
写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

寻找最大的 K 个数

在面试中，有下面的问答：

问：有很多个无序的数，我们姑且假定它们各不相等，怎么选出其中最大的

若干个数呢？

答：可以这样写：int array[100] ……

问：好，如果有更多的元素呢？

答：那可以改为：int array[1000] ……

问：如果我们有很多元素，例如 1 亿个浮点数，怎么办？

答：个，十，百，千，万……那可以写：float array [100 000 000] ……

问：这样的程序能编译运行么？

答：嗯……我从来没写过这么多的 0 ……

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

分析与解法

【解法一】

当学生们信笔写下 float array [10000000]，他们往往没有想到这个数据结构
要如何在电脑上实现，是从当前程序的栈（Stack）中分配，还是堆（Heap），
还是电脑的内存也许放不下这么大的东西？

我们先假设元素的数量不大，例如在几千个左右，在这种情况下，那我
们就排序一下吧。在这里，快速排序或堆排序都是不错的选择，他们的平均
时间复杂度都是 O（N * log2N）。然后取出前 K 个，O（K）。总时间复杂度 O

（N * log2N）+ O（K） = O（N * log2N）。

你一定注意到了，当 K=1 时，上面的算法也是 O（N * log2N）的复杂度，
而显然我们可以通过 N-1 次的比较和交换得到结果。上面的算法把整个数组都
进行了排序，而原题目只要求最大的 K 个数，并不需要前 K 个数有序，也不需
要后 N-K 个数有序。

怎么能够避免做后 N-K 个数的排序呢？我们需要部分排序的算法，选择排
序和交换排序都是不错的选择。把 N 个数中的前 K 大个数排序出来，复杂度是
O（N * K）。

那一个更好呢？O（N * log2N）还是 O（N * K）？这取决于 K 的大小，这
是你需要在面试者那里弄清楚的问题。在 K（K < = log2N）较小的情况下，可以
选择部分排序。

在下一个解法中，我们会通过避免对前 K 个数排序来得到更好的性能。

【解法二】

回忆一下快速排序，快排中的每一步，都是将待排数据分做两组，其中一组
的数据的任何一个数都比另一组中的任何一个大，然后再对两组分别做类似的操
作，然后继续下去……

在本问题中，假设 N 个数存储在数组 S 中，我们从数组 S 中随机找出一个
元素 X，把数组分为两部分 Sa和 Sb。Sa中的元素大于等于 X，Sb中元素小于 X。

这时，有两种可能性：

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

1. Sa中元素的个数小于K，Sa中所有的数和Sb中最大的K-|Sa|个元素（|Sa|指Sa

中元素的个数）就是数组S中最大的K个数。

2. Sa中元素的个数大于或等于K，则需要返回Sa中最大的K个元素。

这样递归下去，不断把问题分解成更小的问题，平均时间复杂度 O（N *

log2K）。伪代码如下：

代码清单 2-11
Kbig(S, k):
 if(k <= 0):
 return [] // 返回空数组
 if(length S <= k):
 return S
 (Sa, Sb) = Partition(S)
 return Kbig(Sa, k).Append(Kbig(Sb, k – length Sa)

Partition(S):
 Sa = [] // 初始化为空数组
 Sb = [] // 初始化为空数组
 // 随机选择一个数作为分组标准，以避免特殊数据下

的算法退化
 // 也可以通过对整个数据进行洗牌预处理实现这个目

的
 // Swap(S[1], S[Random() % length S])
p = S[1]
 for i in [2: length S]:
 S[i] > p ? Sa.Append(S[i]) : Sb.Append(S[i])
 // 将p加入较小的组，可以避免分组失败，也使分组更均

匀，提高效率
length Sa < length Sb ? Sa.Append(p) : Sb.Append(p)
return (Sa, Sb)

【解法三】

寻找 N 个数中最大的 K 个数，本质上就是寻找最大的 K 个数中最小的那个，
也就是第 K 大的数。可以使用二分搜索的策略来寻找 N 个数中的第 K 大的数。
对于一个给定的数 p，可以在 O（N）的时间复杂度内找出所有不小于 p 的数。
假如 N 个数中最大的数为 Vmax，最小的数为 Vmin，那么这 N 个数中的第 K 大数
一定在区间[Vmin, Vmax]之间。那么，可以在这个区间内二分搜索 N 个数中的第 K

大数 p。伪代码如下：

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

代码清单 2-12
while(Vmax – Vmin > delta)
{
 Vmid = Vmin + (Vmax - Vmin) * 0.5;
 if(f(arr, N, Vmid) >= K)
 Vmin = Vmid;
 else
 Vmax = Vmid;
 }

伪代码中 f（arr, N, Vmid）返回数组 arr[0, …, N-1]中大于等于 Vmid的数的个
数。

上述伪代码中，delta 的取值要比所有 N 个数中的任意两个不相等的元素差
值之最小值小。如果所有元素都是整数，delta 可以取值 0.5。循环运行之后，得
到一个区间（Vmin, Vmax），这个区间仅包含一个元素（或者多个相等的元素）。
这个元素就是第 K 大的元素。整个算法的时间复杂度为 O（N * log2（|Vmax - Vmin|

/delta））。由于 delta 的取值要比所有 N 个数中的任意两个不相等的元素差值之
最小值小，因此时间复杂度跟数据分布相关。在数据分布平均的情况下，时间复
杂度为 O（N * log2（N））。

在整数的情况下，可以从另一个角度来看这个算法。假设所有整数的大小都
在[0, 2m-1]之间，也就是说所有整数在二进制中都可以用 m bit 来表示（从低位到
高位,分别用 0, 1, …, m-1 标记）。我们可以先考察在二进制位的第（m-1）位，
将N个整数按该位为 1或者 0分成两个部分。也就是将整数分成取值为[0, 2m-1-1]

和[2m-1, 2m-1]两个区间。前一个区间中的整数第（m-1）位为 0，后一个区间中
的整数第（m-1）位为 1。如果该位为 1 的整数个数 A 大于等于 K，那么，在所
有该位为 1 的整数中继续寻找最大的 K 个。否则，在该位为 0 的整数中寻找最
大的 K-A 个。接着考虑二进制位第（m-2）位，以此类推。思路跟上面的浮点数
的情况本质上一样。

对于上面两个方法，我们都需要遍历一遍整个集合，统计在该集合中大于等
于某一个数的整数有多少个。不需要做随机访问操作，如果全部数据不能载入内
存，可以每次都遍历一遍文件。经过统计，更新解所在的区间之后，再遍历一次
文件，把在新的区间中的元素存入新的文件。下一次操作的时候，不再需要遍历
全部的元素。每次需要两次文件遍历，最坏情况下，总共需要遍历文件的次数为
2 * log2（|Vmax - Vmin|/delta）。由于每次更新解所在区间之后，元素数目会减少。
当所有元素能够全部载入内存之后，就可以不再通过读写文件的方式来操作了。

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

此外，寻找 N 个数中的第 K 大数，是一个经典问题。理论上，这个问题存
在线性算法。不过这个线性算法的常数项比较大，在实际应用中效果有时并不好。

【解法四】

我们已经得到了三个解法，不过这三个解法有个共同的地方，就是需要对数
据访问多次，那么就有下一个问题，如果 N 很大呢，100 亿？（更多的情况下，
是面试者问你这个问题）。这个时候数据不能全部装入内存（不过也很难说，说
知道以后会不会 1T 内存比 1 斤白菜还便宜），所以要求尽可能少的遍历所有数
据。

不妨设 N > K，前 K 个数中的最大 K 个数是一个退化的情况，所有 K 个数
就是最大的 K 个数。如果考虑第 K+1 个数 X 呢？如果 X 比最大的 K 个数中的最
小的数 Y 小，那么最大的 K 个数还是保持不变。如果 X 比 Y 大，那么最大的 K

个数应该去掉 Y，而包含 X。如果用一个数组来存储最大的 K 个数，每新加入一
个数 X，就扫描一遍数组，得到数组中最小的数 Y。用 X 替代 Y，或者保持原数
组不变。这样的方法，所耗费的时间为 O（N * K）。

进一步，可以用容量为 K 的最小堆来存储最大的 K 个数。最小堆的堆顶元
素就是最大 K 个数中最小的一个。每次新考虑一个数 X，如果 X 比堆顶的元素
Y 小，则不需要改变原来的堆，因为这个元素比最大的 K 个数小。如果 X 比堆
顶元素大，那么用 X 替换堆顶的元素 Y。在 X 替换堆顶元素 Y 之后，X 可能破
坏最小堆的结构（每个结点都比它的父亲结点大），需要更新堆来维持堆的性
质。更新过程花费的时间复杂度为 O（log2K）。

图 2-1

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

图 2-1 是一个堆，用一个数组 h[]表示。每个元素 h[i]，它的父亲结点是 h[i/2]，
儿子结点是 h[2 * i + 1]和 h[2 * i + 2]。每新考虑一个数 X，需要进行的更新操作伪
代码如下:

代码清单 2-13
if(X > h[0])
{
 h[0] = X;
 p = 0;
 while(p < K)
 {
 q = 2 * p + 1;
 if(q >= K)
 break;
 if((q < K – 1) && (h[q + 1] < h[q]))
 q = q + 1;
 if(h[q] < h[p])
 {
 t = h[p];
 h[p] = h[q];
 h[q] = t;
 p = q;
 }
 else
 break;
 }
}

因此，算法只需要扫描所有的数据一次，时间复杂度为 O（N * log2K）。这
实际上是部分执行了堆排序的算法。在空间方面，由于这个算法只扫描所有的数
据一次，因此我们只需要存储一个容量为 K 的堆。大多数情况下，堆可以全部
载入内存。如果 K仍然很大，我们可以尝试先找最大的 K’个元素，然后找第 K’+1

个到第 2 * K’个元素，如此类推（其中容量 K’的堆可以完全载入内存）。不过
这样，我们需要扫描所有数据 ceil1（K/K’）次。

【解法五】

上面类快速排序的方法平均时间复杂度是线性的。能否有确定的线性算法
呢？是否可以通过改进计数排序、基数排序等来得到一个更高效的算法呢？答案
是肯定的。但算法的适用范围会受到一定的限制。

1 ceil（ceiling，天花板之意）表示大于等于一个浮点数的最小整数。

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

如果所有 N 个数都是正整数，且它们的取值范围不太大，可以考虑申请空
间，记录每个整数出现的次数，然后再从大到小取最大的 K 个。比如，所有整
数都在（0, MAXN）区间中的话，利用一个数组 count[MAXN]来记录每个整数
出现的个数（count[i]表示整数 i 在所有整数中出现的个数）。我们只需要扫描一
遍就可以得到 count 数组。然后，寻找第 K 大的元素：

代码清单 2-14
for(sumCount = 0, v = MAXN – 1; v >= 0; v--)
{
 sumCount += count[v];
 if(sumCount >= K)
 break;
}
return v;

极端情况下，如果 N 个整数各不相同，我们甚至只需要一个 bit 来存储这个
整数是否存在。

当实际情况下，并不一定能保证所有元素都是正整数，且取值范围不太大。
上面的方法仍然可以推广适用。如果 N 个数中最大的数为 Vmax，最小的数为 Vmin，
我们可以把这个区间[Vmin, Vmax]分成 M 块，每个小区间的跨度为 d =（Vmax – Vmin）
/M，即 [Vmin, Vmin+d], [Vmin + d, Vmin + 2d],……然后，扫描一遍所有元素，统计各
个小区间中的元素个数，跟上面方法类似地，我们可以知道第 K 大的元素在哪
一个小区间。然后，再对那个小区间，继续进行分块处理。这个方法介于解法三
和类计数排序方法之间，不能保证线性。跟解法三类似地，时间复杂度为 O

（（N+M）* log2M（|Vmax - Vmin|/delta））。遍历文件的次数为 2 * log2M（|Vmax -

Vmin|/delta）。当然，我们需要找一个尽量大的 M，但 M 取值要受内存限制。

在这道题中，我们根据 K 和 N 的相对大小，设计了不同的算法。在实际面
试中，如果一个面试者能针对一个问题，说出多种不同的方法，并且分析它们各
自适用的情况，那一定会给人留下深刻印象。

注：本题目的解答中用到了多种排序算法，这些算法在大部分的算法书籍中
都有讲解。掌握排序算法对工作也会很有帮助。

扩展问题

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

3. 如果需要找出N个数中最大的K个不同的浮点数呢？比如，含有10个浮点

数的数组（1.5, 1.5, 2.5, 2.5, 3.5, 3.5, 5, 0, -1.5, 3.5）中最大的3个不同的浮

点数是（5, 3.5, 2.5）。

4. 如果是找第k到m（0 < k < = m < = n）大的数呢？

5. 在搜索引擎中，网络上的每个网页都有“权威性”权重，如page rank。如果

我们需要寻找权重最大的K个网页，而网页的权重会不断地更新，那么算

法要如何变动以达到快速更新（incremental update）并及时返回权重最大

的K个网页？

提示：堆排序？当每一个网页权重更新的时候，更新堆。还有更好的方法
吗？

6. 在实际应用中，还有一个“精确度”的问题。我们可能并不需要返回严格意义

上的最大的K个元素，在边界位置允许出现一些误差。当用户输入一个query

的时候，对于每一个文档d 来说，它跟这个query之间都有一个相关性衡量权

重f （query, d）。搜索引擎需要返回给用户的就是相关性权重最大的K个

网页。如果每页10个网页，用户不会关心第1000页开外搜索结果的“精确

度”，稍有误差是可以接受的。比如我们可以返回相关性第10 001大的网页，

而不是第9999大的。在这种情况下，算法该如何改进才能更快更有效率

呢？网页的数目可能大到一台机器无法容纳得下，这时怎么办呢？

提示：归并排序？如果每台机器都返回最相关的 K 个文档，那么所有机器
上最相关 K 个文档的并集肯定包含全集中最相关的 K 个文档。由于边界
情况并不需要非常精确，如果每台机器返回最好的 K’个文档，那么 K’应
该如何取值，以达到我们返回最相关的 90%*K 个文档是完全精确的，或
者最终返回的最相关的 K 个文档精确度超过 90%（最相关的 K 个文档中

写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp

90%以上在全集中相关性的确排在前 K），或者最终返回的最相关的 K 个
文档最差的相关性排序没有超出 110%*K。

7. 如第4点所说，对于每个文档d，相对于不同的关键字q1, q2, …, qm，分别

有相关性权重f（d, q1），f（d, q2）, …, f（d, qm）。如果用户输入关键字

qi之后，我们已经获得了最相关的K个文档，而已知关键字qj跟关键字qi相

似，文档跟这两个关键字的权重大小比较靠近，那么关键字qi的最相关的

K个文档，对寻找qj最相关的K个文档有没有帮助呢？

