出。

下面是做法：

 将 byte b（10100101）的右边 4 bit（0101）设为 n（0011）：

 首先清除 b 右边的 bits，同时保持左边的 bits:

写书评，赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp

 11110000（LMASK）

& 10100101（b）

 10100000

 然后将上一步得到的结果与 n 做或运算

 10100000（LMASK & b）

^ 00000011（n）

 10100011

 将 byte b（10100101）左边的 4 bit（1010）设为 n（0011）：

 首先，清除 b 左边的 bits，同时保持右边的 bits:

 00001111（RMASK）

& 10100101（b）

 00000101

 现在，把 n 移动到 byte 数据的左边
n << 4 = 00110000

 然后对以上两步得到的结果做或运算，从而得到最终结果。

 00000101（RMASK & b）

^ 00110000（n << 4）

 00110101

写书评，赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp

 得到 byte 数据的右边 4 bits 或左边 4 bits（e.g. 10100101 中的 1010 以及 0101）：

 清除 b 左边的 bits，同时保持右边的 bits

 00001111（RMASK）

& 10100101（b）

 00000101

 清除 b 的右边的 bits，同时保持左边的 bits

 11110000（LMASK）

& 10100101（b）

 10100000

 将结果右移 4 bits
10100000 >> 4 = 00000101

最后的挑战是如何在不声明其他变量约束的前提下创建一个 for 循环。可以重复利用
1byte 的存储单元，把它作为循环计数器并用前面提到的存取和读入技术进行操作。还可以
用宏来抽象化代码，例如：

for (LSET(b, 1); LGET(b) <= GRIDW * GRIDW; LSET(b, (LGET(b) + 1)))

【解法一】

代码清单 1-6
#define HALF_BITS_LENGTH 4
// 这个值是记忆存储单元长度的一半，在这道题里是4bit
#define FULLMASK 255
// 这个数字表示一个全部bit的mask，在二进制表示中，它是11111111。
#define LMASK (FULLMASK << HALF_BITS_LENGTH)
// 这个宏表示左bits的mask，在二进制表示中，它是11110000。
#define RMASK (FULLMASK >> HALF_BITS_LENGTH)
// 这个数字表示右bits的mask，在二进制表示中，它表示00001111。
#define RSET(b, n) (b = ((LMASK & b) ^ n))
// 这个宏，将b的右边设置成n
#define LSET(b, n) (b = ((RMASK & b) ^ (n << HALF_BITS_LENGTH)))
// 这个宏，将b的左边设置成n
#define RGET(b) (RMASK & b)
// 这个宏得到b的右边的值
#define LGET(b) ((LMASK & b) >> HALF_BITS_LENGTH)
// 这个宏得到b的左边的值
#define GRIDW 3
// 这个数字表示将帅移动范围的行宽度。
#include <stdio.h>
#define HALF_BITS_LENGTH 4
#define FULLMASK 255
#define LMASK (FULLMASK << HALF_BITS_LENGTH)
#define RMASK (FULLMASK >> HALF_BITS_LENGTH)
#define RSET(b, n) (b = ((LMASK & b) ^ n))
#define LSET(b, n) (b = ((RMASK & b) ^ (n << HALF_BITS_LENGTH)))
#define RGET(b) (RMASK & b)
#define LGET(b) ((LMASK & b) >> HALF_BITS_LENGTH)
#define GRIDW 3

写书评，赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp

int main()
{
 unsigned char b;
 for(LSET(b, 1); LGET(b) <= GRIDW * GRIDW; LSET(b, (LGET(b) + 1)))
 for(RSET(b, 1); RGET(b) <= GRIDW * GRIDW; RSET(b, (RGET(b) + 1)))
 if(LGET(b) % GRIDW != RGET(b) % GRIDW)
 printf("A = %d, B = %d\n", LGET(b), RGET(b));

return 0;
}

【输出】

格子的位置用 N 来表示，N = 1, 2, …, 8, 9，依照行优先的顺序，如图 1-5 所示：

“将”（A）的格子

1 2 3

654

987

“帅”（B）的格子

1 2 3

654

987

图 1-5

写书评，赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp

A = 1, B = 2

A = 1, B = 3

A = 1, B = 5

A = 1, B = 6

A = 1, B = 8

A = 1, B = 9

A = 2, B = 1

A = 2, B = 3

A = 2, B = 4

A = 2, B = 6

A = 2, B = 7

A = 2, B = 9

A = 3, B = 1

A = 3, B = 2

A = 3, B = 4

A = 3, B = 5

A = 3, B = 7

A = 3, B = 8

A = 4, B = 2

A = 4, B = 3

A = 4, B = 5

A = 4, B = 6

A = 4, B = 8

A = 4, B = 9

A = 5, B = 1

A = 5, B = 3

A = 5, B = 4

A = 5, B = 6

A = 5, B = 7

A = 5, B = 9

A = 6, B = 1

A = 6, B = 2

A = 6, B = 4

A = 6, B = 5

A = 6, B = 7

A = 6, B = 8

A = 7, B = 2

A = 7, B = 3

A = 7, B = 5

A = 7, B = 6

A = 7, B = 8

A = 7, B = 9

A = 8, B = 1

A = 8, B = 3

A = 8, B = 4

A = 8, B = 6

A = 8, B = 7

A = 8, B = 9

A = 9, B = 1

A = 9, B = 2

A = 9, B = 4

A = 9, B = 5

A = 9, B = 7

A = 9, B = 8

考虑了这么多因素，总算得到了本题的一个解法，但是 MSRA 里却有人说，下面的一
小段代码也能达到同样的目的：

BYTE i = 81;
while(i--)
{
 if(i / 9 % 3 == i % 9 % 3)
 continue;
 printf(“A = %d, B = %d\n”, i / 9 + 1, i % 9 + 1);
}

但是很快又有另一个人说他的解法才是效率最高的：

写书评，赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp

代码清单 1-7
struct {
 unsigned char a:4;
 unsigned char b:4;
} i;

for(i.a = 1; i.a <= 9; i.a++)
for(i.b = 1; i.b <= 9; i.b++)
 if(i.a % 3 == i.b % 3)
 printf(“A = %d, B = %d\n”, i.a, i.b);

读者能自己证明一下么？1

1 这一题目由微软亚洲研究院工程师 Matt Scott 提供，他在学习中国象棋的时候想出了这个题目，后来一位应聘者给出

了比他的“正解”简明很多的答案，他们现在成了同事。

