
写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp 

 

饮料供货 
★★★ 

在微软亚洲研究院上班，大家早上来的第一件事是干啥呢？查看邮件？No，是去水房
拿饮料：酸奶，豆浆，绿茶、王老吉、咖啡、可口可乐……（当然，还是有很多同事把拿饮
料当做第二件事）。 

管理水房的阿姨们每天都会准备很多的饮料给大家，为了提高服务质量，她们会统计大
家对每种饮料的满意度。一段时间后，阿姨们已经有了大批的数据。某天早上，当实习生小
飞第一个冲进水房并一次拿了五瓶酸奶、四瓶王老吉、三瓶鲜橙多时，阿姨们逮住了他，要
他帮忙。 

从阿姨们统计的数据中，小飞可以知道大家对每一种饮料的满意度。阿姨们还告诉小飞，
STC（Smart Tea Corp.）负责给研究院供应饮料，每天总量为 V。STC 很神奇，他们提供的
每种饮料之单个容量都是 2 的方幂，比如王老吉，都是 23=8 升的，可乐都是 25=32 升的。
当然 STC 的存货也是有限的，这会是每种饮料购买量的上限。统计数据中用饮料名字、容
量、数量、满意度描述每一种饮料。 

那么，小飞如何完成这个任务，求出保证最大满意度的购买量呢？ 

1.6 



写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp 

 

分析与解法 

【解法一】 

我们先把这个问题“数学化”一下吧。 

假设 STC 共提供 n 种饮料，用（Si、Vi、Ci、Hi、Bi）（对应的是饮料名字、容量、可
能的最大数量、满意度、实际购买量）来表示第 i 种饮料（i = 0, 1,…, n-1），其中可能的最
大数量指如果仅买某种饮料的最大可能数量，比如对于第 i 中饮料 Ci=V/Vi。 

基于如上公式： 

饮料总容量为 ； 

总满意度为 ； 

那么题目的要求就是，在满足条件 =V 的基础上，求解 max{ }。 

对于求最优化的问题，我们来看看动态规划能否解决。用 Opt（V', i）表示从第 i, i+1, 

i+2, …, n-1, n 种饮料中，算出总量为 V'的方案中满意度之和的最大值。 

因此，Opt（V, n）就是我们要求的值。 

那么，我们可以列出如下的推导公式：Opt （V', i） = max { k* Hi + Opt（V' - Vi * k, i-1）}

（k = 0, 1, …, Ci, i =0, 1, …, n-1）。 

即：最优化的结果 = 选择第 k 种饮料×满意度+减去第 k 种饮料×容量的最优化结果根
据这样的推导公式，我们列出如下的初始边界条件： 

Opt（0, n）= 0，即容量为 0 的情况下，最优化结果为 0。 

Opt（x, n）= -INF（x != 0）（–INF 为负无穷大），即在容量不为 0 的情况下，把最
优化结果设为负无穷大，并把它作为初值。 

那么，根据以上的推导公式，就不难列出动态规划求解代码，如下所示： 

代码清单 1-9 
int Cal(int V, int type) 
{ 
 opt[0][T] = 0;// 边界条件 
 for(int i = 1; i <= V; i++)// 边界条件 
 { 
  opt[i][T] = -INF; 
 } 
 for(int j = T - 1; j >= 0; j--) 
 { 
  for(int i = 0; i <= V; i++) 
  { 



写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp 

 

   opt[i][j] = -INF; 
   for(int k = 0; k <= C[j]; k++)  // 遍历第j种饮料选取数量k 
   { 
    if(i <= k * V[j]) 
    { 
     break; 
    } 
    int x = opt[i - k * V[j]][j + 1]; 
    if(x != -INF) 
    { 
     x += H[j] * k;  
     if(x > opt[i][j]) 
     { 
      opt[i][j] = x; 
     } 
    } 
   } 
  } 
 } 
 return opt[V][0]; 
} 

在上面的算法中，空间复杂度为 O（V*N），时间复杂度约为 O（V*N*Max（Ci））。 

因为我们只需要得到最大的满意度，则计算 opt[i][j]的时候不需要 opt[i][j+2]，只需要
opt[i][j]和 opt[i][j+1]，所以空间复杂度可以降为 O（v）。 



写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp 

 

【解法二】 

应用上面的动态规划法可以得到结果，那么是否有可能进一步地提高效率呢？我们知道
动态规划算法的一个变形是备忘录法，备忘录法也是用一个表格来保存已解决的子问题的答
案，并通过记忆化搜索来避免计算一些不可能到达的状态。具体的实现方法是为每个子问题
建立一个记录项。初始化时，该纪录项存入一个特殊的值，表示该子问题尚未求解。在求解
的过程中，对每个待求解的子问题，首先查看其相应的纪录项。若记录项中存储的是初始化
时存入的特殊值，则表示该子问题是第一次遇到，此时计算出该子问题的解，并保存在其相
应的记录项中。若记录项中存储的已不是初始化时存入的初始值，则表示该子问题已经被计
算过，其相应的记录项中存储的是该子问题的解答。此时只需要从记录项中取出该子问题的
解答即可。 

因此，我们可以应用备忘录法来进一步提高算法的效率。 

代码清单 1-10 
int[V + 1][T + 1] opt;  // 子问题的记录项表，假设从 i到 T种饮料中， 
       // 找出容量总和为V’的一个方案，快乐指数最多能够达到 
       // opt（V'，i，T-1），存储于opt[V’][i]， 
       // 初始化时opt中存储值为-1，表示该子问题尚未求解。 
int Cal(int V, int type) 
{ 
 if(type == T) 
 { 
  if(V == 0) 
   return 0; 
  else 
   return -INF; 
 } 
 if(V < 0) 
  return -INF; 
 else if(V == 0) 
  return 0; 
 else if(opt[V][type] != -1) 
  return opt[V][type]; // 该子问题已求解，则直接返回子问题的解； 
        // 子问题尚未求解，则求解该子问题 
 int ret = -INF; 
 for(int i = 0; i <= C[type]; i++) 
 { 
  int temp = Cal(V – i * C[type], type + 1); 
  if(temp != -INF) 
  { 
   temp += H[type] * i; 
   if(temp > ret) 
   ret = temp; 
  } 
 
 } 
 return opt[V][type] = ret; 
} 

【解法三】 



写书评，赢取《编程之美--微软技术面试心得》www.ieee.org.cn/BCZM.asp 

 

请注意这个题目的限制条件，看看它能否给我们一些特殊的提示。 

我们把信息重新整理一下，按饮料的容量（单位为 L）排序： 

 Volume   TotalCount  Happiness 
 20L    TC_00      H_00 
 20L    TC_01      H_01 
  ...     ...      ... 
 21L    TC_10      H_10 
  ...     ...      ... 
  2000L      TC_M0      H_M0 
  ...     ...      ... 

假设最大容量为 2 000L。一开始，如果 V%（21）非零，那么，我们肯定需要购买 20L

容量的饮料，至少一瓶。在这里可以使用贪心规则，购买快乐指数最高的一瓶。除去这个，
我们只要再购买总量（V-20）L 的饮料就可以了。这时，如果我们要购买 21L 容量的饮料
怎么办呢？除了 21L 容量里面快乐指数最高的，我们还应该考虑，两个容量为 20L 的饮料
组合的情况。其实我们可以把剩下的容量为 20L 的饮料之快乐指数从大到小排列，并用最
大的两个快乐指数组合出一个新的“容量为 2L”1的饮料。不断地这样使用贪心原则，即得解。
这是不是就简单了很多呢？ 

 

                                                        

1  如果各种饮料数量都无限的话，这种方法是很简单。但是如果饮料有个数限制，复杂度可能达到指数级，您有更好的

办法么？ 


