
rev1.05

ATI Stream Computing
OpenCL™

Programming Guide

A u g u s t  2 0 1 0



ii
 

© 2010 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, 
ATI, the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are 
trademarks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Win-
dows Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other 
jurisdictions. Other names are for informational purposes only and may be trademarks of 
their respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used 
by permission by Khronos.

The contents of this document are provided in connection with Advanced Micro Devices, 
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the 
accuracy or completeness of the contents of this publication and reserves the right to 
make changes to specifications and product descriptions at any time without notice. The 
information contained herein may be of a preliminary or advance nature and is subject to 
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth 
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, 
and disclaims any express or implied warranty, relating to its products including, but not 
limited to, the implied warranty of merchantability, fitness for a particular purpose, or 
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications 
intended to support or sustain life, or in any other application in which the failure of AMD’s 
product could create a situation where personal injury, death, or severe property or envi-
ronmental damage may occur. AMD reserves the right to discontinue or make changes to 
its products at any time without notice.

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453

Sunnyvale, CA 94088-3453
www.amd.com

http://www.amd.com/


AT I  S T R E A M  C O M P U T I N G

Preface iii
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.  

Preface

About This Document
This document provides a basic description of the ATI Stream computing 
environment and components. It describes the basic architecture of stream 
processors and provides useful performance tips. This document also provides 
a guide for programmers who want to use the ATI Stream SDK to accelerate their 
applications.

Audience
This document is intended for programmers. It assumes prior experience in 
writing code for CPUs and a basic understanding of threads (work-items). While 
a basic understanding of GPU architectures is useful, this document does not 
assume prior graphics knowledge. It further assumes an understanding of 
chapters 1, 2, and 3 of the OpenCL Specification (for the latest version, see 
http://www.khronos.org/registry/cl/ ).

Organization
This ATI Stream Computing document begins, in Chapter 1, with an overview of: 
the ATI Stream Computing programming models, OpenCL, the ATI Compute 
Abstraction Layer (CAL), the Stream Kernel Analyzer (SKA), and the ATI Stream 
Profiler. Chapter 2 discusses the compiling and running of OpenCL programs. 
Chapter 3 describes using GNU debugger (GDB) to debug OpenCL programs. 
Chapter 4 is a discussion of performance and optimization when programming 
for ATI stream compute devices. Appendix A describes the supported optional 
OpenCL extensions. Appendix B details the installable cllient driver (ICD) for 
OpenCL. Appendix C details the compute kernel and contrasts it with a pixel 
shader.  The last section of this book is a glossary of acronyms and terms, as 
well as an index.



AT I  S T R E A M  C O M P U T I N G

iv Preface
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.   

Conventions
The following conventions are used in this document. 

Related Documents
• The OpenCL Specification, Version 1.0, Published by Khronos OpenCL 

Working Group, Aaftab Munshi (ed.), 2009.

• AMD, R600 Technology, R600 Instruction Set Architecture, Sunnyvale, CA, 
est. pub. date 2007. This document includes the RV670 GPU instruction 
details.

• ISO/IEC 9899:TC2 - International Standard - Programming Languages - C

• Kernighan Brian W., and Ritchie, Dennis M., The C Programming Language, 
Prentice-Hall, Inc., Upper Saddle River, NJ, 1978.

• I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. 
Hanrahan, “Brook for GPUs: stream computing on graphics hardware,” ACM 
Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

• ATI Compute Abstraction Layer (CAL) Intermediate Language (IL) Reference 
Manual. Published by AMD.

• CAL Image. ATI Compute Abstraction Layer Program Binary Format 
Specification. Published by AMD.

• Buck, Ian; Foley, Tim; Horn, Daniel; Sugerman, Jeremy; Hanrahan, Pat; 
Houston, Mike; Fatahalian, Kayvon. “BrookGPU” 
http://graphics.stanford.edu/projects/brookgpu/ 

• Buck, Ian. “Brook Spec v0.2”. October 31, 2003.
http://merrimac.stanford.edu/brook/brookspec-05-20-03.pdf 

• OpenGL Programming Guide, at http://www.glprogramming.com/red/ 

• Microsoft DirectX Reference Website, at http://msdn.microsoft.com/en-
us/directx

mono-spaced font A filename, file path, or code.

* Any number of alphanumeric characters in the name of a code format, parameter, 
or instruction.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most 
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0f
0.0

A single-precision (32-bit) floating-point value.
A double-precision (64-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream computing. 
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• GPGPU: http://www.gpgpu.org, and Stanford BrookGPU discussion forum
http://www.gpgpu.org/forums/

Contact Information
To submit questions or comments concerning this document, contact our 
technical documentation staff at: streamcomputing@amd.com. 

For questions concerning ATI Stream products, please email: 
streamcomputing@amd.com.

For questions about developing with ATI Stream, please email: 
streamdeveloper@amd.com.

You can learn more about ATI Stream at: http://www.amd.com/stream.

We also have a growing community of ATI Stream users. Come visit us at the 
ATI Stream Developer Forum (http://www.amd.com/streamdevforum) to find out 
what applications other users are trying on their ATI Stream products.
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Chapter 1
OpenCL Architecture and the ATI 
Stream Computing System

This chapter provides a general software and hardware overview of the ATI 
Stream computing implementation of the OpenCL standard. It explains the 
memory structure and gives simple programming examples.

1.1 Software Overview
OpenCL supports data-parallel and task-parallel programming models, as well as 
hybrids of these models. Of the two, the primary one is the data parallel model.

1.1.1 Data-Parallel Programming Model

In the data parallel programming model, a computation is defined in terms of a 
sequence of instructions executed on multiple elements of a memory object. 
These elements are in an index space,1 which defines how the execution maps 
onto the work-items. In the OpenCL data-parallel model, it is not a strict 
requirement that there be one work-item for every element in a memory object 
over which a kernel is executed in parallel.

The OpenCL data-parallel programming model is hierarchical. The hierarchical 
subdivision can be specified in two ways:

• Explicitly - the developer defines the total number of work-items to execute 
in parallel, as well as the division of work-items into specific work-groups. 

• Implicitly - the developer specifies the total number of work-items to execute 
in parallel, and OpenCL manages the division into work-groups.

1.1.2 Task-Parallel Programming Model

In this model, a kernel instance is executed independent of any index space. This 
is equivalent to executing a kernel on a compute device with a work-group and 
NDRange containing a single work-item. Parallelism is expressed using vector 
data types implemented by the device, enqueuing multiple tasks, and/or 
enqueuing native kernels developed using a programming model orthogonal to 
OpenCL.

1. See section 3.2, “Execution Model,” of the OpenCL Specification.
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1.1.3 Synchronization

The two domains of synchronization in OpenCL are work-items in a single work-
group and command-queue(s) in a single context. Work-group barriers enable 
synchronization of work-items in a work-group. Each work-item in work-group 
must first execute the barrier before executing any beyond the work-group 
barrier. Either all of, or none of, the work-items in a work-group must encounter 
the barrier. As currently defined in the OpenCL Specification, global 
synchronization is not allowed.

There are two types of synchronization between commands in a command-
queue:

• command-queue barrier - enforces ordering within a single queue. Any 
resulting changes to memory are available to the following commands in the 
queue.

• events - enforces ordering between or within queues. Enqueued commands 
in OpenCL return an event identifying the command as well as the memory 
object updated by it. This ensures that following commands waiting on that 
event see the updated memory objects before they execute.

1.2 Hardware Overview
Figure 1.1 shows a simplified block diagram of a generalized GPU compute 
device.

Figure 1.1 Generalized GPU Compute Device Structure

Figure 1.2 is a simplified diagram of an ATI Stream GPU compute device. 
Different GPU compute devices have different characteristics (such as the 
number of compute units), but follow a similar design pattern. 

GPU compute devices comprise groups of compute units (see Figure 1.1). Each 

GPU
Compute Device

GPU
Compute Device

Compute
Unit

Compute
Unit

Compute
Unit

Stream Cores

Processing Elements



AT I  S T R E A M  C O M P U T I N G

1.2 Hardware Overview 1-3
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.  

compute unit contains numerous stream cores, which are responsible for 
executing kernels, each operating on an independent data stream. Stream cores, 
in turn, contain numerous processing elements, which are the fundamental, 
programmable computational units that perform integer, single-precision floating-
point, double-precision floating-point, and transcendental operations. All stream 
cores within a compute unit execute the same instruction sequence; different 
compute units can execute different instructions.

Figure 1.2 Simplified Block Diagram of the GPU Compute Device1
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1. Much of this is transparent to the programmer.
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A stream core is arranged as a five-way very long instruction word (VLIW) 

processor (see bottom of Figure 1.2). Up to five scalar operations can be co-
issued in a VLIW instruction, each of which are executed on one of the 
corresponding five processing elements. Processing elements can execute 
single-precision floating point or integer operations. One of the five processing 
elements also can perform transcendental operations (sine, cosine, logarithm, 
etc.)1. Double-precision floating point operations are processed by connecting 
two or four of the processing elements (excluding the transcendental core) to 
perform a single double-precision operation. The stream core also contains one 
branch execution unit to handle branch instructions.

Different GPU compute devices have different numbers of stream cores. For 
example, the ATI Radeon™ HD 5870 GPU has 20 compute units, each with 16 
stream cores, and each stream core contains five processing elements; this 
yields 1600 physical processing elements.

1.3 The ATI Stream Computing Implementation of OpenCL
ATI Stream Computing harnesses the tremendous processing power of GPUs for 
high-performance, data-parallel computing in a wide range of applications. The 
ATI Stream Computing system includes a software stack and the ATI Stream 
GPUs. Figure 1.3 illustrates the relationship of the ATI Stream Computing 
components.

Figure 1.3 ATI Stream Software Ecosystem

The ATI Stream Computing software stack provides end-users and developers 
with a complete, flexible suite of tools to leverage the processing power in ATI 

1. For a more detailed explanation of operations, see the ATI Compute Abstraction Layer (CAL) Pro-
gramming Guide.
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Stream GPUs. ATI software embraces open-systems, open-platform standards. 
The ATI open platform strategy enables ATI technology partners to develop and 
provide third-party development tools. 

The software includes the following components:

• OpenCL compiler and runtime

• Device Driver for GPU compute device – ATI Compute Abstraction Layer 
(CAL).1

• Performance Profiling Tools – Stream KernelAnalyzer and Microsoft® Visual 
Studio® OpenCL Profiler.

• Performance Libraries – AMD Core Math Library (ACML) for optimized 
NDRange-specific algorithms.

The latest generation of ATI Stream GPUs are programmed using the unified 
shader programming model. Programmable GPU compute devices execute 
various user-developed programs, called stream kernels (or simply: kernels). 
These GPU compute devices can execute non-graphics functions using a data-
parallel programming model that maps executions onto compute units. In this 
programming model, known as ATI Stream computing, arrays of input data 
elements stored in memory are accessed by a number of compute units.

Each instance of a kernel running on a compute unit is called a work-item. A 
specified rectangular region of the output buffer to which work-items are mapped 
is known as the n-dimensional index space, called an NDRange.

The GPU schedules the range of work-items onto a group of stream cores, until 
all work-items have been processed. Subsequent kernels then can be executed, 
until the application completes. A simplified view of the ATI Stream Computing 
programming model and the mapping of work-items to stream cores is shown in 
Figure 1.4.

1. See the ATI Compute Abstraction Layer (CAL) Programming Guide.



AT I  S T R E A M  C O M P U T I N G

1-6 Chapter 1: OpenCL Architecture and the ATI Stream Computing System
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.   

Figure 1.4 Simplified Mapping of OpenCL onto ATI Stream Computing

OpenCL maps the total number of work-items to be launched onto an n-
dimensional grid (ND-Range). The developer can specify how to divide these 
items into work-groups. AMD GPUs execute on wavefronts; there are an integer 
number of wavefronts in each work-group. Thus, as shown in Figure 1.5, 
hardware that schedules work-items for execution in the ATI Stream computing 
environment includes the intermediate step of specifying wavefronts within a 
work-group. This permits achieving maximum performance from AMD GPUs. For 
a more detailed discussion of wavefronts, see Section 1.7.2, “Wavefronts and 
Workgroups,” page 1-17.
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Figure 1.5 Work-Item Grouping Into Work-Groups and Wavefronts

1.3.1 Work-Item Processing

All stream cores within a compute unit execute the same instruction for each 
cycle. A work item can issue one VLIW instruction per clock cycle. The block of 
work-items that are executed together is called a wavefront. To hide latencies 
due to memory accesses and processing element operations, up to four work-
items from the same wavefront are pipelined on the same stream core. For 
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example, on the ATI Radeon™ HD 5870 GPU compute device, the 16 stream 
cores execute the same instructions for four cycles, which effectively appears as 
a 64-wide compute unit in execution width.

The size of wavefronts can differ on different GPU compute devices. For 
example, the ATI Radeon™ HD 5400 series graphics cards has a wavefront size 
of 32 work-items. The ATI Radeon™ HD 5800 series has a wavefront size of 64 
work-items.

Compute units operate independently of each other, so it is possible for each 
array to execute different instructions.

1.3.2 Flow Control

Before discussing flow control, it is necessary to clarify the relationship of a 
wavefront to a work-group. If a user defines a work-group, it consists of one or 
more wavefronts. Wavefronts are units of execution, where one wavefront 
consists of 64 or fewer work-items, two wavefronts would be between 65 to 128 
work-items, etc., on a device with a wavefront size of 64. For optimum hardware 
usage, an integer multiple of 64 work-items is recommended.

Flow control, such as branching, is done by combining all necessary paths as a 
wavefront. If work-items within a wavefront diverge, all paths are executed 
serially. For example, if a work-item contains a branch with two paths, the 
wavefront first executes one path, then the second path. The total time to 
execute the branch is the sum of each path time. An important point is that even 
if only one work-item in a wavefront diverges, the rest of the work-items in the 
wavefront execute the branch. The number of work-items that must be executed 
during a branch is called the branch granularity. On ATI hardware, the branch 
granularity is the same as the wavefront granularity.

Masking of wavefronts is effected by constructs such as: 

if(x)
{
. //items within these braces = A
.
.
}

else
{
. //items within these braces = B
.
.
}

The wavefront mask is set true for lanes (elements/items) in which x is true, then 
execute A. The mask then is inverted, and B is executed.

Example 1: If two branches, A and B, take the same amount of time t to execute 
over a wavefront, the total time of execution, if any work-item diverges, is 2t.

Loops execute in a similar fashion, where the wavefront occupies a compute unit 
as long as there is at least one work-item in the wavefront still being processed. 
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Thus, the total execution time for the wavefront is determined by the work-item 
with the longest execution time.

Example 2: If t is the time it takes to execute a single iteration of a loop; and 
within a wavefront all work-items execute the loop one time, except for a single 
work-item that executes the loop 100 times, the time it takes to execute that 
entire wavefront is 100t.

1.3.3 Work-Item Creation

For each work-group, the GPU compute device spawns the required number of 
wavefronts on a single compute unit. If there are non-active work-items within a 
wavefront, the stream cores that would have been mapped to those work-items 
are idle. An example is a work-group that is a non-multiple of a wavefront size 
(for example: if the work-group size is 32, the wavefront is half empty and 
unused). 

1.3.4 ATI Compute Abstraction Layer (CAL)

The ATI Compute Abstraction Layer (CAL) is a device driver library that provides 
a forward-compatible interface to ATI GPU compute devices (see Figure 1.6). 
CAL lets software developers interact with the GPU compute devices at the 
lowest-level for optimized performance, while maintaining forward compatibility. 
CAL provides:

• Device-specific code generation 

• Device management

• Resource management

• Kernel loading and execution

• Multi-device support

• Interoperability with 3D graphics APIs

Figure 1.6 CAL Functionality 

CAL includes a set of C routines and data types that allow higher-level software 
tools to control hardware memory buffers (device-level streams) and GPU 

GPU
Compute Device

Executable

CAL Runtime

GPU
Compute Device

Buffers

Compute
Device 0

Compute
Device 1

Compute
Device n



AT I  S T R E A M  C O M P U T I N G

1-10 Chapter 1: OpenCL Architecture and the ATI Stream Computing System
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.   

compute device programs (device-level kernels). The CAL runtime accepts 
kernels written in ATI IL and generates optimized code for the target architecture. 
It also provides access to device-specific features.

1.4 Memory Architecture and Access
OpenCL has four memory domains: private, local, global, and constant; the ATI 
Stream computing system also recognizes host (CPU) and PCI Express® 
(PCIe®) memory.

• private memory - specific to a work-item; it is not visible to other work-items. 

• local memory - specific to a work-group; accessible only by work-items 
belonging to that work-group.

• global memory - accessible to all work-items executing in a context, as well 
as to the host (read, write, and map commands).

• constant memory - region for host-allocated and -initialized objects that are 
not changed during kernel execution. 

• host (CPU) memory - region for an application’s data structures and program 
data.

• PCIe memory - part of host (CPU) memory accessible from, and modifiable 
by, the host program and the GPU compute device. Modifying this memory 
requires synchronization between the GPU compute device and the CPU.

Figure 1.7 illustrates the interrelationship of the memories.
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Figure 1.7 Interrelationship of Memory Domains

Figure 1.8 illustrates the standard dataflow between host (CPU) and GPU.

Figure 1.8 Dataflow between Host and GPU

There are two ways to copy data from the host to the GPU compute device 
memory:

• Implicitly by using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

• Explicitly through clEnqueueReadBuffer and clEnqueueWriteBuffer 
(clEnqueueReadImage, clEnqueueWriteImage.).
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When using these interfaces, it is important to consider the amount of copying 
involved. There is a two-copy processes: between host and PCIe, and between 
PCIe and GPU compute device. This is why there is a large performance 
difference between the system GFLOPS and the kernel GFLOPS.

With proper memory transfer management and the use of system pinned 
memory (host/CPU memory remapped to the PCIe memory space), copying 
between host (CPU) memory and PCIe memory can be skipped. Note that this 
is not an easy API call to use and comes with many constraints, such as page 
boundary and memory alignment.

Double copying lowers the overall system memory bandwidth. In GPU compute 
device programming, pipelining and other techniques help reduce these 
bottlenecks. See Chapter 4, “OpenCL Performance and Optimization,” for more 
specifics about optimization techniques.

1.4.1 Memory Access

Using local memory (known as local data store, or LDS, as shown in Figure 1.7) 
typically is an order of magnitude faster than accessing host memory through 
global memory (VRAM), which is one order of magnitude faster again than PCIe. 
However, stream cores do not directly access memory; instead, they issue 
memory requests through dedicated hardware units. When a work-item tries to 
access memory, the work-item is transferred to the appropriate fetch unit. The 
work-item then is deactivated until the access unit finishes accessing memory. 
Meanwhile, other work-items can be active within the compute unit, contributing 
to better performance. The data fetch units handle three basic types of memory 
operations: loads, stores, and streaming stores. GPU compute devices now can 
store writes to random memory locations using global buffers.

1.4.2 Global Buffer

The global buffer lets applications read from, and write to, arbitrary locations in 
memory. When using a global buffer, memory-read and memory-write operations 
from the stream kernel are done using regular GPU compute device instructions 
with the global buffer used as the source or destination for the instruction. The 
programming interface is similar to load/store operations used with CPU 
programs, where the relative address in the read/write buffer is specified. 

1.4.3 Image Read/Write

Image reads are done by addressing the desired location in the input memory 
using the fetch unit. The fetch units can process either 1D or 2 D addresses. 
These addresses can be normalized or un-normalized. Normalized coordinates 
are between 0.0 and 1.0 (inclusive). For the fetch units to handle 2D addresses 
and normalized coordinates, pre-allocated memory segments must be bound to 
the fetch unit so that the correct memory address can be computed. For a single 
kernel invocation, up to 128 images can be bound at once for reading, and eight 
for writing. The maximum number of 2D addresses is 8192 x 8192. 
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Image reads are cached through the texture system (corresponding to the L2 and 
L1 caches). 

1.4.4 Memory Load/Store

When using a global buffer, each work-item can write to an arbitrary location 
within the global buffer. Global buffers use a linear memory layout. If consecutive 
addresses are written, the compute unit issues a burst write for more efficient 
memory access. Only read-only buffers, such as constants, are cached. 

1.5 Communication Between Host and GPU in a Compute Device
The following subsections discuss the communication between the host (CPU) 
and the GPU in a compute device. This includes an overview of the PCIe bus, 
processing API calls, and DMA transfers.

1.5.1 PCI Express Bus

Communication and data transfers between the system and the GPU compute 
device occur on the PCIe channel. ATI Stream Computing cards use PCIe 2.0 
x16 (second generation, 16 lanes). Generation 1 x16 has a theoretical maximum 
throughput of 4 GBps in each direction. Generation 2 x16 doubles the throughput 
to 8 GBps in each direction. Actual transfer performance is CPU and chipset 
dependent.

Transfers from the system to the GPU compute device are done either by the 
command processor or by the DMA engine. The GPU compute device also can 
read and write system memory directly from the compute unit through kernel 
instructions over the PCIe bus.

1.5.2 Processing API Calls: The Command Processor

The host application does not interact with the GPU compute device directly. A 
driver layer translates and issues commands to the hardware on behalf of the 
application.

Most commands to the GPU compute device are buffered in a command queue 
on the host side. The command queue is sent to the GPU compute device, and 
the commands are processed by it. There is no guarantee as to when commands 
from the command queue are executed, only that they are executed in order. 
Unless the GPU compute device is busy, commands are executed immediately.

Command queue elements include: 

• Kernel execution calls

• Kernels

• Constants

• Transfers between device and host
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1.5.3 DMA Transfers

Direct Memory Access (DMA) memory transfers can be executed separately from 
the command queue using the DMA engine on the GPU compute device. DMA 
calls are executed immediately; and the order of DMA calls and command queue 
flushes is guaranteed. 

DMA transfers can occur asynchronously. This means that a DMA transfer is 
executed concurrently with other system or GPU compute device operations. 
However, data is not guaranteed to be ready until the DMA engine signals that 
the event or transfer is completed. The application can query the hardware for 
DMA event completion. If used carefully, DMA transfers are another source of 
parallelization.

1.6 GPU Compute Device Scheduling 
GPU compute devices are very efficient at parallelizing large numbers of work-
items in a manner transparent to the application. Each GPU compute device 
uses the large number of wavefronts to hide memory access latencies by having 
the resource scheduler switch the active wavefront in a given compute unit 
whenever the current wavefront is waiting for a memory access to complete. 
Hiding memory access latencies requires that each work-item contain a large 
number of ALU operations per memory load/store.

Figure 1.9 shows the timing of a simplified execution of work-items in a single 
stream core. At time 0, the work-items are queued and waiting for execution. In 
this example, only four work-items (T0…T3) are scheduled for the compute unit. 
The hardware limit for the number of active work-items is dependent on the 
resource usage (such as the number of active registers used) of the program 
being executed. An optimally programmed GPU compute device typically has 
thousands of active work-items.
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Figure 1.9 Simplified Execution Of Work-Items On A Single Stream Core

At runtime, work-item T0 executes until cycle 20; at this time, a stall occurs due 
to a memory fetch request. The scheduler then begins execution of the next 
work-item, T1. Work-item T1 executes until it stalls or completes. New work-items 
execute, and the process continues until the available number of active work-
items is reached. The scheduler then returns to the first work-item, T0.

If the data work-item T0 is waiting for has returned from memory, T0 continues 
execution. In the example in Figure 1.9, the data is ready, so T0 continues. Since 
there were enough work-items and processing element operations to cover the 
long memory latencies, the stream core does not idle. This method of memory 
latency hiding helps the GPU compute device achieve maximum performance.

If none of T0 – T3 are runnable, the stream core waits (stalls) until one of T0 – 
T3 is ready to execute. In the example shown in Figure 1.10, T0 is the first to 
continue execution.
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Figure 1.10 Stream Core Stall Due to Data Dependency

The causes for this situation are discussed in the following sections.

1.7 Terminology

1.7.1 Compute Kernel

To define a compute kernel, it is first necessary to define a kernel. A kernel is a 
small, user-developed program that is run repeatedly on a stream of data. It is a 
parallel function that operates on every element of input streams (called an 
NDRange). Unless otherwise specified, an ATI compute device program is a 
kernel composed of a main program and zero or more functions. This also is 
called a shader program. This kernel is not to be confused with an OS kernel, 
which controls hardware. The most basic form of an NDRange is simply mapped 
over input data and produces one output item for each input tuple. Subsequent 
extensions of the basic model provide random-access functionality, variable 
output counts, and reduction/accumulation operations. Kernels are specified 
using the kernel keyword.

There are multiple kernel types that are executed on ATI Stream compute device, 
including vertex, pixel, geometry, domain, hull, and now compute. Before the 
development of compute kernels, pixel shaders were sometimes used for non-
graphic computing. Instead of relying on pixel shaders to perform computation, 
new hardware supports compute kernels, which are a better suited for general 
computation, and which also can be used to supplement graphical applications, 
enabling rendering techniques beyond those of the traditional graphics pipeline. 
A compute kernel is a specific type of kernel that is not part of the traditional 
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graphics pipeline. The compute kernel type can be used for graphics, but its 
strength lies in using it for non-graphics fields such as physics, AI, modeling, 
HPC, and various other computationally intensive applications. 

1.7.1.1  Work-Item Spawn Order

In a compute kernel, the work-item spawn order is sequential. This means that 
on a chip with N work-items per wavefront, the first N work-items go to wavefront 
1, the second N work-items go to wavefront 2, etc. Thus, the work-item IDs for 
wavefront K are in the range (K•N) to ((K+1)•N) - 1.

1.7.2 Wavefronts and Workgroups

Wavefronts and groups are two concepts relating to compute kernels that provide 
data-parallel granularity. Wavefronts execute N number of work-items in parallel, 
where N is specific to the hardware chip (for the ATI Radeon HD 5870 series, it 
is 64). A single instruction is executed over all work-items in a wavefront in 
parallel. It is the lowest level that flow control can affect. This means that if two 
work-items inside of a wavefront go divergent paths of flow control, all work-items 
in the wavefront go to both paths of flow control. 

Grouping is a higher-level granularity of data parallelism that is enforced in 
software, not hardware. Synchronization points in a kernel guarantee that all 
work-items in a work-group reach that point (barrier) in the code before the next 
statement is executed. 

Work-groups are composed of wavefronts. Best performance is attained when 
the group size is an integer multiple of the wavefront size.

1.7.3 Local Data Store (LDS)

The LDS is a high-speed, low latency memory private to each compute unit. It is 
a full gather/scatter model: a work-group can write anywhere in its allocated 
space. This model is for the ATI Radeon HD5XXX series. The constraints of the 
current LDS model are:

1. All read/writes are 32-bits and dword aligned.

2. The LDS size is allocated per work-group. Each work-group specifies how 
much of the LDS it requires. The hardware scheduler uses this information 
to determine which work groups can share a compute unit.

3. Data can only be shared within work-items in a work-group. 

4. Memory accesses outside of the work-group result in undefined behavior.

1.8 Programming Model
The OpenCL programming model is based on the notion of a host device, 
supported by an application API, and a number of devices connected through a 
bus. These are programmed using OpenCL C. The host API is divided into 
platform and runtime layers. OpenCL C is a C-like language with extensions for 
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parallel programming such as memory fence operations and barriers. Figure 1.11 
illustrates this model with queues of commands, reading/writing data, and 
executing kernels for specific devices. 

Figure 1.11 OpenCL Programming Model

The devices are capable of running data- and task-parallel work. A kernel can be 
executed as a function of multi-dimensional domains of indices. Each element is 
called a work-item; the total number of indices is defined as the global work-size. 
The global work-size can be divided into sub-domains, called work-groups, and 
individual work-items within a group can communicate through global or locally 
shared memory. Work-items are synchronized through barrier or fence 
operations. Figure 1.11 is a representation of the host/device architecture with a 
single platform, consisting of a GPU and a CPU.

An OpenCL application is built by first querying the runtime to determine which 
platforms are present. There can be any number of different OpenCL 
implementations installed on a single system. The next step is to create a 
context. As shown in Figure 1.11, an OpenCL context has associated with it a 
number of compute devices (for example, CPU or GPU devices),. Within a 
context, OpenCL guarantees a relaxed consistency between these devices. This 
means that memory objects, such as buffers or images, are allocated per 
context; but changes made by one device are only guaranteed to be visible by 
another device at well-defined synchronization points. For this, OpenCL provides 
events, with the ability to synchronize on a given event to enforce the correct 
order of execution. 
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Many operations are performed with respect to a given context; there also are 
many operations that are specific to a device. For example, program compilation 
and kernel execution are done on a per-device basis. Performing work with a 
device, such as executing kernels or moving data to and from the device’s local 
memory, is done using a corresponding command queue. A command queue is 
associated with a single device and a given context; all work for a specific device 
is done through this interface. Note that while a single command queue can be 
associated with only a single device, there is no limit to the number of command 
queues that can point to the same device. For example, it is possible to have 
one command queue for executing kernels and a command queue for managing 
data transfers between the host and the device.

Most OpenCL programs follow the same pattern. Given a specific platform, select 
a device or devices to create a context, allocate memory, create device-specific 
command queues, and perform data transfers and computations. Generally, the 
platform is the gateway to accessing specific devices, given these devices and a 
corresponding context, the application is independent of the platform. Given a 
context, the application can:

• Create one or more command queues.

• Create programs to run on one or more associated devices.

• Create kernels within those programs.

• Allocate memory buffers or images, either on the host or on the device(s). 
(Memory can be copied between the host and device.)

• Write data to the device.

• Submit the kernel (with appropriate arguments) to the command queue for 
execution.

• Read data back to the host from the device.

The relationship between context(s), device(s), buffer(s), program(s), kernel(s), 
and command queue(s) is best seen by looking at sample code.

1.9 Example Programs
The following subsections provide simple programming examples with 
explanatory comments.

1.9.1 First Example: Simple Buffer Write

This sample shows a minimalist OpenCL C program that sets a given buffer to 
some value. It illustrates the basic programming steps with a minimum amount 
of code. This sample contains no error checks and the code is not generalized. 
Yet, many simple test programs might look very similar. The entire code for this 
sample is provided at the end of this section.

1. The host program must select a platform, which is an abstraction for a given 
OpenCL implementation. Implementations by multiple vendors can coexist on 
a host, and the sample uses the first one available.  
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2. A device id for a GPU device is requested. A CPU device could be requested 
by using CL_DEVICE_TYPE_CPU instead. The device can be a physical device, 
such as a given GPU, or an abstracted device, such as the collection of all 
CPU cores on the host. 

3. On the selected device, an OpenCL context is created. A context ties 
together a device, memory buffers related to that device, OpenCL programs, 
and command queues. Note that buffers related to a device can reside on 
either the host or the device. Many OpenCL programs have only a single 
context, program, and command queue.

4. Before an OpenCL kernel can be launched, its program source is compiled, 
and a handle to the kernel is created. 

5. A memory buffer is allocated on the device.

6. The kernel is launched. While it is necessary to specify the global work size, 
OpenCL determines a good local work size for this device. Since the kernel 
was launch asynchronously, clFinish() is used to wait for completion.

7. The data is mapped to the host for examination. Calling 
clEnqueueMapBuffer ensures the visibility of the buffer on the host, which in 
this case probably includes a physical transfer. Alternatively, we could use 
clEnqueueWriteBuffer(), which requires a pre-allocated host-side buffer.

Example Code 1 – 

//
// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

// A minimalist OpenCL program.

#include <CL/cl.h>
#include <stdio.h>

#define NWITEMS 512

// A simple memset kernel

const char *source =
"__kernel void memset( __global uint *dst )                                  \n"
"{                                                                           \n"
"   dst[get_global_id(0)] = get_global_id(0);                                \n"
"}                                                                           \n";

int main(int argc, char ** argv)
{
   // 1. Get a platform.

   cl_platform_id platform;
   
   clGetPlatformIDs( 1, &platform, NULL );

    // 2. Find a gpu device.
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   cl_device_id device;
   
   clGetDeviceIDs( platform, CL_DEVICE_TYPE_GPU,
                             1,
                             &device,
                             NULL);

   // 3. Create a context and command queue on that device.

   cl_context context = clCreateContext( NULL,
                                         1,
                                         &device,
                                         NULL, NULL, NULL);

   cl_command_queue queue = clCreateCommandQueue( context,
                                                  device,
                                                  0, NULL );

   // 4. Perform runtime source compilation, and obtain kernel entry point.

   cl_program program = clCreateProgramWithSource( context,
                                                   1,
                                                   &source,
                                                   NULL, NULL );

   clBuildProgram( program, 1, &device, NULL, NULL, NULL );

   cl_kernel kernel = clCreateKernel( program, "memset", NULL );

   // 5. Create a data buffer.

   cl_mem buffer = clCreateBuffer( context,
                                   CL_MEM_WRITE_ONLY,
                                   NWITEMS * sizeof(cl_uint),
                                   NULL, NULL );

   // 6. Launch the kernel. Let OpenCL pick the local work size.

   size_t global_work_size = NWITEMS;

   clSetKernelArg(kernel, 0, sizeof(buffer), (void*) &buffer);

   clEnqueueNDRangeKernel( queue,
                           kernel,
                           1,
                           NULL,
                           &global_work_size,
                           NULL, 0, NULL, NULL);

   clFinish( queue );

   // 7. Look at the results via synchronous buffer map.

   cl_uint *ptr;
   ptr = (cl_uint *) clEnqueueMapBuffer( queue,
                                         buffer,
                                         CL_TRUE,
                                         CL_MAP_READ,
                                         0,
                                         NWITEMS * sizeof(cl_uint),
                                         0, NULL, NULL, NULL );
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   int i;

   for(i=0; i < NWITEMS; i++)
      printf("%d %d\n", i, ptr[i]);

   return 0;
}

1.9.2 Second Example: SAXPY Function

This section provides an introductory sample for beginner-level OpenCL 
programmers using C++ bindings. 

The sample implements the SAXPY function (Y = aX + Y, where X and Y are 
vectors, and a is a scalar). The full code is reproduced at the end of this section. 
 It uses C++ bindings for OpenCL. These bindings are available in the CL/cl.hpp 
file in the ATI Stream SDK; they also are downloadable from the Khronos 
website: http://www.khronos.org/registry/cl .

The following steps guide you through this example.

1. Enable error checking through the exception handling mechanism in the C++ 
bindings by using the following define.

#define __CL_ENABLE_EXCEPTIONS

This removes the need to error check after each OpenCL call. If there is an 
error, the C++ bindings code throw an exception that is caught at the end of 
the try block, where we can clean up the host memory allocations. In this 
example, the C++ objects representing OpenCL resources (cl::Context, 
cl::CommandQueue, etc.) are declared as automatic variables, so they do not 
need to be released. If an OpenCL call returns an error, the error code is 
defined in the CL/cl.h file.

2. The kernel is very simple: each work-item, i, does the SAXPY calculation for 
its corresponding elements Y[i] = aX[i] + Y[i]. Both X and Y vectors are stored 
in global memory; X is read-only, Y is read-write.

__kernel void saxpy(const __global float * X,
                    __global float * Y,
                    const float a)
{
    uint gid = get_global_id(0);    
    Y[gid] = a* X[gid] + Y[gid];
}

3. List all platforms on the machine, then select one.

cl::Platform::get(&platforms);

4. Create an OpenCL context on that platform.

cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM,
(cl_context_properties)(*iter)(), 0 };

context = cl::Context(CL_DEVICE_TYPE_GPU, cps);

5. Get OpenCL devices from the context.

devices = context.getInfo<CL_CONTEXT_DEVICES>();
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6. Create an OpenCL command queue.

queue = cl::CommandQueue(context, devices[0]);

7. Create two buffers, corresponding to the X and Y vectors. Ensure the host-
side buffers, pX and pY, are allocated and initialized. The 
CL_MEM_COPY_HOST_PTR flag instructs the runtime to copy over the 
contents of the host pointer pX in order to initialize the buffer bufX. The bufX 
buffer uses the CL_MEM_READ_ONLY flag, while bufY requires the 
CL_MEM_READ_WRITE flag.

bufX = cl::Buffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float) * length, pX);

8. Create a program object from the kernel source string, build the program for 
our devices, and create a kernel object corresponding to the SAXPY kernel. 
(At this point, it is possible to create multiple kernel objects if there are more 
than one.)

cl::Program::Sources sources(1, std::make_pair(kernelStr.c_str(),
kernelStr.length()));

program = cl::Program(context, sources);
program.build(devices);
kernel = cl::Kernel(program, "saxpy");

9. Enqueue the kernel for execution on the device (GPU in our example). 

Set each argument individually in separate kernel.setArg() calls. The 
arguments, do not need to be set again for subsequent kernel enqueue calls. 
Reset only those arguments that are to pass a new value to the kernel. Then, 
enqueue the kernel to the command queue with the appropriate global and 
local work sizes.

kernel.setArg(0, bufX);
kernel.setArg(1, bufY);
kernel.setArg(2, a);
queue.enqueueNDRangeKernel(kernel, cl::NDRange(),

cl::NDRange(length), cl::NDRange(64));

10. Read back the results from bufY to the host pointer pY. We will make this a 
blocking call (using the CL_TRUE argument) since we do not want to proceed 
before the kernel has finished execution and we have our results back.

queue.enqueueReadBuffer(bufY, CL_TRUE, 0, length * sizeof(cl_float), 
pY);

11. Clean up the host resources (pX and pY). OpenCL resources is cleaned up 
by the C++ bindings support code.

The catch(cl::Error err) block handles exceptions thrown by the C++ 
bindings code. If there is an OpenCL call error, it prints out the name of the call 
and the error code (codes are defined in CL/cl.h). If there is a kernel compilation 
error, the error code is CL_BUILD_PROGRAM_FAILURE, in which case it is 
necessary to print out the build log.
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Example Code 2 – 

#define __CL_ENABLE_EXCEPTIONS

#include <CL/cl.hpp>
#include <string>
#include <iostream>
#include <string>

using std::cout;
using std::cerr;
using std::endl;
using std::string;

/////////////////////////////////////////////////////////////////
// Helper function to print vector elements
/////////////////////////////////////////////////////////////////
void printVector(const std::string arrayName, 
                 const cl_float * arrayData, 
                 const unsigned int length)
{
    int numElementsToPrint = (256 < length) ? 256 : length;
    cout << endl << arrayName << ":" << endl;
    for(int i = 0; i < numElementsToPrint; ++i)
        cout << arrayData[i] << " ";
    cout << endl;
}

/////////////////////////////////////////////////////////////////
// Globals 
/////////////////////////////////////////////////////////////////
int length        = 256;
cl_float * pX     = NULL;
cl_float * pY     = NULL;
cl_float a        = 2.f;

std::vector<cl::Platform> platforms;
cl::Context        context;
std::vector<cl::Device> devices;
cl::CommandQueue   queue;
cl::Program        program;
cl::Kernel         kernel;
cl::Buffer         bufX;
cl::Buffer         bufY;

/////////////////////////////////////////////////////////////////
// The saxpy kernel
/////////////////////////////////////////////////////////////////
string kernelStr    = 
    "__kernel void saxpy(const __global float * x,\n"
    "                    __global float * y,\n"
    "                    const float a)\n"
    "{\n"
    "    uint gid = get_global_id(0);\n"
    "    y[gid] = a* x[gid] + y[gid];\n"
    "}\n";

/////////////////////////////////////////////////////////////////
// Allocate and initialize memory on the host 
/////////////////////////////////////////////////////////////////
void initHost()
{
    size_t sizeInBytes = length * sizeof(cl_float);
    pX = (cl_float *) malloc(sizeInBytes);
    if(pX == NULL)
        throw(string("Error: Failed to allocate input memory on host\n"));
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    pY = (cl_float *) malloc(sizeInBytes);
    if(pY == NULL)
        throw(string("Error: Failed to allocate input memory on host\n"));

    for(int i = 0; i < length; i++)
    {
        pX[i] = cl_float(i);
        pY[i] = cl_float(length-1-i);
    }

    printVector("X", pX, length);
    printVector("Y", pY, length);
}

/////////////////////////////////////////////////////////////////
// Release host memory
/////////////////////////////////////////////////////////////////
void cleanupHost()
{
    if(pX)
    {
        free(pX);
        pX = NULL;
    }
    if(pY != NULL)
    {
        free(pY);
        pY = NULL;
    }
}

void
main(int argc, char * argv[])

{
    try
    {
        /////////////////////////////////////////////////////////////////
        // Allocate and initialize memory on the host 
        /////////////////////////////////////////////////////////////////
        initHost();

        /////////////////////////////////////////////////////////////////
        // Find the platform
        /////////////////////////////////////////////////////////////////
        cl::Platform::get(&platforms);
        std::vector<cl::Platform>::iterator iter;
        for(iter = platforms.begin(); iter != platforms.end(); ++iter)
        {
            if((*iter).getInfo<CL_PLATFORM_VENDOR>() == "Advanced Micro 
Devices, Inc.")
                break;
        }

        /////////////////////////////////////////////////////////////////
        // Create an OpenCL context
        /////////////////////////////////////////////////////////////////
        cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, 
(cl_context_properties)(*iter)(), 0 };
        context = cl::Context(CL_DEVICE_TYPE_GPU, cps);
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        /////////////////////////////////////////////////////////////////
        // Detect OpenCL devices
        /////////////////////////////////////////////////////////////////
        devices = context.getInfo<CL_CONTEXT_DEVICES>();

        /////////////////////////////////////////////////////////////////
        // Create an OpenCL command queue
        /////////////////////////////////////////////////////////////////
        queue = cl::CommandQueue(context, devices[0]);

        /////////////////////////////////////////////////////////////////
        // Create OpenCL memory buffers
        /////////////////////////////////////////////////////////////////
        bufX = cl::Buffer(context,
                          CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                          sizeof(cl_float) * length,
                          pX);
        bufY = cl::Buffer(context,
                          CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
                          sizeof(cl_float) * length,
                          pY);

        /////////////////////////////////////////////////////////////////
        // Load CL file, build CL program object, create CL kernel object
        /////////////////////////////////////////////////////////////////
        cl::Program::Sources sources(1, std::make_pair(kernelStr.c_str(),

kernelStr.length()));
        program = cl::Program(context, sources);
        program.build(devices);
        kernel = cl::Kernel(program, "saxpy");

        /////////////////////////////////////////////////////////////////
        // Set the arguments that will be used for kernel execution
        /////////////////////////////////////////////////////////////////
        kernel.setArg(0, bufX);
        kernel.setArg(1, bufY);
        kernel.setArg(2, a);

        /////////////////////////////////////////////////////////////////
        // Enqueue the kernel to the queue
        // with appropriate global and local work sizes
        /////////////////////////////////////////////////////////////////
        queue.enqueueNDRangeKernel(kernel, cl::NDRange(),
                                    cl::NDRange(length), cl::NDRange(64));
                                    
        /////////////////////////////////////////////////////////////////
        // Enqueue blocking call to read back buffer Y
        /////////////////////////////////////////////////////////////////
        queue.enqueueReadBuffer(bufY, CL_TRUE, 0, length *

sizeof(cl_float), pY);

        printVector("Y", pY, length);
        
        /////////////////////////////////////////////////////////////////
        // Release host resources
        /////////////////////////////////////////////////////////////////
        cleanupHost();
    }
    catch (cl::Error err)
    {
        /////////////////////////////////////////////////////////////////
        // Catch OpenCL errors and print log if it is a build error
        /////////////////////////////////////////////////////////////////
        cerr << "ERROR: " << err.what() << "(" << err.err() << ")" << 

endl;
        if (err.err() == CL_BUILD_PROGRAM_FAILURE)
        {
            string str = 
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program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
            cout << "Program Info: " << str << endl;
        }
        cleanupHost();
    }
    catch(string msg)
    {
        cerr << "Exception caught in main(): " << msg << endl;
        cleanupHost();
    }
}

1.9.3 Third Example: Parallel Min() Function

This medium-complexity sample shows how to implement an efficient parallel 
min() function. 

The code is written so that it performs very well on either CPU or GPU. The 
number of threads launched depends on how many hardware processors are 
available. Each thread walks the source buffer, using a device-optimal access 
pattern selected at runtime. A multi-stage reduction using __local and __global 
atomics produces the single result value.

The sample includes a number of programming techniques useful for simple 
tests. Only minimal error checking and resource tear-down is used.

Runtime Code – 

1. The source memory buffer is allocated, and initialized with a random pattern. 
Also, the actual min() value for this data set is serially computed, in order to 
later verify the parallel result.

2. The compiler is instructed to dump the intermediate IL and ISA files for 
further analysis.

3. The main section of the code, including device setup, CL data buffer creation, 
and code compilation, is executed for each device, in this case for CPU and 
GPU. Since the source memory buffer exists on the host, it is shared. All 
other resources are device-specific.

4. The global work size is computed for each device. A simple heuristic is used 
to ensure an optimal number of threads on each device. For the CPU, a 
given CL implementation can translate one work-item per CL compute unit 
into one thread per CPU core.

On the GPU, an initial multiple of the wavefront size is used, which is 
adjusted to ensure even divisibility of the input data over all threads. The 
value of 7 is a minimum value to keep all independent hardware units of the 
compute units busy, and to provide a minimum amount of memory latency 
hiding for a kernel with little ALU activity.

5. After the kernels are built, the code prints errors that occurred during kernel 
compilation and linking.

6. The main loop is set up so that the measured timing reflects the actual kernel 
performance. If a sufficiently large NLOOPS is chosen, effects from kernel 
launch time and delayed buffer copies to the device by the CL runtime are 
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minimized. Note that while only a single clFinish() is executed at the end 
of the timing run, the two kernels are always linked using an event to ensure 
serial execution.

The bandwidth is expressed as “number of input bytes processed.” For high-
end graphics cards, the bandwidth of this algorithm should be an order of 
magnitude higher than that of the CPU, due to the parallelized memory 
subsystem of the graphics card.

7. The results then are checked against the comparison value. This also 
establishes that the result is the same on both CPU and GPU, which can 
serve as the first verification test for newly written kernel code.

8. Note the use of the debug buffer to obtain some runtime variables. Debug 
buffers also can be used to create short execution traces for each thread, 
assuming the device has enough memory.

Kernel Code – 

9. The code uses four-component vectors (uint4) so the compiler can identify 
concurrent execution paths as often as possible. On the GPU, this can be 
used to further optimize memory accesses and distribution across ALUs. On 
the CPU, it can be used to enable SSE-like execution.

10. The kernel sets up a memory access pattern based on the device. For the 
CPU, the source buffer is chopped into continuous buffers: one per thread. 
Each CPU thread serially walks through its buffer portion, which results in 
good cache and prefetch behavior for each core.

On the GPU, each thread walks the source buffer using a stride of the total 
number of threads. As many threads are executed in parallel, the result is a 
maximally coalesced memory pattern requested from the memory back-end. 
For example, if each compute unit has 16 physical processors, 16 uint4 
requests are produced in parallel, per clock, for a total of 256 bytes per clock.

11. The kernel code uses a reduction consisting of three stages: __global to 
__private, __private to __local, which is flushed to __global, and finally 
__global to __global. In the first loop, each thread walks __global 
memory, and reduces all values into a min value in __private memory 
(typically, a register). This is the bulk of the work, and is mainly bound by 
__global memory bandwidth. The subsequent reduction stages are brief in 
comparison.

12. Next, all per-thread minimum values inside the work-group are reduced to a 
__local value, using an atomic operation. Access to the __local value is 
serialized; however, the number of these operations is very small compared 
to the work of the previous reduction stage. The threads within a work-group 
are synchronized through a local barrier(). The reduced min value is 
stored in __global memory.

13. After all work-groups are finished, a second kernel reduces all work-group 
values into a single value in __global memory, using an atomic operation. 
This is a minor contributor to the overall runtime.
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Example Code 3 – 

//
// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

#include <CL/cl.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "Timer.h"

#define NDEVS       2

// A parallel min() kernel that works well on CPU and GPU

const char *kernel_source =
"                                                                            \n"
"#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable       \n"
"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable      \n"
"                                                                            \n"
"  // 9. The source buffer is accessed as 4-vectors.                         \n"
"                                                                            \n"
"__kernel void minp( __global uint4 *src,                                    \n"
"                    __global uint  *gmin,                                   \n"
"                    __local uint *lmin,                                   \n"
"                    __global uint  *dbg,                                    \n"
"                    size_t         nitems,                                  \n"
"                    uint           dev )                                    \n"
"{                                                                           \n"
"   // 10. Set up __global memory access pattern.                            \n"
"                                                                            \n"
"   uint  count  = ( nitems / 4 ) / get_global_size(0);                      \n"
"   uint  idx    = (dev == 0) ? get_global_id(0) * count                     \n"
"                             : get_global_id(0);                            \n"
"   uint  stride = (dev == 0) ? 1 : get_global_size(0);                      \n"
"   uint  pmin   = (uint) -1;                                                \n"
"                                                                            \n"
"   // 11. First, compute private min, for this work-item.                   \n"
"                                                                            \n"
"   for( int n=0; n < count; n++, idx += stride )                            \n"
"   {                                                                        \n"
"      pmin = min( pmin, src[idx].x );                                       \n"
"      pmin = min( pmin, src[idx].y );                                       \n"
"      pmin = min( pmin, src[idx].z );                                       \n"
"      pmin = min( pmin, src[idx].w );                                       \n"
"   }                                                                        \n"
"                                                                            \n"
"   // 12. Reduce min values inside work-group.                              \n"
"                                                                            \n"
"   if( get_local_id(0) == 0 )                                               \n"
"      lmin[0] = (uint) -1;                                                  \n"
"                                                                            \n"
"   barrier( CLK_LOCAL_MEM_FENCE );                                          \n"
"                                                                            \n"
"   (void) atom_min( lmin, pmin );                                           \n"
"                                                                            \n"
"   barrier( CLK_LOCAL_MEM_FENCE );                                          \n"
"                                                                            \n"
"   // Write out to __global.                                                \n"
"                                                                            \n"
"   if( get_local_id(0) == 0 )                                               \n"
"      gmin[ get_group_id(0) ] = lmin[0];                                    \n"
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"                                                                            \n"
"   // Dump some debug information.                                          \n"
"                                                                            \n"
"   if( get_global_id(0) == 0 )                                              \n"
"   {                                                                        \n"
"      dbg[0] = get_num_groups(0);                                           \n"
"      dbg[1] = get_global_size(0);                                          \n"
"      dbg[2] = count;                                                       \n"
"      dbg[3] = stride;                                                      \n"
"   }                                                                        \n"
"}                                                                           \n"
"                                                                            \n"
"// 13. Reduce work-group min values from __global to __global. \n"
"                                                                            \n"
"__kernel void reduce( __global uint4 *src,                                  \n"
"                      __global uint  *gmin )                                \n"
"{                                                                           \n"
"   (void) atom_min( gmin, gmin[get_global_id(0)] ) ;                        \n"
"} \n";

int main(int argc, char ** argv)
{
   cl_platform_id   platform;

   int              dev, nw;
   cl_device_type   devs[NDEVS] = { CL_DEVICE_TYPE_CPU,
                                    CL_DEVICE_TYPE_GPU };

   cl_uint          *src_ptr;
   unsigned int     num_src_items = 4096*4096;

   // 1. quick & dirty MWC random init of source buffer.

   // Random seed (portable).

   time_t ltime;
   time(&ltime);

   src_ptr = (cl_uint *) malloc( num_src_items * sizeof(cl_uint) );

   cl_uint a =   (cl_uint) ltime,
           b =   (cl_uint) ltime;
   cl_uint min = (cl_uint) -1;

   // Do serial computation of min() for result verification.

   for( int i=0; i < num_src_items; i++ )
   {
      src_ptr[i] = (cl_uint) (b = ( a * ( b & 65535 )) + (  b >> 16 ));
      min = src_ptr[i] < min ? src_ptr[i] : min;
   }

   // 2. Tell compiler to dump intermediate .il and .isa GPU files.

   putenv("GPU_DUMP_DEVICE_KERNEL=3");

   // Get a platform.

   clGetPlatformIDs( 1, &platform, NULL );
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   // 3. Iterate over devices.

   for(dev=0; dev < NDEVS; dev++)
   {
      cl_device_id     device;
      cl_context       context;
      cl_command_queue queue;
      cl_program       program;
      cl_kernel        minp;
      cl_kernel        reduce;

      cl_mem           src_buf;
      cl_mem           dst_buf;
      cl_mem           dbg_buf;

      cl_uint          *dst_ptr,
                       *dbg_ptr;

      printf("\n%s: ", dev == 0 ? "CPU" : "GPU");

      // Find the device.

      clGetDeviceIDs( platform,
                      devs[dev],
                      1,
                      &device,
                      NULL);

      // 4. Compute work sizes.

      cl_uint compute_units;
      size_t  global_work_size;
      size_t  local_work_size;
      size_t  num_groups;

      clGetDeviceInfo( device, 
                       CL_DEVICE_MAX_COMPUTE_UNITS,
                       sizeof(cl_uint),
                       &compute_units,
                       NULL);

      if( devs[dev] == CL_DEVICE_TYPE_CPU )
      {
         global_work_size = compute_units * 1;      // 1 thread per core
         local_work_size = 1;
      }
      else
      {
          cl_uint ws = 64;

          global_work_size = compute_units * 7 * ws; // 7 wavefronts per SIMD

          while( (num_src_items / 4) % global_work_size != 0 )
             global_work_size += ws;

          local_work_size = ws;
      }

      num_groups = global_work_size / local_work_size;
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      // Create a context and command queue on that device.

      context = clCreateContext( NULL,
                                 1,
                                 &device,
                                 NULL, NULL, NULL);

      queue = clCreateCommandQueue(context,
                                   device,
                                   0, NULL);

      // Minimal error check.

      if( queue == NULL ) 
{

          printf("Compute device setup failed\n");
          return(-1);
      }

      // Perform runtime source compilation, and obtain kernel entry point.

      program = clCreateProgramWithSource( context,
                                           1,
                                           &kernel_source,
                                           NULL, NULL );

      cl_int ret = clBuildProgram( program, 1, &device, NULL, NULL, NULL );

      // 5. Print compiler error messages

      if(ret != CL_SUCCESS) 
      {
         printf("clBuildProgram failed: %d\n", ret);

         char buf[0x10000];

         clGetProgramBuildInfo( program,
                                device,
                                CL_PROGRAM_BUILD_LOG,
                                0x10000,
                                buf,
                                NULL);
         printf("\n%s\n", buf);
         return(-1);
      }

      minp   = clCreateKernel( program, "minp", NULL );
      reduce = clCreateKernel( program, "reduce", NULL );

      // Create input, output and debug buffers.

      src_buf = clCreateBuffer( context,
                                CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                num_src_items * sizeof(cl_uint),
                                src_ptr,
                                NULL );

      dst_buf = clCreateBuffer( context,
                                CL_MEM_READ_WRITE,
                                num_groups * sizeof(cl_uint),
                                NULL, NULL );
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      dbg_buf = clCreateBuffer( context,
                                CL_MEM_WRITE_ONLY,
                                global_work_size * sizeof(cl_uint),
                                NULL, NULL );

      clSetKernelArg(minp, 0, sizeof(void *),        (void*) &src_buf);
      clSetKernelArg(minp, 1, sizeof(void *),        (void*) &dst_buf);
      clSetKernelArg(minp, 2, 1*sizeof(cl_uint),     (void*) NULL);
      clSetKernelArg(minp, 3, sizeof(void *),        (void*) &dbg_buf);
      clSetKernelArg(minp, 4, sizeof(num_src_items), (void*) &num_src_items);
      clSetKernelArg(minp, 5, sizeof(dev),           (void*) &dev);

      clSetKernelArg(reduce, 0, sizeof(void *),      (void*) &src_buf);
      clSetKernelArg(reduce, 1, sizeof(void *),      (void*) &dst_buf);

      CPerfCounter t;
      t.Reset();
      t.Start();

      // 6. Main timing loop.

#define NLOOPS 500

      cl_event ev;
      int nloops = NLOOPS;

      while(nloops--) 
{

         clEnqueueNDRangeKernel( queue,
                                 minp,
                                 1,
                                 NULL,
                                 &global_work_size,
                                 &local_work_size,
                                 0, NULL, &ev);

         clEnqueueNDRangeKernel( queue,
                                 reduce,
                                 1,
                                 NULL,
                                 &num_groups,
                                 NULL, 1, &ev, NULL);
      }

      clFinish( queue );
      t.Stop();

      printf("B/W %.2f GB/sec, ", ((float) num_src_items *
                                   sizeof(cl_uint) * NLOOPS) /
                                  t.GetElapsedTime() / 1e9 );

      // 7. Look at the results via synchronous buffer map.

      dst_ptr = (cl_uint *) clEnqueueMapBuffer( queue,
                                                dst_buf,
                                                CL_TRUE,
                                                CL_MAP_READ,
                                                0, 
                                                num_groups * sizeof(cl_uint),
                                                0, NULL, NULL, NULL );
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      dbg_ptr = (cl_uint *) clEnqueueMapBuffer( queue,
                                                dbg_buf,
                                                CL_TRUE,
                                                CL_MAP_READ,
                                                0, 
                                                global_work_size *
                                                sizeof(cl_uint),
                                                0, NULL, NULL, NULL );

      // 8. Print some debug info.

      printf("%d groups, %d threads, count %d, stride %d\n", dbg_ptr[0],
                                                             dbg_ptr[1],
                                                             dbg_ptr[2],
                                                             dbg_ptr[3] );

      if( dst_ptr[0] == min )
         printf("result correct\n");
      else
         printf("result INcorrect\n");

   }

   printf("\n");
   return 0;
}
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Chapter 2
Building and Running OpenCL 
Programs

The compiler tool-chain provides a common framework for both CPUs and 
GPUs, sharing the front-end and some high-level compiler transformations. The 
back-ends are optimized for the device type (CPU or GPU). Figure 2.1 is a high-
level diagram showing the general compilation path of applications using 
OpenCL. Functions of an application that benefit from acceleration are re-written 
in OpenCL and become the OpenCL source. The code calling these functions 
are changed to use the OpenCL API. The rest of the application remains 
unchanged. The kernels are compiled by the OpenCL compiler to either CPU 
binaries or GPU binaries, depending on the target device.

Figure 2.1 OpenCL Compiler Toolchain

For CPU processing, the OpenCL runtime uses the LLVM AS to generate x86 
binaries. The OpenCL runtime automatically determines the number of 
processing elements, or cores, present in the CPU and distributes the OpenCL 
kernel between them. 

For GPU processing, the OpenCL runtime post-processes the incomplete ATI IL 
from the OpenCL compiler and turns it into complete ATI IL. This adds macros 
(from a macro database, similar to the built-in library) specific to the GPU. The 
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OpenCL Runtime layer then removes unneeded functions and passes the 
complete IL to the CAL compiler for compilation to GPU-specific binaries. 

2.1 Compiling the Program
An OpenCL application consists of a host program (C/C++) and an optional 
kernel program (.cl). To compile an OpenCL application, the host program must 
be compiled; this can be done using an off-the-shelf compiler such as g++ or 
MSVC++. The application kernels are compiled into device-specific binaries 
using the OpenCL compiler.

This compiler uses a standard C front-end, as well as the low-level virtual 
machine (LLVM) framework, with extensions for OpenCL. The compiler starts 
with the OpenCL source that the user program passes through the OpenCL 
runtime interface (Figure 2.1). The front-end translates the OpenCL source to 
LLVM IR. It keeps OpenCL-specific information as metadata structures. (For 
example, to debug kernels, the front end creates metadata structures to hold the 
debug information; also, a pass is inserted to translate this into LLVM debug 
nodes, which includes the line numbers and source code mapping.) The front-
end supports additional data-types (int4, float8, etc.), additional keywords (kernel, 
global, etc.) and built-in functions (get_global_id(), barrier(), etc.). Also, it 
performs additional syntactic and semantic checks to ensure the kernels meet 
the OpenCL specification. The input to the LLVM linker is the output of the front-
end and the library of built-in functions. This links in the built-in OpenCL functions 
required by the source and transfers the data to the optimizer, which outputs 
optimized LLVM IR. 

For GPU processing, the LLVM IR-to-CAL IL module receives LLVM IR and 
generates optimized IL for a specific GPU type in an incomplete format, which is 
passed to the OpenCL runtime, along with some metadata for the runtime layer 
to finish processing.

For CPU processing, LLVM AS generates x86 binary. 

2.1.1 Compiling on Windows

To compile OpenCL applications on Windows requires that Visual Studio 2008 
Professional Edition or the Intel C compiler are installed. All C++ files must be 
added to the project, which must have the following settings.

• Project Properties → C/C++ → Additional Include Directories
These must include $(ATISTREAMSDKROOT)/include for OpenCL headers. 
Optionally, they can include $(ATISTREAMSDKSAMPLESROOT)/include for 
SDKUtil headers.

• Project Properties → C/C++ → Preprocessor Definitions
These must define ATI_OS_WIN.

• Project Properties → Linker → Additional Library Directories
These must include $(ATISTREAMSDKROOT)/lib/x86 for OpenCL libraries. 
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Optionally, they can include $(ATISTREAMSDKSAMPLESROOT)/lib/x86 for 
SDKUtil libraries.

• Project Properties → Linker → Input → Additional Dependencies
These must include OpenCL.lib. Optionally, they can include SDKUtil.lib.

2.1.2 Compiling on Linux

To compile OpenCL applications on Linux requires that the gcc or the Intel C 
compiler is installed. There are two major steps to do this: compiling and linking. 

1. Compile all the C++ files (Template.cpp), and get the object files.
For 32-bit object files on a 32-bit system, or 64-bit object files on 64-bit 
system:

g++ -o Template.o -DATI_OS_LINUX -c Template.cpp -I$ATISTREAMSDKROOT/include

For building 32-bit object files on a 64-bit system:

g++ -o Template.o -DATI_OS_LINUX -c Template.cpp -I$ATISTREAMSDKROOT/include

2. Link all the object files generated in the previous step to the OpenCL library 
and create an executable.

For linking to a 64-bit library:

g++ -o Template Template.o -lOpenCL -L$ATISTREAMSDKROOT/lib/x86_64

For linking to a 32-bit library:

g++ -o Template Template.o -lOpenCL -L$ATISTREAMSDKROOT/lib/x86 

The OpenCL samples in the ATI Stream SDK depend on the SDKUtil library. In 
Linux, the samples use the shipped SDKUtil.lib, whether or not the sample is 
built for release or debug. When compiling all samples from the samples/opencl 
folder, the SDKUtil.lib is created first; then, the samples use this generated 
library. When compiling the SDKUtil library, the created library replaces the 
shipped library.

The following are linking options if the samples depend on the SDKUtil Library 
(assuming the SDKUtil library is created in $ATISTREAMSDKROOT/lib/x86_64 for 
64-bit libraries, or $ATISTREAMSDKROOT/lib/x86 for 32-bit libraries).

g++ -o Template Template.o -lSDKUtil -lOpenCL -L$ATISTREAMSDKROOT/lib/x86_64

g++ -o Template Template.o -lSDKUtil -lOpenCL -L$ATISTREAMSDKROOT/lib/x86

2.1.3 OpenCL Compiler Options

The currently supported options are:

• -I dir — Add the directory dir to the list of directories to be searched for 
header files. When parsing #include directives, the OpenCL compiler 
resolves relative paths using the current working directory of the application.
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• -g — This is an experimental feature that lets you use the GNU project 
debugger, GDB, to debug kernels on x86 CPUs running Linux or 
cygwin/minGW under Windows. For more details, see Chapter 3, “Debugging 
OpenCL.”

2.2 Running the Program
The runtime system assigns the work in the command queues to the underlying 
devices. Commands are placed into the queue using the clEnqueue commands 
shown in the listing below.

The commands can be broadly classified into three categories: 

• Kernel commands (for example, clEnqueueNDRangeKernel(), etc.),

• Memory commands (for example, clEnqueueReadBuffer(), etc.), and 

• Event commands (for example, clEnqueueWaitForEvents(), etc. 

As illustrated in Figure 2.2, the application can create multiple command queues 
(some in libraries, for different components of the application, etc.). These 
queues are muxed into one queue per device type. The figure shows command 
queues 1 and 3 merged into one CPU device queue (blue arrows); command 
queue 2 (and possibly others) are merged into the GPU device queue (red 
arrow). The device queue then schedules work onto the multiple compute 
resources present in the device. Here, K = kernel commands, M = memory 
commands, and E = event commands.

2.2.1 Running Code on Windows

The following steps ensure the execution of OpenCL applications on Windows.

1. The path to OpenCL.lib ($ATISTREAMSDKROOT/lib/x86) must be included in 
path environment variable. 

OpenCL API Function Description

clCreateCommandQueue() Create a command queue for a specific device (CPU, 
GPU).

clCreateProgramWithSource()
clCreateProgramWithBinary()

Create a program object using the source code of the 
application kernels.

clBuildProgram() Compile and link to create a program executable from 
the program source or binary.

clCreateKernel() Creates a kernel object from the program object.

clCreateBuffer() Creates a buffer object for use via OpenCL kernels.

clSetKernelArg()
clEnqueueNDRangeKernel()

Set the kernel arguments, and enqueue the kernel in a 
command queue.

clEnqueueReadBuffer(), 
clEnqueueWriteBuffer()

Enqueue a command in a command queue to read from 
a buffer object to host memory, or write to the buffer 
object from host memory.

clEnqueueWaitForEvents() Wait for the specified events to complete.
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2. Generally, the path to the kernel file (Template_Kernel.cl) specified in the 
host program is relative to the executable. Unless an absolute path is 
specified, the kernel file must be in the same directory as the executable.

Figure 2.2 Runtime Processing Structure

2.2.2 Running Code on Linux

The following steps ensure the execution of OpenCL applications on Linux.

1. The path to libOpenCL.so ($ATISTREAMSDKROOT/lib/x86) must be included 
in $LD_LIBRARY_PATH. 

2. /usr/lib/OpenCL/vendors/ must have libatiocl32.so and/or 
libatiocl64.so.

3. Generally, the path to the kernel file (Template_Kernel.cl) specified in the 
host program is relative to the executable. Unless an absolute path is 
specified, the kernel file must be in the same directory as the executable.

2.3 Calling Conventions
For all Windows platforms, the __stdcall calling convention is used. Function 
names are undecorated.

For Linux, the calling convention is __cdecl.
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2.4 Predefined Macros
The following macros are predefined when compiling OpenCL™ C kernels. 
These macros are defined automatically based on the device for which the code 
is being compiled.

GPU devices:

__Cypress__
__Juniper__
__Redwood__
__Cedar__
__ATI_RV770__
__ATI_RV730__
__ATI_RV710__
__GPU__

CPU devices:

__CPU__
__X86__
__X86_64__

Note that __GPU__ or __CPU__ are predefined whenever a GPU or CPU device 
is the compilation target.

An example kernel is provided below.

#pragma OPENCL EXTENSION cl_amd_printf : enable
const char* getDeviceName() {
#ifdef __Cypress__
        return "Cypress";
#elif defined(__Juniper__)
        return "Juniper";
#elif defined(__Redwood__)
        return "Redwood";
#elif defined(__Cedar__)
        return "Cedar";
#elif defined(__ATI_RV770__)
        return "RV770";
#elif defined(__ATI_RV730__)
        return "RV730";
#elif defined(__ATI_RV710__)
        return "RV710";
#elif defined(__GPU__)
        return "GenericGPU";
#elif defined(__X86__)
        return "X86CPU";
#elif defined(__X86_64__)
        return "X86-64CPU";
#elif defined(__CPU__)
        return "GenericCPU";
#else
        return "UnknownDevice";
#endif
}
kernel void test_pf(global int* a)
{
        printf("Device Name: %s\n", getDeviceName());
}
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Chapter 3
Debugging OpenCL

ATI Stream Computing provides an experimental feature that lets you use the 
GNU project debugger, GDB, to debug kernels on x86 CPUs running Linux or 
cygwin/minGW under Windows.

3.1 Setting the Environment
The OpenCL program to be debugged first is compiled by passing the “-g” 
option to the compiler through the options string to clBuildProgram. For 
example, using the C++ API:

err = program.build(devices,"-g");

To avoid source changes, set the environment variable as follows:

CPU_COMPILER_OPTIONS="-g"

Below is a sample debugging session of a program with a simple hello world 
kernel. The following GDB session shows how to debug this kernel. Ensure that 
your program is configured to be executed on the CPU. It is important to set 
CPU_MAX_COMPUTE_UNITS=1. This ensures that the program is executed 
deterministically.

3.2 Setting the Breakpoint in an OpenCL Kernel
To set a breakpoint, use:

b [N | function | kernel_name]

where N is the line number in the source code, function is the function name, 
and kernel_name is constructed as follows: if the name of the kernel is 
bitonicSort, the kernel_name is __OpenCL_bitonicSort_kernel. 

Note that if no breakpoint is set, the program does not stop until execution is 
complete.

Also note that OpenCL kernel symbols are not visible in the debugger until the 
kernel is loaded. A simple way to check for known OpenCL symbols is to set a 
breakpoint in the host code at clEnqueueNDRangeKernel, and to use the GDB 
info functions __OpenCL command, as shown in the example below.
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3.3 Sample GDB Session
The following is a sample debugging session. Note that two separate breakpoints 
are set. The first is set in the host code, at clEnqueueNDRangeKernel(). The 
second breakpoint is set at the actual CL kernel function.

$ export CPU_COMPILER_OPTIONS="-g"
$ export CPU_MAX_COMPUTE_UNITS=1
$ gdb BitonicSort
GNU gdb 6.8
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later 
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-suse-linux"...
(gdb) b clEnqueueNDRangeKernel
Function "clEnqueueNDRangeKernel" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (clEnqueueNDRangeKernel) pending.
(gdb) r --device cpu
Starting program: /usr/local/ati-stream-sdk-v2.01-TC2-
lnx64/samples/opencl/bin/x
86_64/BitonicSort --device cpu
[Thread debugging using libthread_db enabled]

Unsorted Input
145 219 149 153 197 149 200 164 208 77 215 106 127 64 120 187 33 238 144 
33 116
231 193 222 161 44 160 220 7 144 210 153 108 104 50 49 254 251 214 206 73 
173 57
 201 238 178 132 15 160 20 49 21 251 243 243 157 32 148 121 39 36 76 192 
144

[New Thread 0x7fe2b3035700 (LWP 8021)]
[New Thread 0x41417950 (LWP 8024)]
[New Thread 0x4056d950 (LWP 8025)]
Executing kernel for 1 iterations
-------------------------------------------
[Switching to Thread 0x7fe2b3035700 (LWP 8021)]

Breakpoint 1, 0x00007fe2b28219e0 in clEnqueueNDRangeKernel ()
   from /usr/local/ati-stream-sdk-v2.01-TC2-lnx64/lib/x86_64/libOpenCL.so
(gdb) info functions __OpenCL
All functions matching regular expression "__OpenCL":

File OCLFYRFx0.cl:
void __OpenCL_bitonicSort_kernel(void *, unsigned int, unsigned int,
    unsigned int, unsigned int);

Non-debugging symbols:
0x00007fe29e6b8778  __OpenCL_bitonicSort_kernel@plt
0x00007fe29e6b8900  __OpenCL_bitonicSort_stub
(gdb) b __OpenCL_bitonicSort_kernel
Breakpoint 2 at 0x7fe29e6b8790: file OCLFYRFx0.cl, line 31.
(gdb) c
Continuing.
[Switching to Thread 0x4056d950 (LWP 8025)]

Breakpoint 2, __OpenCL_bitonicSort_kernel (theArray=0x0, stage=0,
    passOfStage=0, width=0, direction=0) at OCLFYRFx0.cl:31
31      {
(gdb) p get_global_id(0)
$1 = 0
(gdb) c
Continuing.
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Breakpoint 2, __OpenCL_bitonicSort_kernel (theArray=0x0, stage=0,
    passOfStage=0, width=0, direction=0) at OCLFYRFx0.cl:31
31      {
(gdb) p get_global_id(0)
$2 = 1
(gdb)

3.4 Notes
1. To make a breakpoint in a working thread with some particular ID in 

dimension N, one technique is to set a conditional breakpoint when the 
get_global_id(N) == ID. To do this, use:

b [ N | function | kernel_name ] if (get_global_id(N)==ID)

where N can be 0, 1, or 2.

2. For complete GDB documentation, see 
http://www.gnu.org/software/gdb/documentation/ .

3. For debugging OpenCL kernels in Windows, a developer can use GDB 
running in cygwin or minGW. It is done in the same way as described in 
sections 3.1 and 3.2.

Notes:  

– Only OpenCL kernels are visible to GDB when running cygwin or 
minGW. GDB under cygwin/minGW currently does not support host code 
debugging. 

– It is not possible to use two debuggers attached to the same process. 
Do not try to attach Visual Studio to a process, and concurrently GDB to 
the kernels of that process.

– Continue to develop application code using Visual Studio. gcc running in 
cygwin or minGW currently is not supported.
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Chapter 4
OpenCL Performance and 
Optimization

This chapter discusses performance and optimization when programming for ATI 
Stream GPU compute devices, as well as CPUs and multiple devices.

4.1 ATI Stream Profiler
The ATI Stream Profiler provides a Microsoft® Visual Studio® integrated view of 
key static kernel characteristics such as workgroup dimensions and memory 
transfer sizes, as well as kernel execution time, dynamic hardware performance 
counter information (ALU operations, local bank conflicts), and kernel 
disassembly. For information on installing the profiler, see the ATI Stream SDK 
Installation Notes. The performance counters available through the Profiler are 
listed in Table 4.1.

After following the installation instructions, you can run the ATI Stream Profiler 
from within Visual Studio to generate profile information for your application. After 
verifying that the application compiles and runs successfully, click Start Profiling 
to generate the profile information. The profiling process may run the application 
multiple times to generate the complete set of performance information.

Some sections in the remainder of this document reference information and 
analysis that can be provided by the ATI Stream Profiler.

Table 4.1 lists and briefly describes the performance counters available through 
the ATI Stream Profiler. 

Table 4.1 Performance Counter Descriptions

Name Description 

Method The kernel name or the memory operation name.

ExecutionOrder The order of execution for the kernel and memory operations from the program. 

GlobalWorkSize The global work-item size of the kernel.

GroupWorkSize The work-group size of the kernel.

Time 
For a kernel dispatch operation: time spent executing the kernel in milliseconds 
(does not include the kernel setup time). For a buffer or image object operation, 
time spent transferring bits in milliseconds.

LocalMem The amount of local memory in bytes being used by the kernel.

MemTransferSize The data transfer size in kilobytes.
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GPR The number of General Purpose Register allocated by the kernel. 

ScratchReg 
The maximum number of scratch registers needed by the kernel. To improve 
performance, get this number down to zero by reducing the number of GPR used 
by the kernel. 

StackSize 
The maximum number of flow control stack size needed by the kernel (only for 
GPU device). This number may affect the number of wavefronts in-flight. To 
reduce the stack size, reduce the amount of flow control nesting in the kernel. 

Wavefront Total wavefronts. 

ALU The average ALU instructions executed per work-item (affected by flow control). 

Fetch The average Fetch instructions from the global memory executed per work-item 
(affected by flow control). 

Write The average Write instructions to the global memory executed per work-item 
(affected by flow control). 

ALUBusy The percentage of GPUTime ALU instructions are processed. 

ALUFetchRatio The ratio of ALU to Fetch instructions. If the number of Fetch instruction is zero, 
then one will be used instead. 

ALUPacking 

The ALU vector packing efficiency (in percentage). This value indicates how well 
the Shader Compiler packs the scalar or vector ALU in your kernel to the 5-way 
VLIW instructions. Values below 70 percent indicate that ALU dependency chains 
may be preventing full utilization of the processor. 

FetchMem The total kilobytes fetched from the global memory. 

L1CacheHit The percentage of fetches from the global memory that hit the L1 cache. Only 
fetches from image objects are cached. 

FetchUnitBusy The percentage of GPUTime the Fetch unit is active. This is measured with all 
extra fetches and any cache or memory effects taken into account. 

FetchUnitStalled The percentage of GPUTime the Fetch unit is stalled. Try reducing the number 
of fetches or reducing the amount per fetch if possible. 

WriteUnitStalled The percentage of GPUTime Write unit is stalled.

Performance Counters Specifically for Evergreen-Series GPUs

LDSFetch The average Fetch instructions from the local memory executed per work-item 
(affected by flow control). 

LDSWrite The average Write instructions to the local memory executed per work-item 
(affected by flow control). 

FastPath The total kilobytes written to the global memory through the FastPath which only 
support basic operations: no atomics or sub-32 bit types. This is an optimized path 
in the hardware. 

CompletePath The total kilobytes written to the global memory through the CompletePath which 
supports atomics and sub-32 bit types (byte, short). This number includes bytes 
for load, store and atomics operations on the buffer. This number may indicate a 
big performance impact (higher number equals lower performance). If possible, 
remove the usage of this Path by moving atomics to the local memory or partition 
the kernel. 

Name Description 
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4.2 Analyzing Stream Processor Kernels

4.2.1 Intermediate Language and GPU Disassembly

The ATI Stream Computing software exposes the Intermediate Language (IL) 
and instruction set architecture (ISA) code generated for OpenCL™ kernels 
through an environment variable, GPU_DUMP_DEVICE_KERNEL. 

The ATI Intermediate Language (IL) is an abstract representation for hardware 
vertex, pixel, and geometry shaders, as well as compute kernels that can be 
taken as input by other modules implementing the IL. An IL compiler uses an IL 
shader or kernel in conjunction with driver state information to translate these 
shaders into hardware instructions or a software emulation layer. For a complete 
description of IL, see the ATI Intermediate Language (IL) Specification v2. 

The instruction set architecture (ISA) defines the instructions and formats 
accessible to programmers and compilers for the AMD GPUs. The Evergreen-
family ISA instructions and microcode are documented in the AMD Evergreen-
Family ISA Instructions and Microcode. (For a complete description of the R700 
ISA, see the R700-Family Instruction Set Architecture.)

4.2.2 Generating IL and ISA Code

In Microsoft Visual Studio, the ATI Stream Profiler provides an integrated tool to 
view IL and ISA code. After running the profiler, single-click the name of the 
kernel for detailed programming and disassembly information. The associated 
ISA disassembly is shown in a new tab. A drop-down menu provides the option 
to view the IL, ISA, or source OpenCL for the selected kernel. 

Developers also can generate IL and ISA code from their OpenCL™ kernel by 
setting the environment variable GPU_DUMP_DEVICE_KERNEL to one of the 
following possible values: 

PathUtilization The percentage of bytes written through the FastPath or CompletePath compared 
to the total number of bytes transferred over the bus. To increase the path utiliza-
tion, use the FastPath.

ALUStalledByLDS The percentage of GPUTime ALU is stalled by the LDS input queue being full or 
the output queue is not ready. If there are LDS bank conflicts, reduce it. Otherwise, 
try reducing the number of LDS accesses if possible. 

LDSBankConflict The percentage of GPUTime LDS is stalled by bank conflicts. 

LDSBankConflictAccess The percentage of LDS accesses that caused a bank conflict. 

Name Description 

Value Description
1 Save intermediate IL files in local directory.
2 Disassemble ISA file and save in local directory.
3 Save both the IL and ISA files in local directory.
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After setting the flag, run the OpenCL host application. When the host application 
builds the kernel, the OpenCL compiler saves the .il and .isa files for each 
kernel in the local directory. The AMD Stream Profiler currently works only with 
32-bit applications.

4.3 Estimating Performance

4.3.1 Measuring Execution Time

The OpenCL runtime provides a built-in mechanism for timing the execution of 
kernels by setting the CL_QUEUE_PROFILING_ENABLE flag when the queue is 
created. Once profiling is enabled, the OpenCL runtime automatically records 
timestamp information for every kernel and memory operation submitted to the 
queue. 

OpenCL provides four timestamps: 

• CL_PROFILING_COMMAND_QUEUED - Indicates when the command is enqueued 
into a command-queue on the host. This is set by the OpenCL runtime when 
the user calls an clEnqueue* function.

• CL_PROFILING_COMMAND_SUBMIT - Indicates when the command is submitted 
to the device. For AMD GPU devices, this time is only approximately defined 
and is not detailed in this section.

• CL_PROFILING_COMMAND_START - Indicates when the command starts 
execution on the requested device.

• CL_PROFILING_COMMAND_END - Indicates when the command finishes 
execution on the requested device. 

The sample code below shows how to compute the kernel execution time (End-
Start):

cl_event myEvent;
cl_ulong startTime, endTime;

clCreateCommandQueue (…, CL_QUEUE_PROFILING_ENABLE, NULL);
clEnqueueNDRangeKernel(…, &myEvent);
clFinish(myCommandQ); // wait for all events to finish

clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_START, 
sizeof(cl_ulong), &startTime, NULL);

clGetEventProfilingInfo(myEvent,  CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &endTimeNs, NULL);

cl_ulong kernelExecTimeNs = endTime-startTime;

The ATI Stream Profiler also can record the execution time for a kernel 
automatically. The Kernel Time metric reported in the profiler output uses the 
built-in OpenCL timing capability and reports the same result as the 
kernelExecTimeNs calculation shown above.
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Another interesting metric to track is the kernel launch time (Start – Queue). The 
kernel launch time includes both the time spent in the user application (after 
enqueuing the command, but before it is submitted to the device), as well as the 
time spent in the runtime to launch the kernel. For CPU devices, the kernel 
launch time is fast (tens of μs), but for discrete GPU devices it can be several 
hundred μs. Enabling profiling on a command queue adds approximately 10 μs 
to 40 μs overhead to each kernel launch. Much of the profiling overhead affects 
the start time; thus, it is visible in the launch time. Be careful when interpreting 
this metric. To reduce the launch overhead, the AMD OpenCL runtime combines 
several command submissions into a batch. Commands submitted as batch 
report similar start times and the same end time. 

4.3.2 Using the OpenCL timer with Other System Timers

The resolution of the timer, given in ns, can be obtained from:

clGetDeviceInfo(…,CL_DEVICE_PROFILING_TIMER_RESOLUTION…);

AMD CPUs and GPUs report a timer resolution of 1 ns. AMD OpenCL devices 
are required to correctly track time across changes in frequency and power 
states. Also, the AMD OpenCL SDK uses the same time-domain for all devices 
in the platform; thus, the profiling timestamps can be directly compared across 
the CPU and GPU devices.

The sample code below can be used to read the current value of the OpenCL 
timer clock. The clock is the same routine used by the AMD OpenCL runtime to 
generate the profiling timestamps. This function is useful for correlating other 
program events with the OpenCL profiling timestamps.

uint64_t 
timeNanos()
{
#ifdef linux

struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return (unsigned long long) tp.tv_sec * (1000ULL * 1000ULL * 1000ULL) +

(unsigned long long) tp.tv_nsec;
#else

LARGE_INTEGER current;
QueryPerformanceCounter(&current);
return (unsigned long long)((double)current.QuadPart / m_ticksPerSec * 1e9);

#endif
}

Any of the normal CPU time-of-day routines can measure the elapsed time of a 
GPU kernel. GPU kernel execution is non-blocking, that is, calls to 
enqueue*Kernel return to the CPU before the work on the GPU is finished. For 
an accurate time value, ensure that the GPU is finished. In OpenCL, you can 
force the CPU to wait for the GPU to become idle by inserting calls to 
clFinish() before and after the sequence you want to time. The routine 
clFinish() blocks the CPU until all previously enqueued OpenCL commands 
have finished.

For more information, see section 5.9, “Profiling Operations on Memory Objects 
and Kernels,” of the OpenCL 1.0 Specification.
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4.3.3 Estimating Memory Bandwidth

The memory bandwidth required by a kernel is perhaps the most important 
performance consideration. To calculate this:

Effective Bandwidth = (Br + Bw)/T

where:
Br = total number of bytes read from global memory.
Bw = total number of bytes written to global memory.
T = time required to run kernel, specified in nanoseconds.

If Br and Bw are specified in bytes, and T in ns, the resulting effective bandwidth 
is measured in GB/s, which is appropriate for current CPUs and GPUs for which 
the peak bandwidth range is 20-200 GB/s. Computing Br and Bw requires a 
thorough understanding of the kernel algorithm; it also can be a highly effective 
way to optimize performance. For illustration purposes, consider a simple matrix 
addition: each element in the two source arrays is read once, added together, 
then stored to a third array. The effective bandwidth for a 1024x1024 matrix 
addition is calculated as:

Br = 2 x (1024 x 1024 x 4 bytes) = 8388608 bytes  ;; 2 arrays, 1024x1024, each
element 4-byte float

Bw = 1 x (1024 x 1024 x 4 bytes) = 4194304 bytes ;; 1 array, 1024x1024, each
element 4-byte float.

If the elapsed time for this copy as reported by the profiling timers is 1000000 ns 
(1 million ns, or .001 sec), the effective bandwidth is:

(Br+Bw)/T = (8388608+4194304)/1000000 = 12.6GB/s

The ATI Stream Profiler can report the number of dynamic instructions per thread 
that access global memory through the Fetch and Write counters. The Fetch and 
Write reports average the per-thread counts; these can be fractions if the threads 
diverge. The profiler also reports the dimensions of the global NDRange for the 
kernel in the GlobalWorkSize field. The total number of threads can be 
determined by multiplying together the three components of the range. If all (or 
most) global accesses are the same size, the counts from the profiler and the 
approximate size can be used to estimate Br and Bw:

Br = Fetch * GlobalWorkitems * Size

Bw = Write * GlobalWorkitems * Element Size

An example profiler output and bandwidth calculation: 

GlobalWaveFrontSize = 192*144*1 = 27648 global work items.

Method  GlobalWorkSize  Time  Fetch  Write
runKernel_Cypress  {192; 144; 1} 0.9522 70.8 0.5
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In this example, assume we know that all accesses in the kernel are four bytes; 
then, the bandwidth can be calculated as:

Br = 70.8 * 27648 * 4 = 7829914 bytes

Bw = 0.5 * 27648 * 4 =    55296 bytes 

The bandwidth then can be calculated as:

(Br + Bw)/T = (7829914 bytes + 55296 bytes) / .9522 ms / 1000000
= 8.2 GB/s

4.4 Global Memory Optimization
Figure 4.1 is a block diagram of the GPU memory system. The up arrows are 
read paths, the down arrows are write paths. WC is the write cache.

Figure 4.1 Memory System
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The GPU consists of multiple compute units. Each compute unit contains 32 kB 
local (on-chip) memory, L1 cache, registers, and 16 processing elements. Each 
processing element contains a five-way VLIW processor. Individual work-items 
execute on a single processing element; one or more work-groups execute on a 
single compute unit. On a GPU, hardware schedules the work-items. On the ATI 
Radeon™ HD 5000 series of GPUs, hardware schedules groups of work-items, 
called wavefronts, onto processing elements; thus, work-items within a wavefront 
execute in lock-step; the same instruction is executed on different data.

The L1 cache is 8 kB per compute unit. (For the ATI Radeon™ HD 5870 GPU, 
this means 160 kB for the 20 compute units.) The L1 cache bandwidth on the 
ATI Radeon™ HD 5870 GPU is one terabyte per second:

L1 Bandwidth = Compute Units * Wavefront Size/Compute Unit * 
EngineClock 

Multiple compute units share L2 caches. The L2 cache size on the ATI Radeon™ 
HD 5870 GPUs is 512 kB:

L2 Cache Size = Number or channels * L2 per Channel

The bandwidth between L1 caches and the shared L2 cache is 435 GB/s:

L2 Bandwidth = Number of channels * Wavefront Size * Engine Clock

The ATI Radeon™ HD 5870 GPU has eight memory controllers (“Memory 
Channel” in Figure 4.1). The memory controllers are connected to multiple banks 
of memory. The memory is GDDR5, with a clock speed of 1200 MHz and a data 
rate of 4800 Mb/pin. Each channel is 32-bits wide, so the peak bandwidth for the 
ATI Radeon™ HD 5870 GPU is:

(8 memory controllers) * (4800 Mb/pin) * (32 bits) * (1 B/8b) = 154 GB/s

The peak memory bandwidth of your device is available in Appendix D, “Device 
Parameters.”

If two memory access requests are directed to the same controller, the hardware 
serializes the access. This is called a channel conflict. Similarly, if two memory 
access requests go to the same memory bank, hardware serializes the access. 
This is called a bank conflict. From a developer’s point of view, there is not much 
difference between channel and bank conflicts. A large power of two stride 
results in a channel conflict; a larger power of two stride results in a bank conflict. 
The size of the power of two stride that causes a specific type of conflict depends 
on the chip. A stride that results in a channel conflict on a machine with eight 
channels might result in a bank conflict on a machine with four.

In this document, the term bank conflict is used to refer to either kind of conflict.

4.4.1 Two Memory Paths

ATI Radeon™ HD 5000 series graphics processors have two, independent 
memory paths between the compute units and the memory:
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• FastPath performs only basic operations, such as loads and stores (data 
sizes must be a multiple of 32 bits). This often is faster and preferred when 
there are no advanced operations.

• CompletePath, supports additional advanced operations, including atomics 
and sub 32 bit (byte/short) data transfers. 

4.4.1.1  Performance Impact of FastPath and CompletePath

There is a large difference in performance on ATI Radeon™ HD 5000 series 
hardware between FastPath and CompletePath. Figure 4.2 shows two kernels 
(one FastPath, the other CompletePath) and the delivered DRAM bandwidth for 
each kernel on the ATI Radeon™ HD 5870 GPU. Note that atomic add forces 
CompletePath. 

Figure 4.2 FastPath (blue) vs CompletePath (red) Using float1
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{
int gid = get_global_id(0);
if (gid <0){
atom_add((__global int *) output,1);
}

output[gid] = input[gid];
return ;

}

Table 4.2 lists the effective bandwidth and ratio to maximum bandwidth. 

Table 4.2 Bandwidths for 1D Copies

The difference in performance between FastPath and CompletePath is 
significant. If your kernel uses CompletePath, consider if there is another way to 
approach the problem that uses FastPath. OpenCL read-only images always use 
FastPath. 

4.4.1.2  Determining The Used Path

Since the path selection is done automatically by the OpenCL compiler, your 
kernel may be assigned to CompletePath. This section explains the strategy the 
compiler uses, and how to find out what path was used.

The compiler is conservative when it selects memory paths. The compiler often 
maps all user data into a single unordered access view (UAV),1 so a single 
atomic operation (even one that is not executed) may force all loads and stores 
to use CompletePath.

The effective bandwidth listing above shows two OpenCL kernels and the 
associated performance. The first kernel uses the FastPath while the second 
uses the CompletePath. The second kernel is forced to CompletePath because 
in CopyComplete, the compiler noticed the use of an atomic.

There are two ways to find out which path is used. The first method uses the ATI 
Stream Profiler, which provides the following three performance counters for this 
purpose:

1. FastPath counter: The total bytes written through the FastPath (no atomics, 
32-bit types only).

2. CompletePath counter: The total bytes read and written through the 
CompletePath (supports atomics and  non-32-bit types).

3. PathUtilization counter: The percentage of bytes read and written through the 
FastPath or CompletePath compared to the total number of bytes transferred 
over the bus.

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%

1. UAVs allow compute shaders to store results in (or write results to) a buffer at any arbitrary location. 
On DX11 hardware, UAVs can be created from buffers and textures. On DX10 hardware, UAVs can-
not be created from typed resources (textures). This is the same as a random access target (RAT).
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The second method is static and lets you determine the path by looking at a 
machine-level ISA listing (using the Stream KernelAnalyzer in OpenCL). 

MEM_RAT_CACHELESS -> FastPath
MEM_RAT -> CompPath
MEM_RAT_NOP_RTN -> Comp_load

FastPath operations appear in the listing as: 

...
TEX: ...
... VFETCH ...
... MEM_RAT_CACHELESS_STORE_RAW: ...
...

The vfetch Instruction is a load type that in graphics terms is called a vertex 
fetch (the group control TEX indicates that the load uses the texture cache.) 

The instruction MEM_RAT_CACHELESS indicates that FastPath operations are used.

Loads in CompletePath are a split-phase operation. In the first phase, hardware 
copies the old value of a memory location into a special buffer. This is done by 
performing atomic operations on the memory location. After the value has 
reached the buffer, a normal load is used to read the value. Note that RAT stands 
for random access target, which is the same as an unordered access view (UAV); 
it allows, on DX11 hardware, writes to, and reads from, any arbitrary location in 
a buffer. 

The listing shows:

.. MEM_RAT_NOP_RTN_ACK: RAT(1)

.. WAIT_ACK: Outstanding_acks <= 0

.. TEX: ADDR(64) CNT(1)

.. VFETCH ...

The instruction sequence means the following:

MEM_RAT Read into a buffer using CompletePath, do no operation on the 
memory location, and send an ACK when done.

WAIT_ACK Suspend execution of the wavefront until the ACK is received. If 
there is other work pending this might be free, but if there is no other 
work to be done this could take 100’s of cycles.

TEX Use the texture cache for the next instruction.

VFETCH Do a load instruction to (finally) get the value.

Stores appear as:

.. MEM_RAT_STORE_RAW: RAT(1)

The instruction MEM_RAT_STORE is the store along the CompletePath.

MEM_RAT means CompletePath; MEM_RAT_CACHELESS means FastPath.
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4.4.2 Channel Conflicts

The important concept is memory stride: the increment in memory address, 
measured in elements, between successive elements fetched or stored by 
consecutive work-items in a kernel. Many important kernels do not exclusively 
use simple stride one accessing patterns; instead, they feature large non-unit 
strides. For instance, many codes perform similar operations on each dimension 
of a two- or three-dimensional array. Performing computations on the low 
dimension can often be done with unit stride, but the strides of the computations 
in the other dimensions are typically large values. This can result in significantly 
degraded performance when the codes are ported unchanged to GPU systems. 
A CPU with caches presents the same problem, large power-of-two strides force 
data into only a few cache lines.

One solution is to rewrite the code to employ array transpositions between the 
kernels. This allows all computations to be done at unit stride. Ensure that the 
time required for the transposition is relatively small compared to the time to 
perform the kernel calculation.

For many kernels, the reduction in performance is sufficiently large that it is 
worthwhile to try to understand and solve this problem.

In GPU programming, it is best to have adjacent work-items read or write 
adjacent memory addresses. This is one way to avoid channel conflicts. 

When the application has complete control of the access pattern and address 
generation, the developer must arrange the data structures to minimize bank 
conflicts. Accesses that differ in the lower bits can run in parallel; those that differ 
only in the upper bits can be serialized.

In this example:

for (ptr=base; ptr<max; ptr += 16KB)
R0 = *ptr ;

where the lower bits are all the same, the memory requests all access the same 
bank on the same channel and are processed serially.

This is a low-performance pattern to be avoided. When the stride is a power of 
2 (and larger than the channel interleave), the loop above only accesses one 
channel of memory.

The hardware byte address bits are: 

• On all ATI Radeon™ HD 5000-series GPUs, the lower eight bits select an 
element within a bank.

• The next set of bits select the channel. The number of channel bits varies, 
since the number of channels is not the same on all parts. With eight 

31:x bank channel 7:0 address
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channels, three bits are used to select the channel; with two channels, a 
single bit is used.

• The next set of bits selects the memory bank. The number of bits used 
depends on the number of memory banks.

• The remaining bits are the rest of the address.

On the ATI Radeon™ HD 5870 GPU, the channel selection are bits 10:8 of the 
byte address. This means a linear burst switches channels every 256 bytes. 
Since the wavefront size is 64, channel conflicts are avoided if each work-item 
in a wave reads a different address from a 64-word region. All ATI Radeon™ HD 
5000 series GPUs have the same layout: channel ends at bit 8, and the memory 
bank is to the left of the channel.

A burst of 2 kB (8 * 256 bytes) cycles through all the channels. 

When calculating an address as y*width+x, but reading a burst on a column 
(incrementing y), only one memory channel of the system is used, since the width 
is likely a multiple of 256 words = 2048 bytes. If the width is an odd multiple of 
256B, then it cycles through all channels.

Similarly, the bank selection bits on the ATI Radeon™ HD 5870 GPU are bits 
14:11, so the bank switches every 2 kB. A linear burst of 32 kB cycles through 
all banks and channels of the system. If accessing a 2D surface along a column, 
with a y*width+x calculation, and the width is some multiple of 2 kB dwords (32 
kB), then only 1 bank and 1 channel are accessed of the 16 banks and 8 
channels available on this GPU.

All ATI Radeon™ HD 5000-series GPUs have an interleave of 256 bytes (64 
dwords).

If every work-item in a work-group references consecutive memory addresses, 
the entire wavefront accesses one channel. Although this seems slow, it actually 
is a fast pattern because it is necessary to consider the memory access over the 
entire device, not just a single wavefront.

One or more work-groups execute on each compute unit. On the ATI Radeon™ 
HD 5000-series GPUs, work-groups are dispatched in a linear order, with x 
changing most rapidly. For a single dimension, this is:

DispatchOrder = get_group_id(0)

For two dimensions, this is:

DispatchOrder = get_group_id(0) + get_group_id(1) * get_num_groups(0)

This is row-major-ordering of the blocks in the index space. Once all compute 
units are in use, additional work-groups are assigned to compute units as 
needed. Work-groups retire in order, so active work-groups are contiguous.

At any time, each compute unit is executing an instruction from a single 
wavefront. In memory intensive kernels, it is likely that the instruction is a 
memory access. Since there are eight channels on the ATI Radeon™ HD 5870 
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GPU, at most eight of the compute units can issue a memory access operation 
in one cycle. It is most efficient if the accesses from eight wavefronts go to 
different channels. One way to achieve this is for each wavefront to access 
consecutive groups of 256 = 64 * 4 bytes.

An inefficient access pattern is if each wavefront accesses all the channels. This 
is likely to happen if consecutive work-items access data that has a large power 
of two strides.

In the next example of a kernel for copying, the input and output buffers are 
interpreted as though they were 2D, and the work-group size is organized as 2D.

The kernel code is:

#define WIDTH 1024
#define DATA_TYPE float
#define A(y , x ) A[ (y) * WIDTH + (x ) ] 
#define C(y , x ) C[ (y) * WIDTH+(x ) ]
kernel void copy_float (__global const

DATA_TYPE * A,
__global DATA_TYPE* C)

{
int idx = get_global_id(0);
int idy = get_global_id(1);
C(idy, idx) = A( idy, idx);

}

By changing the width, the data type and the work-group dimensions, we get a 
set of kernels out of this code.

Given a 64x1 work-group size, each work-item reads a consecutive 32-bit 
address. Given a 1x64 work-group size, each work-item reads a value separated 
by the width in a power of two bytes.

The following listing shows how much the launch dimension can affect 
performance. Table 4.3 lists each kernel’s effective bandwidth and ratio to 
maximum bandwidth.

Table 4.3 Bandwidths for Different Launch Dimensions

To avoid power of two strides:

• Add an extra column to the data matrix.

• Change the work-group size so that it is not a power of 21.

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3 - 93 GB/s 0 - 60%
copy 128-bit 2D 7 - 122 GB/s 5 - 80%

1. Generally, it is not a good idea to make the work-group size something other than an integer multiple 
of the wavefront size, but that usually is less important than avoiding channel conflicts.
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• It is best to use a width that causes a rotation through all of the memory 
channels, instead of using the same one repeatedly.

• Change the kernel to access the matrix with a staggered offset.

4.4.2.1  Staggered Offsets

Staggered offsets apply a coordinate transformation to the kernel so that the data 
is processed in a different order. Unlike adding a column, this technique does not 
use extra space. It is also relatively simple to add to existing code.

The global ID values reflect the order that the hardware initiates work-groups. 
The values of get group ID are in ascending launch order.

global_id(0) = get_group_id(0) * get_local_size(0) + get_local_id(0)

global_id(1) = get_group_id(1) * get_local_size(1) + get_local_id(1)

The hardware launch order is fixed, but it is possible to change the launch order, 
as shown in the following example.

Assume a work-group size of k x k, where k is a power of two, and a large 2D 
matrix of size 2n x 2m in row-major order. If each work-group must process a 
block in column-order, the launch order does not work out correctly: consecutive 
work-groups execute down the columns, and the columns are a large power-of-
two apart; so, consecutive work-groups access the same channel.

By introducing a transformation, it is possible to stagger the work-groups to avoid 
channel conflicts. Since we are executing 2D work-groups, each work group is 
identified by four numbers.

1. get_group_id(0) - the x coordinate or the block within the column of the 
matrix.

2. get_group_id(1) - the y coordinate or the block within the row of the matrix.

3. get_global_id(0) - the x coordinate or the column of the matrix.

4. get_global_id(1) - the y coordinate or the row of the matrix.

Figure 4.3 illustrates the transformation to staggered offsets.
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Figure 4.3 Transformation to Staggered Offsets

To transform the code, add the following four lines to the top of the kernel.

get_group_id_0 = get_group_id(0);
get_group_id_1 = (get_group_id(0) + get_group_id(1)) % get_local_size(0);
get_global_id_0 = get_group_id_0 * get_local_size(0) + get_local_id(0);
get_global_id_1 = get_group_id_1 * get_local_size(1) + get_local_id(1);

Then, change the global IDs and group IDs to the staggered form. The result is:

__kernel void 
copy_float (
__global const DATA_TYPE * A,
__global DATA_TYPE * C)

{
size_t get_group_id_0 = get_group_id(0);
size_t get_group_id_1 = (get_group_id(0) + get_group_id(1)) %

get_local_size(0);
      
size_t get_global_id_0 = get_group_id_0 * get_local_size(0) +

get_local_id(0);
size_t get_global_id_1 = get_group_id_1 * get_local_size(1) +

get_local_id(1);
      
int idx = get_global_id_0; //changed to staggered form
int idy = get_global_id_1; //changed to staggered form
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C(idy , idx) = A( idy , idx);
}

4.4.2.2  Reads Of The Same Address

Under certain conditions, one unexpected case of a channel conflict is that 
reading from the same address is a conflict, even on the FastPath.

This does not happen on the read-only memories, such as constant buffers, 
textures, or shader resource view (SRV); but it is possible on the read/write UAV 
memory or OpenCL global memory. 

From a hardware standpoint, reads from a fixed address have the same upper 
bits, so they collide and are serialized. To read in a single value, read the value 
in a single work-item, place it in local memory, and then use that location:

Avoid:
temp = input[3] // if input is from global space

Use:
if (get_local_id(0) == 0) {
local = input[3]

}
barrier(CLK_LOCAL_MEM_FENCE);

temp = local

4.4.3 Float4 Or Float1

The internal memory paths on ATI Radeon™ HD 5000-series devices support 
128-bit transfers. This allows for greater bandwidth when transferring data in 
float4 format. In certain cases (when the data size is a multiple of four), float4 
operations are faster. 

The performance of these kernels can be seen in Figure 4.4. Changing to float4 
has a medium effect. Do this after eliminating the conflicts.
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Figure 4.4 Two Kernels: One Using float4 (blue), the Other float1 (red)

The following code example has two kernels, both of which can do a simple copy, 
but Copy4 uses float4 data types.

__kernel void
Copy4(__global const float4 * input,

__global float4 * output)
{
int gid = get_global_id(0);
output[gid] = input[gid];
return;

}
__kernel void
Copy1(__global const float * input,

__global float * output)
{
int gid = get_global_id(0);
output[gid] = input[gid];
return;

}

Copying data as float4 gives the best result: 84% of absolute peak. It also speeds 
up the 2D versions of the copy (see  Table 4.4).
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Table 4.4 Bandwidths Including float1 and float4

4.4.4 Coalesced Writes

On some other vendor devices, it is important to reorder your data to use 
coalesced writes. The ATI Radeon™ HD 5000-series devices also support 
coalesced writes, but this optimization is less important than other 
considerations, such as avoiding bank conflicts.

In non-coalesced writes, each compute unit accesses the memory system in 
quarter-wavefront units. The compute unit transfers a 32-bit address and one 
element-sized piece of data for each work-item. This results in a total of 16 
elements + 16 addresses per quarter-wavefront. On ATI Radeon™ HD 5000-
series devices, processing quarter-wavefront requires two cycles before the data 
is transferred to the memory controller.

In coalesced writes, the compute unit transfers one 32-bit address and 16 
element-sized pieces of data for each quarter-wavefront, for a total of 16 
elements +1 address per quarter-wavefront. For coalesced writes, processing 
quarter-wavefront takes one cycle instead of two. While this is twice as fast, the 
times are small compared to the rate the memory controller can handle the data. 
See Figure 4.5.

On ATI Radeon™ HD 5000-series devices, the coalescing is only done on the 
FastPath because it supports only 32-bit access.

If a work-item does not write, coalesce detection ignores it.

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3 - 93 GB/s 0 - 61%
copy 128-bit 2D 7 - 122 GB/s 5 - 80%
copy4 float4 1D FP 127 GB/s 83%
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Figure 4.5 Effect of Varying Degrees of Coalescing - Coal (blue), NoCoal 
(red), Split (green) 

The first kernel Copy1 maximizes coalesced writes: work-item k writes to address 
k. The second kernel writes a shifted pattern: In each quarter-wavefront of 16 
work-items, work-item k writes to address k-1, except the first work-item in each 
quarter-wavefront writes to address k+16. There is not enough order here to 
coalesce on some other vendor machines. Finally, the third kernel has work-item 
k write to address k when k is even, and write address 63-k when k is odd. This 
pattern never coalesces.

Write coalescing can be an important factor for AMD GPUs.

The following are sample kernels with different coalescing patterns.

// best access pattern
__kernel void
Copy1(__global const float * input, __global float * output)
{
uint gid = get_global_id(0);
output[gid] = input[gid];
return;

}
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__kernel void NoCoal (__global const float * input,
__global float * output)
// (shift by 16)
{
int gid = get_global_id(0)-1;
if((get_local_id(0) & 0xf) == 0)
 {
 gid = gid +16;
}
output[gid] = input[gid];
return;

}
__kernel void
// inefficient pattern
Split (__global const float * input, __global float * output)
{
int gid = get_global_id(0);
if((gid & 0x1) == 0) {
gid = (gid & (˜63)) +62 - get_local_id(0);

}
output[gid] = input[gid];
return;
}

Table 4.5 lists the effective bandwidth and ratio to maximum bandwidth for each 
kernel type.

Table 4.5 Bandwidths Including Coalesced Writes

There is not much performance difference, although the coalesced version is 
slightly faster.

4.4.5 Alignment

The program in Figure 4.6 shows how the performance of a simple, unaligned 
access (float1) of this kernel varies as the size of offset varies. Each transfer was 
large (16 MB). The performance gain by adjusting alignment is small, so 
generally this is not an important consideration on AMD GPUs.

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3 - 93 GB/s 0 - 61%
copy 128-bit 2D 7 - 122 GB/s 5 - 80%
copy4 float4 1D FP 127 GB/s 83%
Coal 32-bit 97 63%
NoCoal 32-bit 93 GB/s 61%
Split 32-bit 90 GB/s 59%
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Figure 4.6 Unaligned Access Using float1

__kernel void
CopyAdd(global const float * input,
__global float * output,
const int offset)
{
int gid = get_global_id(0)+ offset;
output[gid] = input[gid];
return;
}

Table 4.6 lists the effective bandwidth and ratio to maximum bandwidth for each 
kernel type.
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Table 4.6 Bandwidths Including Unaligned Access

4.4.6 Summary of Copy Performance

The performance of a copy can vary greatly, depending on how the code is 
written. The measured bandwidth for these copies varies from a low of 0.3 GB/s, 
to a high of 127 GB/s.

The recommended order of steps to improve performance is:

1. Examine the code to ensure you are using FastPath, not CompletePath, 
everywhere possible. Check carefully to see if you are minimizing the number 
of kernels that use CompletePath operations. You might be able to use 
textures, image-objects, or constant buffers to help.

2. Examine the data-set sizes and launch dimensions to see if you can get rid 
eliminate bank conflicts.

3. Try to use float4 instead of float1.

4. Try to change the access pattern to allow write coalescing. This is important 
on some hardware platforms, but only of limited importance for AMD GPU 
devices.

5. Finally, look at changing the access pattern to allow data alignment.

4.4.7 Hardware Variations

For a listing of the AMD GPU hardware variations, see Appendix D, “Device 
Parameters.” This appendix includes information on the number of memory 
channels, compute units, and the L2 size per device. 

4.5 Local Memory (LDS) Optimization
AMD Evergreen GPUs include a Local Data Store (LDS) cache, which 
accelerates local memory accesses. LDS is not supported in OpenCL on AMD 
R700-family GPUs. LDS provides high-bandwidth access (more than 10X higher 
than global memory), efficient data transfers between work-items in a work-
group, and high-performance atomic support. Local memory offers significant 

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth

copy 32-bit 1D FP 96 GB/s 63%

copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3 - 93 GB/s 0 - 61%
copy 128-bit 2D 7 - 122 GB/s 5 - 80%
copy4 float4 1D FP 127 GB/s 83%
Coal 97 63%
NoCoal 32-bit 90 GB/s 59%
Split 32-bit 90 GB/s 59%
CopyAdd 32-bit 92 GB/s 60%
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advantages when the data is re-used; for example, subsequent accesses can 
read from local memory, thus reducing global memory bandwidth. Another 
advantage is that local memory does not require coalescing.

To determine local memory size:

clGetDeviceInfo( …, CL_DEVICE_LOCAL_MEM_SIZE, … );

All AMD Evergreen GPUs contain a 32K LDS for each compute unit. On high-
end GPUs, the LDS contains 32-banks, each bank is four bytes long, and the 
bank address is determined by bits 6:2 in the address. On lower-end GPUs, the 
LDS contains 16 banks, each bank is still 4 bytes in size, and the bank used is 
determined by bits 5:2 in the address. Appendix D, “Device Parameters” shows 
how many LDS banks are present on the different AMD Evergreen products. As 
shown below, programmers should carefully control the bank bits to avoid bank 
conflicts as much as possible.

In a single cycle, local memory can service a request for each bank (up to 32 
accesses each cycle on the ATI Radeon™ HD 5870 GPU). For an ATI Radeon™ 
HD 5870 GPU, this delivers a memory bandwidth of over 100 GB/s for each 
compute unit, and more than 2 TB/s for the whole chip. This is more than 14X 
the global memory bandwidth. However, accesses that map to the same bank 
are serialized and serviced on consecutive cycles. A wavefront that generates 
bank conflicts stalls on the compute unit until all LDS accesses have completed. 
The GPU reprocesses the wavefront on subsequent cycles, enabling only the 
lanes receiving data, until all the conflicting accesses complete. The bank with 
the most conflicting accesses determines the latency for the wavefront to 
complete the local memory operation. The worst case occurs when all 64 work-
items map to the same bank, since each access then is serviced at a rate of one 
per clock cycle; this case takes 64 cycles to complete the local memory access 
for the wavefront. A program with a large number of bank conflicts (as measured 
by the LDSBankConflict performance counter) might benefit from using the 
constant or image memory rather than LDS. 

Thus, the key to effectively using the local cache memory is to control the access 
pattern so that accesses generated on the same cycle map to different banks in 
the local memory. One notable exception is that accesses to the same address 
(even though they have the same bits 6:2) can be broadcast to all requestors 
and do not generate a bank conflict. The LDS hardware examines the requests 
generated over two cycles (32 work-items of execution) for bank conflicts. 
Ensure, as much as possible, that the memory requests generated from a 
quarter-wavefront avoid bank conflicts by using unique address bits 6:2. A simple 
sequential address pattern, where each work-item reads a float2 value from LDS, 
generates a conflict-free access pattern on the ATI Radeon™ HD 5870 GPU. 
Note that a sequential access pattern, where each work-item reads a float4 value 
from LDS, uses only half the banks on each cycle on the ATI Radeon™ HD 5870 
GPU and delivers half the performance of the float2 access pattern.

Each stream processor can generate up to two 4-byte LDS requests per cycle. 
Byte and short reads consume four bytes of LDS bandwidth. Since each stream 
processor can execute five operations in the VLIW each cycle (typically requiring 
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10-15 input operands), two local memory requests might not provide enough 
bandwidth to service the entire instruction. Developers can use the large register 
file: each compute unit has 256 kB of register space available (8X the LDS size) 
and can provide up to twelve 4-byte values/cycle (6X the LDS bandwidth). 
Registers do not offer the same indexing flexibility as does the LDS, but for some 
algorithms this can be overcome with loop unrolling and explicit addressing. 

LDS reads require one ALU operation to initiate them. Each operation can initiate 
two loads of up to four bytes each. 

The ATI Stream Profiler provides two performance counters to help optimize local 
memory usage:

• LDSBankConflict: The percentage of time accesses to the LDS are stalled 
due to bank conflicts relative to GPU Time. In the ideal case, there are no 
bank conflicts in the local memory access, and this number is zero. 

• ALUStalledByLDS: The percentage of time (relative to GPU Time) that ALU 
units are stalled because the LDS input queue is full and its output queue is 
not ready. Stalls can occur due to bank conflicts or too many accesses to the 
LDS.

Local memory is software-controlled “scratchpad” memory. In contrast, caches 
typically used on CPUs monitor the access stream and automatically capture 
recent accesses in a tagged cache. The scratchpad allows the kernel to explicitly 
load items into the memory; they exist in local memory until the kernel replaces 
them, or until the work-group ends. To declare a block of local memory, use the 
__local keyword; for example:
__local float localBuffer[64]

These declarations can be either in the parameters to the kernel call or in the 
body of the kernel. The __local syntax allocates a single block of memory, which 
is shared across all work-items in the workgroup. 

To write data into local memory, write it into an array allocated with __local. For 
example:

localBuffer[i] = 5.0;

A typical access pattern is for each work-item to collaboratively write to the local 
memory: each work-item writes a subsection, and as the work-items execute in 
parallel they write the entire array. Combined with proper consideration for the 
access pattern and bank alignment, these collaborative write approaches can 
lead to highly efficient memory accessing. Local memory is consistent across 
work-items only at a work-group barrier; thus, before reading the values written 
collaboratively, the kernel must include a barrier() instruction. 

The following example is a simple kernel section that collaboratively writes, then 
reads from, local memory: 
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__kernel void localMemoryExample (__global float *In, __global float *Out) {
__local float localBuffer[64];
uint tx = get_local_id(0);
uint gx = get_global_id(0);

// Initialize local memory:
// Copy from this work-group’s section of global memory to local:
// Each work-item writes one element; together they write it all
localBuffer[tx] = In[gx];  

// Ensure writes have completed:
barrier(CLK_LOCAL_MEM_FENCE); 

// Toy computation to compute a partial factorial, shows re-use from local  

float f = localBuffer[tx];
for (uint i=tx+1; i<64; i++) {

f *= localBuffer[i]; 
}
Out[gx] = f;

}
 

Note the host code cannot read from, or write to, local memory. Only the kernel 
can access local memory.

4.6 Constant Memory Optimization
The AMD implementation of OpenCL provides three levels of performance for the 
“constant” memory type.

1. Simple Direct-Addressing Patterns

Very high bandwidth can be attained when the compiler has available the 
constant address at compile time and can embed the constant address into 
the instruction. Each processing element can load up to 4x4-byte direct-
addressed constant values each cycle. Typically, these cases are limited to 
simple non-array constants and function parameters. The GPU loads the 
constants into a hardware cache at the beginning of the clause that uses the 
constants. The cache is a tagged cache, typically each 8k blocks is shared 
among four compute units. If the constant data is already present in the 
constant cache, the load is serviced by the cache and does not require any 
global memory bandwidth. The constant cache size for each device is given 
in Appendix D, “Device Parameters”; it varies from 4k to 48k per GPU.

2. Same Index

Hardware acceleration also takes place when all work-items in a wavefront 
reference the same constant address. In this case, the data is loaded from 
memory one time, stored in the L1 cache, and then broadcast to all wave-
fronts. This can reduce significantly the required memory bandwidth.

3. Varying Index

More sophisticated addressing patterns, including the case where each work-
item accesses different indices, are not hardware accelerated and deliver the 
same performance as a global memory read.
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To further improve the performance of the AMD OpenCL stack, two methods 
allow users to take advantage of hardware constant buffers. These are: 

1. Globally scoped constant arrays. These arrays are initialized, globally 
scoped, and in the constant address space (as specified in section 6.5.3 of 
the OpenCL specification). If the size of an array is below 16 kB, it is placed 
in hardware constant buffers; otherwise, it uses global memory. An example 
of this is a lookup table for math functions.

2. Per-pointer attribute specifying the maximum pointer size. This is specified 
using the max_constant_size(N) attribute. The attribute form conforms to 
section 6.10 of the OpenCL 1.0 specification. This attribute is restricted to 
top-level kernel function arguments in the constant address space. This 
restriction prevents a pointer of one size from being passed as an argument 
to a function that declares a different size. It informs the compiler that indices 
into the pointer remain inside this range and it is safe to allocate a constant 
buffer in hardware, if it fits. Using a constant pointer that goes outside of this 
range results in undefined behavior. All allocations are aligned on the 16 byte 
boundary. For example:

kernel void mykernel(global int* a,
constant int* b __attribute__((max_constant_size (16384))) 
)
{
size_t idx = get_global_id(0);
a[idx] = b[idx & 0x3FFF];
}

A kernel that uses constant buffers must use CL_DEVICE_MAX_CONSTANT_ARGS to 
query the device for the maximum number of constant buffers the kernel can 
support. This value might differ from the maximum number of hardware constant 
buffers available. In this case, if the number of hardware constant buffers is less 
than the CL_DEVICE_MAX_CONSTANT_ARGS, the compiler allocates the largest 
constant buffers in hardware first and allocates the rest of the constant buffers in 
global memory. As an optimization, if a constant pointer A uses n bytes of 
memory, where n is less than 16 kB, and constant pointer B uses m bytes of 
memory, where m is less than (16 kB – n) bytes of memory, the compiler can 
allocate the constant buffer pointers in a single hardware constant buffer. This 
optimization can be applied recursively by treating the resulting allocation as a 
single allocation and finding the next smallest constant pointer that fits within the 
space left in the constant buffer. 

4.7 OpenCL Memory Resources: Capacity and Performance
Table 4.7 summarizes the hardware capacity and associated performance for the 
structures associated with the five OpenCL Memory Types. This information 
specific to the ATI Radeon™ HD5870 GPUs with 1 GB video memory. See 
Appendix D, “Device Parameters” for more details about other GPUs.
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Table 4.7 Hardware Performance Parameters

The compiler tries to map private memory allocations to the pool of GPRs in the 
GPU. In the event GPRs are not available, private memory is mapped to the 
“scratch” region, which has the same performance as global memory. 
Section 4.8.2, “Resource Limits on Active Wavefronts,” page 4-30, has more 
information on register allocation and identifying when the compiler uses the 
scratch region. GPRs provide the highest-bandwidth access of any hardware 
resource. In addition to reading up to 48 bytes/cycle from the register file, the 
hardware can access results produced in the previous cycle (through the 
Previous Vector/Previous Scalar register without consuming any register file 
bandwidth. GPRs have some restrictions about which register ports can be read 
on each cycle; but generally, these are not exposed to the OpenCL programmer.

Same-indexed constants can be cached in the L1 and L2 cache. Note that 
“same-indexed” refers to the case where all work-items in the wavefront 
reference the same constant index on the same cycle. The performance shown 
assumes an L1 cache hit. 

Varying-indexed constants use the same path as global memory access and are 
subject to the same bank and alignment constraints described in Section 4.4, 
“Global Memory Optimization,” page 4-7.

The L1 and L2 caches are currently only enabled for images and same-indexed 
constants.

The L1 cache can service up to four address request per cycle, each delivering 
up to 16 bytes. The bandwidth shown assumes an access size of 16 bytes; 
smaller access sizes/requests result in a lower peak bandwidth for the L1 cache. 
Using float4 with images increases the request size and can deliver higher L1 
cache bandwidth.

Each memory channel on the GPU contains an L2 cache that can deliver up to 
64 bytes/cycle. The ATI Radeon™ HD 5870 GPU has eight memory channels; 
thus, it can deliver up to 512bytes/cycle; divided among 320 stream cores, this 
provides up to ~1.6 bytes/cycle for each stream core.

OpenCL 
Memory Type Hardware Resource Size/CU Size/GPU

Peak Read 
Bandwidth/ Stream 

Core

Private GPRs 256k 5120k 48 bytes/cycle

Local LDS 32k 640k 8 bytes/cycle

Constant

Direct-addressed constant 48k 16 bytes/cycle

Same-indexed constant 4 bytes/cycle

Varying-indexed constant ~0.6 bytes/cycle

Images
L1 Cache 8k 160k 4 bytes/cycle

L2 Cache 512k ~1.6 bytes/cycle

Global Global Memory 1G ~0.6 bytes/cycle
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Global Memory bandwidth is limited by external pins, not internal bus bandwidth. 
The ATI Radeon™ HD 5870 GPU supports up to 153 GB/s of memory bandwidth 
which is an average of 0.6 bytes/cycle for each stream core.

Note that Table 4.7 shows the performance for the ATI Radeon™ HD 5870 GPU. 
The “Size/Compute Unit” column and many of the bandwidths/processing 
element apply to all Evergreen-class GPUs; however, the “Size/GPU” column 
and the bandwidths for varying-indexed constant, L2, and global memory vary 
across different GPU devices. The resource capacities and peak bandwidth for 
other AMD GPU devices can be found in Appendix D, “Device Parameters.”

4.8 NDRange and Execution Range Optimization
Probably the most effective way to exploit the potential performance of the GPU 
is to provide enough threads to keep the device completely busy. The 
programmer specifies a three-dimensional NDRange over which to execute the 
kernel; bigger problems with larger NDRanges certainly help to more effectively 
use the machine. The programmer also controls how the global NDRange is 
divided into local ranges, as well as how much work is done in each work-item, 
and which resources (registers and local memory) are used by the kernel. All of 
these can play a role in how the work is balanced across the machine and how 
well it is used. This section introduces the concept of latency hiding, how many 
wavefronts are required to hide latency on AMD GPUs, how the resource usage 
in the kernel can impact the active wavefronts, and how to choose appropriate 
global and local work-group dimensions.

4.8.1 Hiding ALU and Memory Latency

The read-after-write latency for most arithmetic operations (a floating-point add, 
for example) is only eight cycles. For most AMD GPUs, each compute unit can 
execute 16 VLIW instructions on each cycle. Each wavefront consists of 64 work-
items; each compute unit executes a quarter-wavefront on each cycle, and the 
entire wavefront is executed in four consecutive cycles. Thus, to hide eight cycles 
of latency, the program must schedule two wavefronts. The compute unit 
executes the first wavefront on four consecutive cycles; it then immediately 
switches and executes the other wavefront for four cycles. Eight cycles have 
elapsed, and the ALU result from the first wavefront is ready, so the compute unit 
can switch back to the first wavefront and continue execution. Compute units 
running two wavefronts (128 threads) completely hide the ALU pipeline latency.

Global memory reads generate a reference to the off-chip memory and 
experience a latency of 300 to 600 cycles. The wavefront that generates the 
global memory access is made idle until the memory request completes. During 
this time, the compute unit can process other independent wavefronts, if they are 
available.

Kernel execution time also plays a role in hiding memory latency: longer kernels 
keep the functional units busy and effectively hide more latency. To better 
understand this concept, consider a global memory access which takes 400 
cycles to execute. Assume the compute unit contains many other wavefronts, 
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each of which performs five ALU instructions before generating another global 
memory reference. As discussed previously, the hardware executes each 
instruction in the wavefront in four cycles; thus, all five instructions occupy the 
ALU for 20 cycles. Note the compute unit interleaves two of these wavefronts 
and executes the five instructions from both wavefronts (10 total instructions) in 
40 cycles. To fully hide the 400 cycles of latency, the compute unit requires 
(400/40) = 10 pairs of wavefronts, or 20 total wavefronts. If the wavefront 
contains 10 instructions rather than 5, the wavefront pair would consume 80 
cycles of latency, and only 10 wavefronts would be required to hide the 400 
cycles of latency.

Generally, it is not possible to predict how the compute unit schedules the 
available wavefronts, and thus it is not useful to try to predict exactly which ALU 
block executes when trying to hide latency. Instead, consider the overall ratio of 
ALU operations to fetch operations – this metric is reported by the Stream Profiler 
in the ALUFetchRatio counter. Each ALU operation keeps the compute unit busy 
for four cycles, so you can roughly divide 500 cycles of latency by 
(4*ALUFetchRatio) to determine how many wavefronts must be in-flight to hide 
that latency. Additionally, a low value for the ALUBusy performance counter can 
indicate that the compute unit is not providing enough wavefronts to keep the 
execution resources in full use. (This counter also can be low if the kernel 
exhausts the available DRAM bandwidth. In this case, generating more 
wavefronts does not improve performance; it can reduce performance by creating 
more contention.)

Increasing the wavefronts/compute unit does not indefinitely improve 
performance; once the GPU has enough wavefronts to hide latency, additional 
active wavefronts provide little or no performance benefit. A closely related metric 
to wavefronts/compute unit is “occupancy,” which is defined as the ratio of active 
wavefronts to the maximum number of possible wavefronts supported by the 
hardware. Many of the important optimization targets and resource limits are 
expressed in wavefronts/compute units, so this section uses this metric rather 
than the related “occupancy” term.

4.8.2 Resource Limits on Active Wavefronts

AMD GPUs have two important global resource constraints that limit the number 
of in-flight wavefronts:

• Each compute unit supports a maximum of eight work-groups. Recall that 
AMD OpenCL supports up to 256 work-items (four wavefronts) per work-
group; effectively, this means each compute unit can support up to 32 
wavefronts.

• Each GPU has a global (across all compute units) limit on the number of 
active wavefronts. The GPU hardware is generally effective at balancing the 
load across available compute units. Thus, it is useful to convert this global 
limit into an average wavefront/compute unit so that it can be compared to 
the other limits discussed in this section. For example, the ATI Radeon™ HD 
5870 GPU has a global limit of 496 wavefronts, shared among 20 compute 
units. Thus, it supports an average of 24.8 wavefronts/compute unit. 
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Appendix D, “Device Parameters” contains information on the global number 
of wavefronts supported by other AMD GPUs. Some AMD GPUs support up 
to 96 wavefronts/compute unit.

These limits are largely properties of the hardware and, thus, difficult for 
developers to control directly. Fortunately, these are relatively generous limits. 
Frequently, the register and LDS usage in the kernel determines the limit on the 
number of active wavefronts/compute unit, and these can be controlled by the 
developer. 

4.8.2.1  GPU Registers

Each compute unit provides 16384 GP registers, and each register contains 
4x32-bit values (either single-precision floating point or a 32-bit integer). The total 
register size is 256 kB of storage per compute unit. These registers are shared 
among all active wavefronts on the compute unit; each kernel allocates only the 
registers it needs from the shared pool. This is unlike a CPU, where each thread 
is assigned a fixed set of architectural registers. However, using many registers 
in a kernel depletes the shared pool and eventually causes the hardware to 
throttle the maximum number of active wavefronts. Table 4.8 shows how the 
registers used in the kernel impacts the register-limited wavefronts/compute unit.

Table 4.8 Impact of Register Type on Wavefronts/CU

GP Registers used 
by Kernel

Register-Limited
Wavefronts / Compute-Unit

0-1 248
2 124
3 82
4 62
5 49
6 41
7 35
8 31
9 27
10 24
11 22
12 20
13 19
14 17
15 16
16 15
17 14

18-19 13
19-20 12
21-22 11
23-24 10
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For example, a kernel that uses 30 registers (120x32-bit values) can run with 
eight active wavefronts on each compute unit. Because of the global limits 
described earlier, each compute unit is limited to 32 wavefronts; thus, kernels can 
use up to seven registers (28 values) without affecting the number of 
wavefronts/compute unit. Finally, note that in addition to the GPRs shown in the 
table, each kernel has access to four clause temporary registers.

AMD provides the following tools to examine the number of general-purpose 
registers (GPRs) used by the kernel.

• The ATI Stream Profiler displays the number of GPRs used by the kernel. 

• Alternatively, the ATI Stream Profiler generates the ISA dump (described in 
Section 4.2, “Analyzing Stream Processor Kernels,” page 4-3), which then 
can be searched for the string :NUM_GPRS.

• The Stream KernelAnalyzer also shows the GPR used by the kernel, across 
a wide variety of GPU compilation targets.

The compiler generates spill code (shuffling values to, and from, memory) if it 
cannot fit all the live values into registers. Spill code uses long-latency global 
memory and can have a large impact on performance. The ATI Stream Profiler 
reports the static number of register spills in the ScratchReg field. Generally, it 
is a good idea to re-write the algorithm to use fewer GPRs, or tune the work-
group dimensions specified at launch time to expose more registers/kernel to the 
compiler, in order to reduce the scratch register usage to 0.

4.8.2.2  Specifying the Default Work-Group Size at Compile-Time

The number of registers used by a work-item is determined when the kernel is 
compiled. The user later specifies the size of the work-group. Ideally, the OpenCL 
compiler knows the size of the work-group at compile-time, so it can make 
optimal register allocation decisions. Without knowing the work-group size, the 
compiler must assume an upper-bound size to avoid allocating more registers in 
the work-item than the hardware actually contains.

For example, if the compiler allocates 70 registers for the work-item, Table 4.8 
shows that only three wavefronts (192 work-items) are supported. If the user later 
launches the kernel with a work-group size of four wavefronts (256 work-items), 

25-27 9
28-31 8
32-35 7
36-41 6
42-49 5
50-62 4
63-82 3
83-124 2

GP Registers used 
by Kernel

Register-Limited
Wavefronts / Compute-Unit
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the launch fails because the work-group requires 70*256=17920 registers, which 
is more than the hardware allows. To prevent this from happening, the compiler 
performs the register allocation with the conservative assumption that the kernel 
is launched with the largest work-group size (256 work-items). The compiler 
guarantees that the kernel does not use more than 62 registers (the maximum 
number of registers which supports a work-group with four wave-fronts), and 
generates low-performing register spill code, if necessary. 

Fortunately, OpenCL provides a mechanism to specify a work-group size that the 
compiler can use to optimize the register allocation. In particular, specifying a 
smaller work-group size at compile time allows the compiler to allocate more 
registers for each kernel, which can avoid spill code and improve performance. 
The kernel attribute syntax is:

__attribute__((reqd_work_group_size(X, Y, Z)))

Section 6.7.2 of the OpenCL specification explains the attribute in more detail.

4.8.2.3  Local Memory (LDS) Size

In addition to registers, shared memory can also serve to limit the active 
wavefronts/compute unit. Each compute unit has 32k of LDS, which is shared 
among all active work-groups. LDS is allocated on a per-work-group granularity, 
so it is possible (and useful) for multiple wavefronts to share the same local 
memory allocation. However, large LDS allocations eventually limits the number 
of workgroups that can be active. Table 4.9 provides more details about how LDS 
usage can impact the wavefronts/compute unit.

Table 4.9 Effect of LDS Usage on Wavefronts/CU1 

1. Assumes each work-group uses four wavefronts (the maximum supported by the AMD 
OpenCL SDK).

LDS / Work-Group

LDS-Limited 
Work-

Groups
LDS-Limited 

Wavefronts/CU

<4K 8 32

4.0K-4.6K 7 28

4.6K-5.3K 6 24

5.3K-6.4K 5 20

6.4K-8.0K 4 16

8.0K-10.7K 3 12

10.7K-16.0K 2 8

16.0K-32.0K 1 4
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AMD provides the following tools to examine the amount of LDS used by the 
kernel:

• The ATI Stream Profiler displays the LDS usage. See the LocalMem counter.

• Alternatively, use the ATI Stream Profiler to generate the ISA dump 
(described in Section 4.2, “Analyzing Stream Processor Kernels,” page 4-3), 
then search for the string SQ_LDS_ALLOC:SIZE in the ISA dump. Note that 
the value is shown in hexadecimal format.

4.8.3 Partitioning the Work

In OpenCL, each kernel executes on an index point that exists in a global 
NDRange. The partition of the NDRange can have a significant impact on 
performance; thus, it is recommended that the developer explicitly specify the 
global (#work-groups) and local (#work-items/work-group) dimensions, rather 
than rely on OpenCL to set these automatically (by setting local_work_size to 
NULL in clEnqueueNDRangeKernel). This section explains the guidelines for 
partitioning at the global, local, and work/kernel levels.

4.8.3.1  Global Work Size

OpenCL does not explicitly limit the number of work-groups that can be submitted 
with a clEnqueueNDRangeKernel command. The hardware limits the available in-
flight threads, but the OpenCL SDK automatically partitions a large number of 
work-groups into smaller pieces that the hardware can process. For some large 
workloads, the amount of memory available to the GPU can be a limitation; the 
problem might require so much memory capacity that the GPU cannot hold it all. 
In these cases, the programmer must partition the workload into multiple 
clEnqueueNDRangeKernel commands. The available device memory can be 
obtained by querying clDeviceInfo.

At a minimum, ensure that the workload contains at least as many work-groups 
as the number of compute units in the hardware. Work-groups cannot be split 
across multiple compute units, so if the number of work-groups is less than the 
available compute units, some units are idle. Current-generation AMD GPUs 
typically have 2-20 compute units. (See Appendix D, “Device Parameters” for a 
table of device parameters, including the number of compute units, or use 
clGetDeviceInfo(…CL_DEVICE_MAX_COMPUTE_UNITS) to determine the value 
dynamically). 

4.8.3.2  Local Work Size (#Work-Items per Work-Group)

OpenCL limits the number of work-items in each group. Call clDeviceInfo with 
the CL_DEVICE_MAX_WORK_GROUP_SIZE to determine the maximum number of 
work-groups supported by the hardware. Currently, AMD GPUs with SDK 2.1 
return 256 as the maximum number of work-items per work-group. Note the 
number of work-items is the product of all work-group dimensions; for example, 
a work-group with dimensions 32x16 requires 512 work-items, which is not 
allowed with the current AMD OpenCL SDK. 
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The fundamental unit of work on AMD GPUs is called a wavefront. Each 
wavefront consists of 64 work-items; thus, the optimal local work size is an 
integer multiple of 64 (specifically 64, 128, 192, or 256) work-items per work-
group.

Work-items in the same work-group can share data through LDS memory and 
also use high-speed local atomic operations. Thus, larger work-groups enable 
more work-items to efficiently share data, which can reduce the amount of slower 
global communication. However, larger work-groups reduce the number of global 
work-groups, which, for small workloads, could result in idle compute units. 
Generally, larger work-groups are better as long as the global range is big 
enough to provide 1-2 Work-Groups for each compute unit in the system; for 
small workloads it generally works best to reduce the work-group size in order to 
avoid idle compute units. Note that it is possible to make the decision 
dynamically, when the kernel is launched, based on the launch dimensions and 
the target device characteristics.

4.8.3.3  Moving Work to the Kernel

Often, work can be moved from the work-group into the kernel. For example, a 
matrix multiply where each work-item computes a single element in the output 
array can be written so that each work-item generates multiple elements. This 
technique can be important for effectively using the processing elements 
available in the 5-wide VLIW processing engine (see the ALUPacking 
performance counter reported by the Stream Profiler). The mechanics of this 
technique often is as simple as adding a for loop around the kernel, so that the 
kernel body is run multiple times inside this loop, then adjusting the global work 
size to reduce the work-items. Typically, the local work-group is unchanged, and 
the net effect of moving work into the kernel is that each work-group does more 
effective processing, and fewer global work-groups are required.

When moving work to the kernel, often it is best to combine work-items that are 
separated by 16 in the NDRange index space, rather than combining adjacent 
work-items. Combining the work-items in this fashion preserves the memory 
access patterns optimal for global and local memory accesses. For example, 
consider a kernel where each kernel accesses one four-byte element in array A. 
The resulting access pattern is: 

If we naively combine four adjacent work-items to increase the work processed 
per kernel, so that the first work-item accesses array elements A+0 to A+3 on 
successive cycles, the overall access pattern is:

Work-item 0 1 2 3
…

Cycle0 A+0 A+1 A+2 A+3
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This pattern shows that on the first cycle the access pattern contains “holes.” 
Also, this pattern results in bank conflicts on the LDS. A better access pattern is 
to combine four work-items so that the first work-item accesses array elements 
A+0, A+16, A+32, and A+48. The resulting access pattern is: 

Note that this access patterns preserves the sequentially-increasing addressing 
of the original kernel and generates efficient global and LDS memory references.

Increasing the processing done by the kernels can allow more processing to be 
done on the fixed pool of local memory available to work-groups. For example, 
consider a case where an algorithm requires 32x32 elements of shared memory. 
If each work-item processes only one element, it requires 1024 work-items/work-
group, which exceeds the maximum limit. Instead, each kernel can be written to 
process four elements, and a work-group of 16x16 work-items could be launched 
to process the entire array. A related example is a blocked algorithm, such as a 
matrix multiply; the performance often scales with the size of the array that can 
be cached and used to block the algorithm. By moving processing tasks into the 
kernel, the kernel can use the available local memory rather than being limited 
by the work-items/work-group. 

4.8.3.4  Work-Group Dimensions vs Size

The local NDRange can contain up to three dimensions, here labeled X, Y, and 
Z. The X dimension is returned by get_local_id(0), Y is returned by 
get_local_id(1), and Z is returned by get_local_id(2). The GPU hardware 
schedules the kernels so that the X dimensions moves fastest as the work-items 
are packed into wavefronts. For example, the 128 threads in a 2D work-group of 
dimension 32x4 (X=32 and Y=4) would be packed into two wavefronts as follows 
(notation shown in X,Y order):

Work-item 0 1 2 3 4 5

...

Cycle0 A+0 A+4 A+8 A+12 A+16 A+20

Cycle1 A+1 A+5 A+9 A+13 A+17 A+21

Cycle2 A+2 A+6 A+10 A+14 A+18 A+22

Cycle3 A+3 A+7 A+11 A+15 A+19 A+23

Work-item 0 1 2 3 4 5

…

Cycle0 A+0 A+1 A+2 A+3 A+4 A+5

Cycle1 A+16 A+17 A+18 A+19 A+20 A+21

Cycle2 A+32 A+33 A+34 A+35 A+36 A+37

Cycle3 A+48 A+49 A+50 A+51 A+52 A+53
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The total number of work-items in the work-group is typically the most important 
parameter to consider, in particular when optimizing to hide latency by increasing 
wavefronts/compute unit. However, the choice of XYZ dimensions for the same 
overall work-group size can have the following second-order effects.

• Work-items in the same quarter-wavefront execute on the same cycle in the 
processing engine. Thus, global memory coalescing and local memory bank 
conflicts can be impacted by dimension, particularly if the fast-moving X 
dimension is small. Typically, it is best to choose an X dimension of at least 
16, then optimize the memory patterns for a block of 16 work-items which 
differ by 1 in the X dimension.

• Work-items in the same wavefront have the same program counter and 
execute the same instruction on each cycle. The packing order can be 
important if the kernel contains divergent branches. If possible, pack together 
work-items that are likely to follow the same direction when control-flow is 
encountered. For example, consider an image-processing kernel where each 
work-item processes one pixel, and the control-flow depends on the color of 
the pixel. It might be more likely that a square of 8x8 pixels is the same color 
than a 64x1 strip; thus, the 8x8 would see less divergence and higher 
performance.

• When in doubt, a square 16x16 work-group size is a good start.

4.8.4 Optimizing for Cedar

To focus the discussion, this section has used specific hardware characteristics 
that apply to most of the Evergreen series. The value Evergreen part, referred to 
as Cedar and used in products such as the ATI Radeon™ HD 5450 GPU, has 
different architecture characteristics, as shown below.

WaveFront0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0

16,0 17,0 18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0 26,0 27,0 28,0 29,0 30,0 31,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1

16,1 17,1 18,1 19,1 20,1 21,1 22,1 23,1 24,1 25,1 26,1 27,1 28,1 29,1 30,1 31,1

WaveFront1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

16,2 17,2 18,2 19,2 20,2 21,2 22,2 23,2 24,2 25,2 26,2 27,2 28,2 29,2 30,2 31,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

16,3 17,3 18,3 19,3 20,3 21,3 22,3 23,3 24,3 25,3 26,3 27,3 28,3 29,3 30,3 31,3

Evergreen 
Cypress, Juniper, 

Redwood
Evergreen 

Cedar

Work-items/Wavefront 64 32

Stream Cores / CU 16 8

GP Registers / CU 16384 8192

Local Memory Size 32K 32K
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The difference in total register size can impact the compiled code and cause 
register spill code for kernels that were tuned for other devices. One technique 
that can be useful is to specify the required work-group size as 128 (half the 
default of 256). In this case, the compiler has the same number of registers 
available as for other devices and uses the same number of registers. The 
developer must ensure that the kernel is launched with the reduced work size 
(128) on Cedar-class devices.

4.8.5 Summary of NDRange Optimizations

As shown above, execution range optimization is a complex topic with many 
interacting variables and which frequently requires some experimentation to 
determine the optimal values. Some general guidelines are:

• Select the work-group size to be a multiple of 64, so that the wavefronts are 
fully populated.

• Always provide at least two wavefronts (128 work-items) per compute unit. 
For a ATI Radeon™ HD 5870 GPU, this implies 40 wave-fronts or 2560 work-
items. If necessary, reduce the work-group size (but not below 64 work-
items) to provide work-groups for all compute units in the system. 

• Latency hiding depends on both the number of wavefronts/compute unit, as 
well as the execution time for each kernel. Generally, two to eight 
wavefronts/compute unit is desirable, but this can vary significantly, 
depending on the complexity of the kernel and the available memory 
bandwidth. The Stream Profiler and associated performance counters can 
help to select an optimal value.

4.9 Using Multiple OpenCL Devices
The AMD OpenCL runtime supports both CPU and GPU devices. This section 
introduces techniques for appropriately partitioning the workload and balancing it 
across the devices in the system. 

4.9.1 CPU and GPU Devices

Table 4.10 lists some key performance characteristics of two exemplary CPU and 
GPU devices: a quad-core AMD Phenom II X4 processor running at 2.8 GHz, 
and a mid-range ATI Radeon™ 5670 GPU running at 750 MHz. The “best” device 
in each characteristic is highlighted, and the ratio of the best/other device is 
shown in the final column.
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Table 4.10 CPU and GPU Performance Characteristics

The GPU excels at high-throughput: the peak execution rate (measured in 
FLOPS) is 7X higher than the CPU, and the memory bandwidth is 2.5X higher 
than the CPU. The GPU also consumes approximately 65% the power of the 
CPU; thus, for this comparison, the power efficiency in flops/watt is 10X higher. 
While power efficiency can vary significantly with different devices, GPUs 
generally provide greater power efficiency (flops/watt) than CPUs because they 
optimize for throughput and eliminate hardware designed to hide latency. 

Conversely, CPUs excel at latency-sensitive tasks. For example, an integer add 
is 30X faster on the CPU than on the GPU. This is a product of both the CPUs 
higher clock rate (2800 MHz vs 750 MHz for this comparison), as well as the 
operation latency; the CPU is optimized to perform an integer add in just one 
cycle, while the GPU requires eight cycles. The CPU also has a latency-
optimized path to DRAM, while the GPU optimizes for bandwidth and relies on 
many in-flight threads to hide the latency. The ATI Radeon™ HD 5670 GPU, for 
example, supports more than 15,000 in-flight threads and can switch to a new 
thread in a single cycle. The CPU supports only four hardware threads, and 
thread-switching requires saving and restoring the CPU registers from memory. 
The GPU requires many active threads to both keep the execution resources 
busy, as well as provide enough threads to hide the long latency of cache 
misses.

Each GPU thread has its own register state, which enables the fast single-cycle 
switching between threads. Also, GPUs can be very efficient at gather/scatter 

CPU GPU Winner Ratio
Example Device AMD Phenom™ II X4 ATI Radeon™ HD 5670

Core Frequency 2800 MHz 750 MHz 4 X

Compute Units 4 5 1.3 X

Approx. Power1 95 W 64 W 1.5 X

Approx. Power/Compute Unit 19 W 13 W 1.5 X
Peak Single-Precision                   
Billion Floating-Point Ops/Sec 90 600 7 X

Approx GFLOPS/Watt 0.9 9.4 10 X

Max In-flight HW Threads 4 15872 3968 X

Simultaneous Executing Threads 4 80 20 X

Memory Bandwidth 26 GB/s 64 GB/s 2.5 X

Int Add latency 0.4 ns 10.7 ns 30 X

FP Add Latency 1.4 ns 10.7 ns 7 X

Approx DRAM Latency 50 ns 300 ns 6 X

L2+L3 cache capacity 8192 KB 128 kB 64 X

Approx Kernel Launch Latency 25 μs 225 μs 9 X

1. For the power specifications of the AMD Phenom™ II x4, see http://www.amd.com/us/products/desk-
top/processors/phenom-ii/Pages/phenom-ii-model-number-comparison.aspx. For the power specifica-
tions of the ATI Radeon™ HD 5670, see http://www.amd.com/us/products/desktop/graphics/ati-radeon-
hd-5000/ati-radeon-hd-5670-overview/Pages/ati-radeon-hd-5670-specifications.aspx.
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operations: each thread can load from any arbitrary address, and the registers 
are completely decoupled from the other threads. This is substantially more 
flexible and higher-performing than a classic SIMD-style architecture (such as 
SSE on the CPU), which typically requires that data be accessed from 
contiguous and aligned memory locations. SSE supports instructions that write 
parts of a register (for example, MOVLPS and MOVHPS, which write the upper and 
lower halves, respectively, of an SSE register), but these instructions generate 
additional microarchitecture dependencies and frequently require additional pack 
instructions to format the data correctly. 

In contrast, each GPU thread shares the same program counter with 63 other 
threads in a wavefront. Divergent control-flow on a GPU can be quite expensive 
and can lead to significant under-utilization of the GPU device. When control flow 
substantially narrows the number of valid work-items in a wave-front, it can be 
faster to use the CPU device.

CPUs also tend to provide significantly more on-chip cache than GPUs. In this 
example, the CPU device contains 512k L2 cache/core plus a 6 MB L3 cache 
that is shared among all cores, for a total of 8 MB of cache. In contrast, the GPU 
device contains only 128 k cache shared by the five compute units. The larger 
CPU cache serves both to reduce the average memory latency and to reduce 
memory bandwidth in cases where data can be re-used from the caches.

Finally, note the approximate 9X difference in kernel launch latency. The GPU 
launch time includes both the latency through the software stack, as well as the 
time to transfer the compiled kernel and associated arguments across the PCI-
express bus to the discrete GPU. Notably, the launch time does not include the 
time to compile the kernel. The CPU can be the device-of-choice for small, quick-
running problems when the overhead to launch the work on the GPU outweighs 
the potential speedup. Often, the work size is data-dependent, and the choice of 
device can be data-dependent as well. For example, an image-processing 
algorithm may run faster on the GPU if the images are large, but faster on the 
CPU when the images are small.

The differences in performance characteristics present interesting optimization 
opportunities. Workloads that are large and data parallel can run orders of 
magnitude faster on the GPU, and at higher power efficiency. Serial or small 
parallel workloads (too small to efficiently use the GPU resources) often run 
significantly faster on the CPU devices. In some cases, the same algorithm can 
exhibit both types of workload. A simple example is a reduction operation such 
as a sum of all the elements in a large array. The beginning phases of the 
operation can be performed in parallel and run much faster on the GPU. The end 
of the operation requires summing together the partial sums that were computed 
in parallel; eventually, the width becomes small enough so that the overhead to 
parallelize outweighs the computation cost, and it makes sense to perform a 
serial add. For these serial operations, the CPU can be significantly faster than 
the GPU. 
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4.9.2 When to Use Multiple Devices

One of the features of GPU computing is that some algorithms can run 
substantially faster and at better energy efficiency compared to a CPU device. 
Also, once an algorithm has been coded in the data-parallel task style for 
OpenCL, the same code typically can scale to run on GPUs with increasing 
compute capability (that is more compute units) or even multiple GPUs (with a 
little more work). 

For some algorithms, the advantages of the GPU (high computation throughput, 
latency hiding) are offset by the advantages of the CPU (low latency, caches, fast 
launch time), so that the performance on either devices is similar. This case is 
more common for mid-range GPUs and when running more mainstream 
algorithms. If the CPU and the GPU deliver similar performance, the user can 
get the benefit of either improved power efficiency (by running on the GPU) or 
higher peak performance (use both devices). 

4.9.3 Partitioning Work for Multiple Devices

By design, each OpenCL command queue can only schedule work on a single 
OpenCL device. Thus, using multiple devices requires the developer to create a 
separate queue for each device, then partition the work between the available 
command queues. 

A simple scheme for partitioning work between devices would be to statically 
determine the relative performance of each device, partition the work so that 
faster devices received more work, launch all the kernels, and then wait for them 
to complete. In practice, however, this rarely yields optimal performance. The 
relative performance of devices can be difficult to determine, in particular for 
kernels whose performance depends on the data input. Further, the device 
performance can be affected by dynamic frequency scaling, OS thread 
scheduling decisions, or contention for shared resources, such as shared caches 
and DRAM bandwidth. Simple static partitioning algorithms which “guess wrong” 
at the beginning can result in significantly lower performance, since some 
devices finish and become idle while the whole system waits for the single, 
unexpectedly slow device. 

For these reasons, a dynamic scheduling algorithm is recommended. In this 
approach, the workload is partitioned into smaller parts that are periodically 
scheduled onto the hardware. As each device completes a part of the workload, 
it requests a new part to execute from the pool of remaining work. Faster devices, 
or devices which work on easier parts of the workload, request new input faster, 
resulting in a natural workload balancing across the system. The approach 
creates some additional scheduling and kernel submission overhead, but 
dynamic scheduling generally helps avoid the performance cliff from a single bad 
initial scheduling decision, as well as higher performance in real-world system 
environments (since it can adapt to system conditions as the algorithm runs).

Multi-core runtimes, such as Cilk, have already introduced dynamic scheduling 
algorithms for multi-core CPUs, and it is natural to consider extending these 
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scheduling algorithms to GPUs as well as CPUs. A GPU introduces several new 
aspects to the scheduling process:

• Heterogeneous Compute Devices

Most existing multi-core schedulers target only homogenous computing 
devices. When scheduling across both CPU and GPU devices, the scheduler 
must be aware that the devices can have very different performance 
characteristics (10X or more) for some algorithms. To some extent, dynamic 
scheduling is already designed to deal with heterogeneous workloads (based 
on data input the same algorithm can have very different performance, even 
when run on the same device), but a system with heterogeneous devices 
makes these cases more common and more extreme. Here are some 
suggestions for these situations.

– The scheduler should support sending different workload sizes to 
different devices. GPUs typically prefer larger grain sizes, and higher-
performing GPUs prefer still larger grain sizes.

– The scheduler should be conservative about allocating work until after it 
has examined how the work is being executed. In particular, it is 
important to avoid the performance cliff that occurs when a slow device 
is assigned an important long-running task. One technique is to use 
small grain allocations at the beginning of the algorithm, then switch to 
larger grain allocations when the device characteristics are well-known.

– As a special case of the above rule, when the devices are substantially 
different in performance (perhaps 10X), load-balancing has only a small 
potential performance upside, and the overhead of scheduling the load 
probably eliminates the advantage. In the case where one device is far 
faster than everything else in the system, use only the fast device.

– The scheduler must balance small-grain-size (which increase the 
adaptiveness of the schedule and can efficiently use heterogeneous 
devices) with larger grain sizes (which reduce scheduling overhead).   
Note that the grain size must be large enough to efficiently use the GPU.

• Asynchronous Launch

OpenCL devices are designed to be scheduled asynchronously from a 
command-queue. The host application can enqueue multiple kernels, flush 
the kernels so they begin executing on the device, then use the host core for 
other work. The AMD OpenCL implementation uses a separate thread for 
each command-queue, so work can be transparently scheduled to the GPU 
in the background.

One situation that should be avoided is starving the high-performance GPU 
devices. This can occur if the physical CPU core, which must re-fill the 
device queue, is itself being used as a device. A simple approach to this 
problem is to dedicate a physical CPU core for scheduling chores. The 
device fission extension (see Section A.7, “cl_ext Extensions,” page A-4) can 
be used to reserve a core for scheduling. For example, on a quad-core 
device, device fission can be used to create an OpenCL device with only 
three cores.
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Another approach is to schedule enough work to the device so that it can 
tolerate latency in additional scheduling. Here, the scheduler maintains a 
watermark of uncompleted work that has been sent to the device, and refills 
the queue when it drops below the watermark. This effectively increase the 
grain size, but can be very effective at reducing or eliminating device 
starvation. Developers cannot directly query the list of commands in the 
OpenCL command queues; however, it is possible to pass an event to each 
clEnqueue call that can be queried, in order to determine the execution 
status (in particular the command completion time); developers also can 
maintain their own queue of outstanding requests.

For many algorithms, this technique can be effective enough at hiding latency 
so that a core does not need to be reserved for scheduling. In particular, 
algorithms where the work-load is largely known up-front often work well with 
a deep queue and watermark. Algorithms in which work is dynamically 
created may require a dedicated thread to provide low-latency scheduling.

• Data Location

Discrete GPUs use dedicated high-bandwidth memory that exists in a 
separate address space. Moving data between the device address space and 
the host requires time-consuming transfers over a relatively slow PCI-
Express bus. Schedulers should be aware of this cost and, for example, 
attempt to schedule work that consumes the result on the same device 
producing it.

CPU and GPU devices share the same memory bandwidth, which results in 
additional interactions of kernel executions.

4.9.4 Synchronization Caveats

The OpenCL functions that enqueue work (clEnqueueNDRangeKernel) merely 
enqueue the requested work in the command queue; they do not cause it to 
begin executing. Execution begins when the user executes a synchronizing 
command, such as clFlush or clWaitForEvents. Enqueuing several commands 
before flushing can enable the host CPU to batch together the command 
submission, which can reduce launch overhead.

Command-queues that are configured to execute in-order are guaranteed to 
complete execution of each command before the next command begins. This 
synchronization guarantee can often be leveraged to avoid explicit 
clWaitForEvents() calls between command submissions. Using 
clWaitForEvents() requires intervention by the host CPU and additional 
synchronization cost between the host and the GPU; by leveraging the in-order 
queue property, back-to-back kernel executions can be efficiently handled directly 
on the GPU hardware.

AMD Evergreen GPUs currently do not support the simultaneous execution of 
multiple kernels. For efficient execution, design a single kernel to use all the 
available execution resources on the GPU.
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The AMD OpenCL implementation spawns a new thread to manage each 
command queue. Thus, the OpenCL host code is free to manage multiple 
devices from a single host thread. Note that clFinish is a blocking operation; 
the thread that calls clFinish blocks until all commands in the specified 
command-queue have been processed and completed. If the host thread is 
managing multiple devices, it is important to call clFlush for each command-
queue before calling clFinish, so that the commands are flushed and execute in 
parallel on the devices. Otherwise, the first call to clFinish blocks, the 
commands on the other devices are not flushed, and the devices appear to 
execute serially rather than in parallel.

4.9.5 GPU and CPU Kernels

While OpenCL provides functional portability so that the same kernel can run on 
any device, peak performance for each device is typically obtained by tuning the 
OpenCL kernel for the target device.

Code optimized for the Cypress device (the ATI Radeon™ HD 5870 GPU) 
typically runs well across other members of the Evergreen family. There are 
some differences in cache size and LDS bandwidth that might impact some 
kernels (see Appendix D, “Device Parameters”). The Cedar ASIC has a smaller 
wavefront width and fewer registers (see Section 4.8.4, “Optimizing for Cedar,” 
page 4-37, for optimization information specific to this device). 

As described in Section 4.11, “Clause Boundaries,” page 4-50, CPUs and GPUs 
have very different performance characteristics, and some of these impact how 
one writes an optimal kernel. Notable differences include:

• The SIMD floating point resources in a CPU (SSE) require the use of 
vectorized types (float4) to enable packed SSE code generation and extract 
good performance from the SIMD hardware. The GPU VLIW hardware is 
more flexible and can efficiently use the floating-point hardware even without 
the explicit use of float4. See Section 4.10.4, “VLIW and SSE Packing,” 
page 4-48, for more information and examples; however, code that can use 
float4 often generates hi-quality code for both the CPU and the AMD GPUs.

• The AMD OpenCL CPU implementation runs work-items from the same 
work-group back-to-back on the same physical CPU core. For optimally 
coalesced memory patterns, a common access pattern for GPU-optimized 
algorithms is for work-items in the same wavefront to access memory 
locations from the same cache line. On a GPU, these work-items execute in 
parallel and generate a coalesced access pattern. On a CPU, the first work-
item runs to completion (or until hitting a barrier) before switching to the next. 
Generally, if the working set for the data used by a work-group fits in the CPU 
caches, this access pattern can work efficiently: the first work-item brings a 
line into the cache hierarchy, which the other work-items later hit. For large 
working-sets that exceed the capacity of the cache hierarchy, this access 
pattern does not work as efficiently; each work-item refetches cache lines 
that were already brought in by earlier work-items but were evicted from the 
cache hierarchy before being used. Note that AMD CPUs typically provide 
512k to 2 MB of L2+L3 cache for each compute unit.
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• CPUs do not contain any hardware resources specifically designed to 
accelerate local memory accesses. On a CPU, local memory is mapped to 
the same cacheable DRAM used for global memory, and there is no 
performance benefit from using the __local qualifier. The additional memory 
operations to write to LDS, and the associated barrier operations can reduce 
performance. One notable exception is when local memory is used to pack 
values to avoid non-coalesced memory patterns.

• CPU devices only support a small number of hardware threads, typically two 
to eight. Small numbers of active work-group sizes reduce the CPU switching 
overhead, although for larger kernels this is a second-order effect.

For a balanced solution that runs reasonably well on both devices, developers 
are encouraged to write the algorithm using float4 vectorization. The GPU is 
more sensitive to algorithm tuning; it also has higher peak performance potential. 
Thus, one strategy is to target optimizations to the GPU and aim for reasonable 
performance on the CPU. For peak performance on all devices, developers can 
choose to use conditional compilation for key code loops in the kernel, or in some 
cases even provide two separate kernels. Even with device-specific kernel 
optimizations, the surrounding host code for allocating memory, launching 
kernels, and interfacing with the rest of the program generally only needs to be 
written once.

Another approach is to leverage a CPU-targeted routine written in a standard 
high-level language, such as C++. In some cases, this code path may already 
exist for platforms that do not support an OpenCL device. The program uses 
OpenCL for GPU devices, and the standard routine for CPU devices. Load-
balancing between devices can still leverage the techniques described in 
Section 4.9.3, “Partitioning Work for Multiple Devices,” page 4-41.

4.9.6 Contexts and Devices

The AMD OpenCL program creates at least one context, and each context can 
contain multiple devices. Thus, developers must choose whether to place all 
devices in the same context or create a new context for each device. Generally, 
it is easier to extend a context to support additional devices rather than 
duplicating the context for each device: buffers are allocated at the context level 
(and automatically across all devices), programs are associated with the context, 
and kernel compilation (via clBuildProgram) can easily be done for all devices 
in a context. However, with current OpenCL implementations, creating a separate 
context for each device provides more flexibility, especially in that buffer 
allocations can be targeted to occur on specific devices. Generally, placing the 
devices in the same context is the preferred solution.

4.10 Instruction Selection Optimizations

4.10.1 Instruction Bandwidths

Table 4.11 lists the throughput of instructions for GPUs.
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Table 4.11 Instruction Throughput (Operations/Cycle for Each Stream 
Processor) 

Note that single precision MAD operations have five times the throughput of the 
double-precision rate, and that double-precision is only supported on the Cypress 
devices. The use of single-precision calculation is encouraged, if that precision 
is acceptable. Single-precision data is also half the size of double-precision, 
which requires less chip bandwidth and is not as demanding on the cache 
structures.

Generally, the throughput and latency for 32-bit integer operations is the same 
as for single-precision floating point operations. 32-bit integer operations are 
supported only on the ATI Radeon™ HD 5870 GPUs.

24-bit integer MULs and MADs have five times the throughput of 32-bit integer 
multiplies. The use of OpenCL built-in functions for mul24 and mad24 is 
encouraged. Note that mul24 can be useful for array indexing operations.

Packed 16-bit and 8-bit operations are not natively supported; however, in cases 
where it is known that no overflow will occur, some algorithms may be able to 

Rate (Operations/Cycle) for each 
Stream Processor

Instruction Juniper/ Redwood/ Cedar Cypress

Single Precision
FP Rates

SPFP FMA 0 4
SPFP MAD 5 5
ADD 5 5
MUL 5 5
INV 1 1
RQSRT 1 1
LOG 1 1

Double Precision
FP Rates

FMA 0 1
MAD 0 1
ADD 0 2
MUL 0 1
INV (approx.) 0 1
RQSRT (approx.) 0 1

Integer Inst Rates

MAD 0 1
ADD 5 5
MUL 1 1
Bit-shift 5 5
Bitwise XOR 5 5

Conversion
Float-to-Int 1 1
Int-to-Float 1 1

24-Bit Integer
Inst Rates

MAD 5 5
ADD 5 5
MUL 5 5
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effectively pack 2 to 4 values into the 32-bit registers natively supported by the 
hardware.

The MAD instruction is an IEEE-compliant multiply followed by an IEEE-
compliant add; it has the same accuracy as two separate MUL/ADD operations. 
No special compiler flags are required for the compiler to convert separate 
MUL/ADD operations to use the MAD instruction.

Table 4.11 shows the throughput for each stream processing core. To obtain the 
peak throughput for the whole device, multiply the number of stream cores and 
the engine clock (see Appendix D, “Device Parameters”). For example, according 
to Table 4.11, a Cypress device can perform two double-precision ADD 
operations/cycle in each stream core. From Appendix D, “Device Parameters,” a 
ATI Radeon™ HD 5870 GPU has 320 Stream Cores and an engine clock of 
850 MHz, so the entire GPU has a throughput rate of (2*320*850 MHz) = 544 
GFlops for double-precision adds.

4.10.2 AMD Media Instructions

AMD provides a set of media instructions for accelerating media processing. 
Notably, the sum-of-absolute differences (SAD) operation is widely used in 
motion estimation algorithms. For a brief listing and description of the AMD media 
operations, see the third bullet in Section A.8, “AMD Vendor-Specific Extensions,” 
page A-4.

4.10.3 Math Libraries

OpenCL supports two types of math library operation: native_function() and 
function(). Native_functions are generally supported in hardware and can run 
substantially faster, although at somewhat lower accuracy. The accuracy for the 
non-native functions is specified in Section 7.4 of the OpenCL Specification. The 
accuracy for the native functions is implementation-defined. Developers are 
encouraged to use the native functions when performance is more important than 
precision. Table 4.12 lists the native speedup factor for certain functions.

Table 4.12 Native Speedup Factor

Function Native Speedup Factor
sin() 27.1x
cos() 34.2x
tan() 13.4x
exp() 4.0x
exp2() 3.4x
exp10() 5.2x
log() 12.3x
log2() 11.3x
log10() 12.8x
sqrt() 1.8x
rsqrt() 6.4x
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4.10.4 VLIW and SSE Packing

Each stream core in the AMD GPU is programmed with a 5-wide VLIW 
instruction. Efficient use of the GPU hardware requires that the kernel contain 
enough parallelism to fill all five processing elements; serial dependency chains 
are scheduled into separate instructions. A classic technique for exposing more 
parallelism to the compiler is loop unrolling. To assist the compiler in 
disambiguating memory addresses so that loads can be combined, developers 
should cluster load and store operations. In particular, re-ordering the code to 
place stores in adjacent code lines can improve performance. Figure 4.7 shows 
an example of unrolling a loop and then clustering the stores.

Figure 4.7 Unmodified Loop

Figure 4.8 is the same loop unrolled 4x. 

Figure 4.8 Kernel Unrolled 4X

powr() 28.7x
divide() 4.4x

__kernel void loopKernel1A(int loopCount,
                         global float *output, 
                         global const float * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=1) {
        float Velm0 = (input[i] * 6.0 + 17.0);
        output[gid+i] = Velm0;
    }
}

__kernel void loopKernel2A(int loopCount,
                         global float * output, 
                         global const float * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=4) {
        float Velm0 = (input[i] * 6.0 + 17.0);
        output[gid+i] = Velm0;

        float Velm1 = (input[i+1] * 6.0 + 17.0);
        output[gid+i+1] = Velm1;

        float Velm2 = (input[i+2] * 6.0 + 17.0);
        output[gid+i+2] = Velm2;

        float Velm3 = (input[i+3] * 6.0 + 17.0);
        output[gid+i+3] = Velm3;
    }
}
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Figure 4.9 shows and example of an unrolled loop with clustered stores.

Figure 4.9 Unrolled Loop with Stores Clustered

Unrolling the loop to expose the underlying parallelism typically allows the GPU 
compiler to pack the instructions into the slots in the VLIW word. For best results, 
unrolling by a factor of at least 5 (perhaps 8 to preserve power-of-two factors) 
may deliver best performance. Unrolling increases the number of required 
registers, so some experimentation may be required.

The CPU back-end requires the use of vector types (float4) to vectorize and 
generate packed SSE instructions. To vectorize the loop above, use float4 for the 
array arguments. Obviously, this transformation is only valid in the case where 
the array elements accessed on each loop iteration are adjacent in memory. The 
explicit use of float4 can also improve the GPU performance, since it clearly 
identifies contiguous 16-byte memory operations that can be more efficiently 
coalesced.

Figure 4.10 is an example of an unrolled kernel that uses float4 for vectorization.

Figure 4.10 Unrolled Kernel Using float4 for Vectorization

__kernel void loopKernel3A(int loopCount,
                         global float *output, 
                         global const float * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=4) {
        float Velm0 = (input[i] * 6.0 + 17.0);
        float Velm1 = (input[i+1] * 6.0 + 17.0);
        float Velm2 = (input[i+2] * 6.0 + 17.0);
        float Velm3 = (input[i+3] * 6.0 + 17.0);

        output[gid+i+0] = Velm0;
        output[gid+i+1] = Velm1;
        output[gid+i+2] = Velm2;
        output[gid+i+3] = Velm3;
    }
}

__kernel void loopKernel4(int loopCount,
                         global float4 *output, 
                         global const float4 * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=1) {
        float4 Velm = input[i] * 6.0 + 17.0;

        output[gid+i] = Velm;
    }
}
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4.11 Clause Boundaries
AMD GPUs groups instructions into clauses. These are broken at control-flow 
boundaries when: 

• the instruction type changes (for example, from FETCH to ALU), or 

• if the clause contains the maximum amount of operations (the maximum size 
for an ALU clause is 128 operations). 

ALU and LDS access instructions are placed in the same clause. FETCH, 
ALU/LDS, and STORE instructions are placed into separate clauses. 

The GPU schedules a pair of wavefronts (referred to as the “even” and “odd” 
wavefront). The even wavefront executes for four cycles (each cycle executes a 
quarter-wavefront); then, the odd wavefront executes for four cycles. While the 
odd wavefront is executing, the even wavefront accesses the register file and 
prepares operands for execution. This fixed interleaving of two wavefronts allows 
the hardware to efficiently hide the eight-cycle register-read latencies.

With the exception of the special treatment for even/odd wavefronts, the GPU 
scheduler only switches wavefronts on clause boundaries. Latency within a 
clause results in stalls on the hardware. For example, a wavefront that generates 
an LDS bank conflict stalls on the compute unit until the LDS access completes; 
the hardware does not try to hide this stall by switching to another available 
wavefront. 

ALU dependencies on memory operations are handled at the clause level. 
Specifically, an ALU clause can be marked as dependent on a FETCH clause. 
All FETCH operations in the clause must complete before the ALU clause begins 
execution. 

Switching to another clause in the same wavefront requires approximately 40 
cycles. The hardware immediately schedules another wavefront if one is 
available, so developers are encouraged to provide multiple wavefronts/compute 
unit. The cost to switch clauses is far less than the memory latency; typically, if 
the program is designed to hide memory latency, it hides the clause latency as 
well.

The address calculations for FETCH and STORE instructions execute on the 
same hardware in the compute unit as do the ALU clauses. The address 
calculations for memory operations consumes the same executions resources 
that are used for floating-point computations.

• The ISA dump shows the clause boundaries. See the example shown below. 

For more information on clauses, see the AMD Evergreen-Family ISA Microcode 
And Instructions (v1.0b) and the AMD R600/R700/Evergreen Assembly 
Language Format documents.

The following is an example disassembly showing clauses. There are 13 clauses 
in the kernel. The first clause is an ALU clause and has 6 instructions.
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00 ALU_PUSH_BEFORE: ADDR(32) CNT(13) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15) 

 0  x: MOV         R3.x,  KC0[0].x      

 y: MOV         R2.y,  KC0[0].y      

 z: MOV         R2.z,  KC0[0].z      

 w: MOV         R2.w,  KC0[0].w      

 1  x: MOV         R4.x,  KC0[2].x      

 y: MOV         R2.y,  KC0[2].y      

 z: MOV         R2.z,  KC0[2].z      

 w: MOV         R2.w,  KC0[2].w      

 t: SETGT_INT   R5.x,  PV0.x,  0.0f      

 2  t: MULLO_INT   ____,  R1.x,  KC1[1].x      

 3  y: ADD_INT     ____,  R0.x,  PS2      

4  x: ADD_INT     R0.x,  PV3.y,  KC1[6].x      

5  x: PREDNE_INT  ____,  R5.x,  0.0f      UPDATE_EXEC_MASK UPDATE_PRED 

01 JUMP  POP_CNT(1) ADDR(12) 

02 ALU: ADDR(45) CNT(5) KCACHE0(CB1:0-15) 

6  z: LSHL        ____,  R0.x,  (0x00000002, 2.802596929e-45f).x      

7  y: ADD_INT     ____,  KC0[1].x,  PV6.z      

 8  x: LSHR        R1.x,  PV7.y,  (0x00000002, 2.802596929e-45f).x      

03 LOOP_DX10 i0 FAIL_JUMP_ADDR(11) 

04 ALU: ADDR(50) CNT(4) 

 9  x: ADD_INT     R3.x,  -1,  R3.x      

 y: LSHR        R0.y,  R4.x,  (0x00000002, 2.802596929e-45f).x      

 t: ADD_INT     R4.x,  R4.x,  (0x00000004, 5.605193857e-45f).y      

05 WAIT_ACK:  Outstanding_acks <= 0 

06 TEX: ADDR(64) CNT(1) 

10  VFETCH R0.x___, R0.y, fc156  MEGA(4) 

 FETCH_TYPE(NO_INDEX_OFFSET) 

07 ALU: ADDR(54) CNT(3) 

11  x: MULADD_e    R0.x,  R0.x,  (0x40C00000, 6.0f).y,  (0x41880000, 17.0f).x      

 t: SETE_INT    R2.x,  R3.x,  0.0f      

08 MEM_RAT_CACHELESS_STORE_RAW_ACK: RAT(1)[R1].x___, R0, ARRAY_SIZE(4)  MARK  VPM 

09 ALU_BREAK: ADDR(57) CNT(1) 

12  x: PREDE_INT   ____,  R2.x,  0.0f      UPDATE_EXEC_MASK UPDATE_PRED 

10 ENDLOOP i0 PASS_JUMP_ADDR(4) 

11 POP (1) ADDR(12) 

12 NOP NO_BARRIER 

END_OF_PROGRAM
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4.12 Additional Performance Guidance
This section is a collection of performance tips for GPU compute and AMD-
specific optimizations.

4.12.1 Memory Tiling

There are many possible physical memory layouts for images. ATI Stream 
compute devices can access memory in a tiled or in a linear arrangement.

• Linear – A linear layout format arranges the data linearly in memory such 
that element addresses are sequential. This is the layout that is familiar to 
CPU programmers. This format must be used for OpenCL buffers; it can be 
used for images.

• Tiled – A tiled layout format has a pre-defined sequence of element blocks 
arranged in sequential memory addresses (see Figure 4.11 for a conceptual 
illustration). A microtile consists of ABIJ; a macrotile consists of the top-left 
16 squares for which the arrows are red. Only images can use this format. 
Translating from user address space to the tiled arrangement is transparent 
to the user. Tiled memory layouts provide an optimized memory access 
pattern to make more efficient use of the RAM attached to the GPU compute 
device. This can contribute to lower latency.

Figure 4.11 One Example of a Tiled Layout Format

Memory Access Pattern – 

Memory access patterns in compute kernels are usually different from those in 
the pixel shaders. Whereas the access pattern for pixel shaders is in a 
hierarchical, space-filling curve pattern and is tuned for tiled memory 
performance (generally for textures), the access pattern for a compute kernel is 
linear across each row before moving to the next row in the global id space. This 
has an effect on performance, since pixel shaders have implicit blocking, and 
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compute kernels do not. If accessing a tiled image, best performance is achieved 
if the application tries to use workgroups as a simple blocking strategy.

4.12.2 General Tips
• Avoid declaring global arrays on the kernel’s stack frame as these typically 

cannot be allocated in registers and require expensive global memory 
operations.

• Use predication rather than control-flow.  The predication allows the GPU to 
execute both paths of execution in parallel, which can be faster than 
attempting to minimize the work through clever control-flow. The reason for 
this is that if no memory operation exists in a ?: operator (also called a 
ternary operator), this operation is translated into a single cmov_logical 
instruction, which is executed in a single cycle. An example of this is: 

If (A>B) {
 C += D;
} else {
 C -= D;
}

Replace this with:

int factor = (A>B) ? 1:-1;
C += factor*D;

In the first block of code, this translates into an IF/ELSE/ENDIF sequence of 
CF clauses, each taking ~40 cycles. The math inside the control flow adds 
two cycles if the control flow is divergent, and one cycle if it is not. This code 
executes in ~120 cycles.

In the second block of code, the ?: operator executes in an ALU clause, so 
no extra CF instructions are generated. Since the instructions are sequentially 
dependent, this block of code executes in three cycles, for a ~40x speed 
improvement. To see this, the first cycle is the (A>B) comparison, the result 
of which is input to the second cycle, which is the cmov_logical factor, bool, 
1, -1. The final cycle is a MAD instruction that: mad C, factor, D, C. If the ratio 
between CF clauses and ALU instructions is low, this is a good pattern to 
remove the control flow.

• Loop Unrolling

– OpenCL kernels typically are high instruction-per-clock applications. 
Thus, the overhead to evaluate control-flow and execute branch 
instructions can consume a significant part of resource that otherwise 
can be used for high-throughput compute operations.

– The ATI Stream OpenCL compiler performs simple loop unrolling 
optimizations; however, for more complex loop unrolling, it may be 
beneficial to do this manually. 

• If possible, create a reduced-size version of your data set for easier 
debugging and faster turn-around on performance experimentation. GPUs do 
not have automatic caching mechanisms and typically scale well as 
resources are added. In many cases, performance optimization for the 
reduced-size data implementation also benefits the full-size algorithm.
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• When tuning an algorithm, it is often beneficial to code a simple but accurate 
algorithm that is retained and used for functional comparison. GPU tuning 
can be an iterative process, so success requires frequent experimentation, 
verification, and performance measurement. 

• The profiler and analysis tools report statistics on a per-kernel granularity. To 
narrow the problem further, it might be useful to remove or comment-out 
sections of code, then re-run the timing and profiling tool.

4.12.3 Guidance for CUDA Programmers Using OpenCL
• Porting from CUDA to OpenCL is relatively straightforward. Multiple vendors 

have documents describing how to do this, including AMD:

http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx#four

• Some specific performance recommendations which differ from other GPU 
architectures:

– Use a workgroup size that is a multiple of 64. CUDA code can use a 
workgroup size of 32; this uses only half the available compute resources 
on an ATI Radeon™ HD 5870 GPU.

– Vectorization can lead to substantially greater efficiency. The ALUPacking 
counter provided by the Profiler can track how well the kernel code is 
using the five-wide VLIW unit. Values below 70 percent may indicate that 
dependencies are preventing the full use of the processor. For some 
kernels, vectorization can be used to increase efficiency and improve 
kernel performance.

– Manually unroll code where pragma is specified. The pragma for unrolling 
programs currently is not supported in OpenCL. 

– AMD GPUs have a very high single-precision flops capability (2.72 
teraflops in a single ATI Radeon™ HD 5870 GPU). Algorithms that benefit 
from such throughput can deliver excellent performance on ATI Stream 
hardware.

4.12.4 Guidance for CPU Programmers Using OpenCL

OpenCL is the industry-standard toolchain for programming GPUs and parallel 
devices from many vendors. It is expected that many programmers skilled in 
CPU programming will program GPUs for the first time using OpenCL. This 
section provides some guidance for experienced programmers who are 
programming a GPU for the first time. It specifically highlights the key differences 
in optimization strategy.

• Study the local memory (LDS) optimizations. These greatly affect the GPU 
performance. Note the difference in the organization of local memory on the 
GPU as compared to the CPU cache. Local memory is shared by many 
work-items (64 on Cypress). This contrasts with a CPU cache that normally 
is dedicated to a single work-item. GPU kernels run well when they 
collaboratively load the shared memory.
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• GPUs have a large amount of raw compute horsepower, compared to 
memory bandwidth and to “control flow” bandwidth. This leads to some high-
level differences in GPU programming strategy.

– A CPU-optimized algorithm may test branching conditions to minimize 
the workload. On a GPU, it is frequently faster simply to execute the 
workload.

– A CPU-optimized version can use memory to store and later load pre-
computed values. On a GPU, it frequently is faster to recompute values 
rather than saving them in registers. Per-thread registers are a scarce 
resource on the CPU; in contrast, GPUs have many available per-thread 
register resources.

• Use float4 and the OpenCL built-ins for vector types (vload, vstore, etc.). 
These enable ATI Stream’s OpenCL implementation to generate efficient, 
packed SSE instructions when running on the CPU. Vectorization is an 
optimization that benefits both the AMD CPU and GPU.
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Appendix A 
OpenCL Optional Extensions

The OpenCL extensions are associated with the devices and can be queried for 
a specific device. Extensions can be queried for platforms also, but that means 
that all devices in the platform support those extensions.

Table A.2, on page A-13, lists the supported extensions for the Evergreen-family 
of devices, as well as for the RV770 and x86 CPUs.

A.1 Extension Name Convention
The name of extension is standardized and must contain the following elements 
without spaces in the name (in lower case):

• cl_khr_<extension_name> - for extensions approved by Khronos Group. 
For example: cl_khr_fp64.

• cl_ext_<extension_name> - for extensions provided collectively by multiple 
vendors. For example: cl_ext_device_fission.

• cl_<vendor_name>_<extension_name> – for extension provided by a 
specific vendor. For example: cl_amd_media_ops.

The OpenCL Specification states that all API functions of the extension must 
have names in the form of cl<FunctionName>KHR, cl<FunctionName>EXT, or 
cl<FunctionName><VendorName>. All enumerated values must be in the form of 
CL_<enum_name>_KHR, CL_<enum_name>_EXT, or 
CL_<enum_name>_<VendorName>.

A.2 Querying Extensions for a Platform
To query supported extensions for the OpenCL platform, use the 
clGetPlatformInfo() function, with the param_name parameter set to the 
enumerated value CL_PLATFORM_EXTENSIONS. This returns the extensions as a 
character string with extension names separated by spaces. To find out if a 
specific extension is supported by this platform, search the returned string for the 
required substring.
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A.3 Querying Extensions for a Device
To get the list of devices to be queried for supported extensions, use one of the 
following:

• Query for available platforms using clGetPlatformIDs(). Select one, and 
query for a list of available devices with clGetDeviceIDs().

• For a specific device type, call clCreateContextFromType(), and query a 
list of devices by calling clGetContextInfo() with the param_name 
parameter set to the enumerated value CL_CONTEXT_DEVICES.

After the device list is retrieved, the extensions supported by each device can be 
queried with function call clGetDeviceInfo() with parameter param_name being 
set to enumerated value CL_DEVICE_EXTENSIONS.

The extensions are returned in a char string, with extension names separated by 
a space. To see if an extension is present, search the string for a specified 
substring.

A.4 Using Extensions in Kernel Programs
There are special directives for the OpenCL compiler to enable or disable 
available extensions supported by the OpenCL implementation, and, specifically, 
by the OpenCL compiler. The directive is defined as follows.

#pragma OPENCL EXTENSION <extention_name> : <behavior>
#pragma OPENCL EXTENSION all : <behavior> 

The <extension_name> is described in Section A.1, “Extension Name 
Convention.”. The second form allows to address all extensions at once.

The <behavior> token can be either:

• enable - the extension is enabled if it is supported, or the error is reported 
if the specified extension is not supported or token “all” is used.

• disable - the OpenCL implementation/compiler behaves as if the specified 
extension does not exist. 

• all - only core functionality of OpenCL is used and supported, all extensions 
are ignored. If the specified extension is not supported then a warning is 
issued by the compiler.

The order of directives in #pragma OPENCL EXTENSION is important: a later 
directive with the same extension name overrides any previous one.

The initial state of the compiler is set to ignore all extensions as if it was explicitly 
set with the following directive:

#pragma OPENCL EXTENSION all : disable
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This means that the extensions must be explicitly enabled to be used in kernel 
programs.

Each extension that affects kernel code compilation must add a defined macro 
with the name of the extension. This allows the kernel code to be compiled 
differently, depending on whether the extension is supported and enabled, or not. 
For example, for extension cl_khr_fp64 there should be a #define directive for 
macro cl_khr_fp64, so that the following code can be preprocessed:

#ifdef cl_khr_fp64
// some code

#else
// some code

#endif

A.5 Getting Extension Function Pointers
Use the following function to get an extension function pointer.

void* clGetExtensionFunctionAddress(const char* FunctionName).

This returns the address of the extension function specified by the FunctionName 
string. The returned value must be appropriately cast to a function pointer type, 
specified in the extension spec and header file.

A return value of NULL means that the specified function does not exist in the 
CL implementation. A non-NULL return value does not guarantee that the 
extension function actually exists – queries described in sec. 2 or 3 must be done 
to make sure the extension is supported.

The clGetExtensionFunctionAddress() function cannot be used to get core 
API function addresses.

A.6 List of Supported Extensions
Supported extensions approved by the Khronos Group are:

• cl_khr_global_int32_base_atomics – basic atomic operations on 32-bit 
integers in global memory.

• cl_khr_global_int32_extended_atomics – extended atomic operations on 
32-bit integers in global memory.

• cl_khr_local_int32_base_atomics – basic atomic operations on 32-bit 
integers in local memory.

• cl_khr_local_int32_extended_atomics – extended atomic operations on 
32-bit integers in local memory.

• cl_khr_int64_base_atomics – basic atomic operations on 64-bit integers in 
both global and local memory.

• cl_khr_int64_extended_atomics – extended atomic operations on 64-bit 
integers in both global and local memory.
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• cl_khr_3d_image_writes – supports kernel writes to 3D images.

• cl_khr_byte_addressable_store – this eliminates the restriction of not 
allowing writes to a pointer (or array elements) of types less than 32-bit wide 
in kernel program. 

• cl_khr_gl_sharing – allows association of OpenGL context or share group 
with CL context for interoperability.

• cl_khr_icd – the OpenCL Installable Client Driver (ICD) that lets developers 
select from multiple OpenCL runtimes which may be installed on a system. 
This extension is automatically enabled in the ATI Stream SDK v2.

• cl_khr_d3d10_sharing - allows association of D3D10 context or share 
group with CL context for interoperability.

A.7 cl_ext Extensions
• cl_ext_device_fission - Support for device fission in OpenCL™. For more 

information about this extension, see:

http://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt

A.8 AMD Vendor-Specific Extensions
This section describes the following extension:

cl_amd_fp64
cl_amd_device_attribute_query
cl_amd_event_callback
cl_amd_media_ops
cl_amd_printf

• cl_amd_fp64 — Before using double data types, double-precision floating 
point operators, and/or double-precision floating point routines in OpenCL™ 
C kernels, include the #pragma OPENCL EXTENSION cl_amd_fp64 : enable 
directive. See Table A.1 for a list of supported routines.

• cl_amd_device_attribute_query — This extension provides a means to 
query AMD-specific device attributes. To enable this extension, include the 
#pragma OPENCL EXTENSION cl_amd_device_attribute_query : enable 
directive. Once the extension is enabled, and the clGetDeviceInfo 
parameter <param_name> is set to 
cl_device_profiling_timer_offset_amd, the offset in nano-seconds 
between an event timestamp and Epoch is returned. 

• cl_amd_event_callback — This extension provides the ability to register 
event callbacks for states other than cl_complete. The full set of event 
states are allowed: cl_queued, cl_submitted, and cl_running. This 
extension is enabled automatically and does not need to be explicitly enabled 
through #pragma when using the ATI Stream SDK v2.
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A.8.1 cl_amd_media_ops 

This extension adds the following built-in functions to the OpenCL language. 
Note: For OpenCL scalar types, n = 1; for vector types, it is {2, 4, 8, or 16}. 

Note: in the following, n denotes the size, which can be 1, 2, 4, 8, or 16;
[i] denotes the indexed element of a vector, designated 0 to n-1.

Built-in function: amd_pack

uint amd_pack(float4 src)

Return value

((((uint)src[0]) & 0xFF) << 0) +
((((uint)src[1]) & 0xFF) <<  8) +
((((uint)src[2]) & 0xFF) << 16) +
((((uint)src[3]) & 0xFF) << 24)

Built-in function: amd_unpack0

floatn   amd_unpack0 (unitn src)

Return value for each vector component

(float)(src[i] & 0xFF)

Built-in function: amd_unpack1

floatn   amd_unpack1 (unitn src)

Return value for each vector component

(float)((src[i] >> 8) & 0xFF)

Built-in function: amd_unpack2

floatn   amd_unpack2 (unitn src)

Return value for each vector component

(float)((src[i] >> 16) & 0xFF)

Built-in function: amd_unpack3

floatn  amd_unpack3(uintn src)

Return value for each vector component

(float)((src[i] >> 24) & 0xFF)

Built-in function: amd_bitalign 

uintn  amd_bitalign (uintn src0, uintn src1, uintn src2)

Return value for each vector component
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(uint) (((((long)src0[i]) << 32) | (long)src1[i]) >> (src2[i] & 31))

Built-in function: amd_bytealign 

uintn  amd_bytealign (uintn src0, uintn src1, uintn src2)

Return value for each vector component

(uint) (((((long)src0[i]) << 32) | (long)src1[i]) >> ((src2[i] & 3)*8))

Built-in function: amd_lerp 

uintn  amd_lerp (uintn src0, uintn src1, uintn src2)

Return value for each vector component

(((((src0[i] >>  0) & 0xFF) + ((src1[i] >>  0) & 0xFF) + ((src2[i] >>  0) & 1)) >> 1) <<  0) +
(((((src0[i] >> 8) & 0xFF) + ((src1[i] >> 8) & 0xFF) + ((src2[i] >>  8) & 1)) >> 1) <<  8) +
(((((src0[i] >> 16) & 0xFF) + ((src1[i] >> 16) & 0xFF) + ((src2[i] >> 16) & 1)) >> 1) << 16) +
(((((src0[i] >> 24) & 0xFF) + ((src1[i] >> 24) & 0xFF) + ((src2[i] >> 24) & 1)) >> 1) << 24) ;

Built-in function: amd_sad 

uintn  amd_sad (uintn src0, uintn src1, uintn src2)

Return value for each vector component

src2[i] + 
abs(((src0[i] >>  0) & 0xFF) - ((src1[i] >>  0) & 0xFF)) +
abs(((src0[i] >>  8) & 0xFF) - ((src1[i] >>  8) & 0xFF)) +
abs(((src0[i] >> 16) & 0xFF) - ((src1[i] >> 16) & 0xFF)) +
abs(((src0[i] >> 24) & 0xFF) - ((src1[i] >> 24) & 0xFF));

Built-in function: amd_sadhi 

uintn  amd_sadhi (uintn src0, uintn src1, uintn src2)

Return value for each vector component

src2[i] + 
(abs(((src0[i] >>  0) & 0xFF) - ((src1[i] >>  0) & 0xFF)) << 16) +
(abs(((src0[i] >>  8) & 0xFF) - ((src1[i] >>  8) & 0xFF)) << 16) +
(abs(((src0[i] >> 16) & 0xFF) - ((src1[i] >> 16) & 0xFF)) << 16) +
(abs(((src0[i] >> 24) & 0xFF) - ((src1[i] >> 24) & 0xFF)) << 16);

A.8.2 cl_amd_printf

The OpenCL™ Specification 1.1 adds support for the optional AMD extension 
cl_amd_printf, which provides printf capabilities to OpenCL C programs. To use 
this extension, an application first must include #pragma OPENCL EXTENSION 
cl_amd_printf : enable. 
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Built-in function: 
printf(__constant char * restrict format, …); 

This function writes output to the stdout stream associated with the 
host application. The format string is a character sequence that:

– is null-terminated and composed of zero and more directives,

– ordinary characters (i.e. not %), which are copied directly to the output 
stream unchanged, and 

– conversion specifications, each of which can result in fetching zero or 
more arguments, converting them, and then writing the final result to the 
output stream. 

The format string must be resolvable at compile time; thus, it cannot 
be dynamically created by the executing program. (Note that the use of 
variadic arguments in the built-in printf does not imply its use in other built-
ins; more importantly, it is not valid to use printf in user-defined functions 
or kernels.)

The OpenCL C printf closely matches the definition found as part of the 
C99 standard. Note that conversions introduced in the format string with 
% are supported with the following guidelines: 

• A 32-bit floating point argument is not converted to a 64-bit double, 
unless the extension cl_khr_fp64 is supported and enabled, as 
defined in section 9.3 of the OpenCL Specification 1.1. This includes 
the double variants if cl_khr_fp64 is supported and defined in the 
corresponding compilation unit.

• 64-bit integer types can be printed using %ld / %lx / %lu . 

• %lld / %llx / %llu are not supported and reserved for 128-bit integer 
types (long long).

• All OpenCL vector types (Section 6.1.2 of the OpenCL Specification 
1.1) can be explicitly passed and printed using the modifier vn, where 
n can be 2, 3, 4, 8, or 16. This modifier appears before the original 
conversion specifier for the vector’s component type (for example, to 
print a float4 %v4f). Since vn is a conversion specifier, it is valid to 
apply optional flags, such as field width and precision, just as it 
is when printing the component types. Since a vector is an aggregate 
type, the comma separator is used between the components:
0:1, … , n-2:n-1. 
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A.9 Supported Functions for cl_amd_fp64
Table A.1 lists the functions supported by cl_amd_fp64 on three platforms.

Table A.1 Functions Supported by cl_amd_fp64 

X = Supported  * = Beta Evergreen1 RV7702 x86 CPU

Query clGetDeviceInfo() with 
CL_DEVICE_DOUBLE_FP_CONFIG X * X

double conversions X * X

Types

type: double X * X
type: double2 X * X
type: double3 X * X
type: double4 X * X
type: double8 X * X
type: double16 X * X

Operators 
and 
Relational 
Functions

+ X * X
- X * X
* X * X
/ X *3 X
Relational Functions 
(<, <=, >, >=, !=, ==) X * X

isequal() X * X
isnotequal() X * X
isgreater() X * X
isgreaterequal() X * X
isless() X * X
islessequal() X * X
islessgreater() X * X
isfinite() X * X
isinf() X * X
isnan() X * X
isnormal() X * X
isordered() X * X
isunordered() X * X
signbit() X * X
bitselect() X * X
select() X * X
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X = Supported  * = Beta Evergreen1 RV7702 x86 CPU

Math 
Functions

acos() X * X
acosh() X
acospi() X
asin() X * X
asinh() X
asinpi() X
atan() X * X
atan2() X
atanh() X
atanpi() X
atan2pi() X
cbrt() X * X
ceil() X * X
copysign() X * X
cos() X * X
cosh() X
cospi() X * X
erf() X * X
exp() X * X
exp2() X * X
exp10() X * X
expm1() X * X
fabs() X * X
fdim() X * X
floor() X * X
fma() X X
fmax() X * X
fmin() X * X
fmod() X
fract() X * X
frexp() X * X
hypot() X
ilogb() X * X
ldexp() X * X
lgamma() X
lgamma_r() X
log() X * X
log2() X * X
log10() X * X
log1p() X
logb() X * X
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X = Supported  * = Beta Evergreen1 RV7702 x86 CPU

Math 
Functions
(cont’d)

mad() X * X
maxmag() X * X
minmag() X * X
mad() X * X
maxmag() X * X
minmag() X * X
modf() X * X
nan() X * X
nextafter() X * X
pow() X * X
pown() X * X
powr() X * X
remainder() X
rint() X * X
rootn() X * X
round() X * X
rsqrt() X X
sin() X * X
sincos() X * X
sinh() X
sinpi() X * X
sqrt() X X
tan() X * X
tanh() X
tanpi() X * X
trunc() X * X
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X = Supported  * = Beta Evergreen1 RV7702 x86 CPU

Macros

HUGE_VAL X * X
FP_FAST_FMA X * X
DBL_DIG X * X
DBL_MANT_DIG X * X
DBL_MAX_10_EXP X * X
DBL_MAX_EXP X * X
DBL_MIN_10_EXP X * X
DBL_MIN_EXP X * X
DBL_MAX X * X
DBL_MIN X * X
DBL_EPSILON X * X
M_E X * X
M_LOG2E X * X
M_LOG10E X * X
M_LN2 X * X
M_LN10 X * X
M_PI X * X
M_PI_2 X * X
M_PI_4 X * X
M_1_PI X * X
M_2_PI X * X
M_2_SQRTPI X * X
M_SQRT2 X * X
M_SQRT1_2 X * X

Common 
Functions

clamp() X * X
degrees() X * X
max() X * X
min() X * X
mix() X * X
radians() X * X
step() X * X
smoothstep() X * X
sign() X * X

Geometric 
Functions

cross() X * X
dot() X * X
distance() X X
length() X X
normalize() X X

Vector Data 
Load and 

vloadn() X * X
vstoren() X * X
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X = Supported  * = Beta Evergreen1 RV7702 x86 CPU

Async 
Copies and 
Prefetch

async_work_group_copy X * X
wait_group_events() X * X
prefetch() X * X

1. ATI Radeon™ HD 5900 series GPUs, ATI Radeon™ HD 5800 series GPUs, ATI 
FirePro™ V8800 series GPUs, ATI FirePro™ V7800 series GPUs and AMD 
FireStream™ 9300 series GPU Compute Accelerators. 

2. ATI Radeon™ HD 4800 series GPUs, ATI Mobility Radeon™ HD 4800 series GPUs, 
ATI FirePro™ V8700 series GPUs and AMD FireStream™ 9200 series GPUs.

3. Denormals flushed to zero, too large/small produce NaN instead of inf.
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A.10 Extension Support by Device
Table A.2 lists the extension support for selected devices.

Table A.2 Extension Support

A M D G P U x86 CPU
with SSE2 

or laterExtension Cypress1 

1. ATI Radeon™ HD 5900 series and 5800 series, ATI FirePro™ V8800 series and V8700 series.

Juniper2 

2. ATI Radeon™ HD 5700 series, ATI Mobility Radeon™ HD 5800 series, ATI FirePro™ V5800 series, ATI 
Mobility FirePro™ M7820.

Redwood3 

3. ATI Radeon™ HD 5600 Series, ATI Radeon™ HD 5600 Series, ATI Radeon™ HD 5500 Series, ATI 
Mobility Radeon™ HD 5700 Series, ATI Mobility Radeon™ HD 5600 Series, ATI FirePro™ V4800 Series, 
ATI FirePro™ V3800 Series, ATI Mobility FirePro™ M5800

Cedar4

4. ATI Radeon™ HD 5400 Series, ATI Mobility Radeon™ HD 5400 Series

RV770 5

5. ATI Radeon™ HD 4800 Series, ATI Radeon™ HD 4700 Series, ATI Mobility Radeon™ HD 4800 Series, 
ATI FirePro™ V8700 Series, ATI Mobility FirePro™ M7740, AMD FireStream™ 9200 Series Compute 
Accelerator

RV730/
RV7106

6. ATI Radeon™ HD 4600 Series, ATI Radeon™ HD 4500 Series, ATI Radeon™ HD 4300 Series, ATI 
Mobility Radeon™ HD 4600 Series, ATI Mobility Radeon™ HD 4500 Series, ATI Mobility Radeon™ HD 
4300 Series, ATI FirePro™ V7700 Series, ATI FirePro™ V5700 Series, ATI FirePro™ V3700 Series, ATI 
Radeon™ Embedded E4690 Discrete

cl_khr_*_atomics Yes Yes Yes Yes No No Yes

cl_khr_gl_sharing Yes Yes Yes Yes Yes Yes Yes

cl_khr_byte_addressable_store Yes Yes Yes Yes No No Yes

cl_khr_icd Yes Yes Yes Yes Yes Yes Yes

cl_khr_d3d10_sharing Yes Yes Yes Yes Yes Yes Yes

cl_ext_device_fission No No No No No No Yes

cl_amd_device_attribute_query Yes Yes Yes Yes Yes Yes Yes

cl_amd_fp64 Yes No No No Yes No Yes

cl_amd_media_ops Yes Yes Yes Yes No No No

cl_amd_printf Yes Yes Yes Yes No No Yes

Images Yes Yes Yes Yes No No No
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Appendix B 
The OpenCL Installable Client Driver 
(ICD)

The OpenCL Installable Client Driver (ICD) is part of the ATI Stream SDK 
software stack. Code written prior to ATI Stream SDK v2.0 must be changed to 
comply with OpenCL ICD requirements.

B.1 Overview
The ICD allows multiple OpenCL implementations to co-exist; also, it allows 
applications to select between these implementations at runtime.

In releases prior to SDK v2.0, functions such as clGetDeviceIDs() and 
clCreateContext() accepted a NULL value for the platform parameter. 
Releases from SDK v2.0 no longer allow this; the platform must be a valid one, 
obtained by using the platform API. The application now must select which of the 
OpenCL platforms present on a system to use.

Use the clGetPlatformIDs() and clGetPlatformInfo() functions to see the 
list of available OpenCL implementations, and select the one that is best for your 
requirements. It is recommended that developers offer their users a choice on 
first run of the program or whenever the list of available platforms changes.

A properly implemented ICD and OpenCL library is transparent to the end-user.

B.2 Using ICD
Sample code that is part of the SDK contains examples showing how to query 
the platform API and call the functions that require a valid platform parameter.

This is a pre-ICD code snippet.

context = clCreateContextFromType(
            0, 
            dType, 
            NULL, 
            NULL, 
            &status);

The ICD-compliant version of this code follows.

/*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
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    cl_uint numPlatforms;
    cl_platform_id platform = NULL;
    status = clGetPlatformIDs(0, NULL, &numPlatforms);
    if(!sampleCommon->checkVal(status,
                               CL_SUCCESS,
                               "clGetPlatformIDs failed."))
    {
        return SDK_FAILURE;
    }
    if (0 < numPlatforms) 
    {
        cl_platform_id* platforms = new cl_platform_id[numPlatforms];
        status = clGetPlatformIDs(numPlatforms, platforms, NULL);
        if(!sampleCommon->checkVal(status,
                                   CL_SUCCESS,
                                   "clGetPlatformIDs failed."))
        {
            return SDK_FAILURE;
        }
        for (unsigned i = 0; i < numPlatforms; ++i) 
        {
            char pbuf[100];
            status = clGetPlatformInfo(platforms[i],
                                       CL_PLATFORM_VENDOR,
                                       sizeof(pbuf),
                                       pbuf,
                                       NULL);

            if(!sampleCommon->checkVal(status,
                                       CL_SUCCESS,
                                       "clGetPlatformInfo failed."))
            {
                return SDK_FAILURE;
            }

            platform = platforms[i];
            if (!strcmp(pbuf, "Advanced Micro Devices, Inc.")) 
            {
                break;
            }
        }
        delete[] platforms;
    }

    /*
     * If we could find our platform, use it. Otherwise pass a NULL and 
get whatever the
     * implementation thinks we should be using.
     */

    cl_context_properties cps[3] = 
    {
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)platform, 
        0
    };
    /* Use NULL for backward compatibility */
    cl_context_properties* cprops = (NULL == platform) ? NULL : cps;

    context = clCreateContextFromType(
                  cprops,
                  dType,
                  NULL,
                  NULL,
                  &status);
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Another example of a pre-ICD code snippet follows.

status = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_DEFAULT, 0, NULL,
&numDevices);

The ICD-compliant version of the code snippet is:

status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 0, NULL,
&numDevices);
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Appendix C 
Compute Kernel

C.1 Differences from a Pixel Shader
Differences between a pixel shader and a compute kernel include: location 
indexing, amount of resources used on the GPU compute device, memory 
access patterns, cache behavior, work-item spawn rate, creation of wavefronts 
and groups, and newly exposed hardware features such as Local Data Store and 
Shared Registers. Many of these changes are based on the spawn/dispatch 
pattern of a compute kernel. This pattern is linear; for a pixel shader, it is a 
hierarchical-Z pattern. The following sections discuss the effects of this change. 
at the IL level.

C.2 Indexing
A primary difference between a compute kernel and a pixel shader is the 
indexing mode. In a pixel shader, indexing is done through the vWinCoord 
register and is directly related to the output domain (frame buffer size and 
geometry) specified by the user space program. This domain is usually in the 
Euclidean space and specified by a pair of coordinates. In a compute kernel, 
however, this changes: the indexing method is switched to a linear index between 
one and three dimensions, as specified by the user. This gives the programmer 
more flexibility when writing kernels. 

Indexing is done through the vaTid register, which stands for absolute work-item 
id. This value is linear: from 0 to N-1, where N is the number of work-items 
requested by the user space program to be executed on the GPU compute 
device. Two other indexing variables, vTid and vTgroupid, are derived from 
settings in the kernel and vaTid.

In SDK 1.4 and later, new indexing variables are introduced for either 3D spawn 
or 1D spawn. The 1D indexing variables are still valid, but   replaced with 
vAbsTidFlat, vThreadGrpIdFlat, and vTidInGrpFlat, respectively. The 3D versions 
are vAbsTid, vThreadGrpId, and vTidInGrp. The 3D versions have their 
respective positions in each dimension in the x, y, and z components. The w 
component is not used. If the group size for a dimension is not specified, it is an 
implicit 1. The 1D version has the dimension replicated over all components.
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C.3 Performance Comparison
To show the performance differences between a compute kernel and a pixel 
shader, the following subsection show a matrix transpose program written in 
three ways: 

1. A naïve pixel shader of matrix transpose.

2. The compute kernel equivalent. 

3. An optimized matrix transpose using LDS to further improve performance.

C.4 Pixel Shader
The traditional naïve matrix transpose reads in data points from the (j,i)th element 
of input matrix in sampler and writes out at the current (i,j)th location, which is 
implicit in the output write. The kernel is structured as follows:

Figure C.1 shows the performance results of using a pixel shader for this matrix 
transpose.

Figure C.1 Pixel Shader Matrix Transpose

il_ps_2_0
dcl_input_position_interp(linear_noperspective) vWinCoord0.xy__
dcl_output_generic o0
dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)
sample_resource(0)_sampler(0) o0, vWinCoord0.yx
end
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C.5 Compute Kernel
For the compute kernel, the kernel is structured as follows:

Figure C.2 shows the performance results using a compute kernel for this matrix 
transpose.

Figure C.2 Compute Kernel Matrix Transpose

C.6 LDS Matrix Transpose
Figure C.3 shows the performance results using the LDS for this matrix 
transpose. 

il_cs_2_0
dcl_num_threads_per_group 64
dcl_cb cb0[1]
dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)
umod r0.x, vAbsTidFlat.x, cb0[0].x
udiv r0.y, vAbsTidFlat.x, cb0[0].x
sample_resource(0)_sampler(0) r1, r0.yx
mov g[vAbsTidFlat.x], r1
end
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Figure C.3 LDS Matrix Transpose

C.7 Results Comparison
Based on the graphs above, it can be seen that in most cases using the LDS to 
do on-chip transpose outperforms the similar pixel shader and compute kernel 
versions; however, a direct porting of the transpose algorithm from a pixel shader 
to a compute kernel does not immediately increase performance. This is because 
of the differences mentioned above between the pixel shader and the compute 
kernel. Taking advantage of the compute kernel features such as LDS can lead 
to a large performance gain in certain programs.
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Appendix D 
Device Parameters

On the following pages, Table D.1 and Table D.2 provide device-specific 
information for AMD Evergreen-series GPUs. 
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Table D.1 Parameters for 54xx, 55xx, 56xx, and 57xx Devices

Cedar Redwood 
PRO2

Redwood 
PRO

Redwood 
XT

Juniper 
LE

Juniper 
XT

Product Name (ATI Radeon™ HD) 5450 5550 5570 5670 5750 5770

Engine Speed (MHz) 650 550 650 775 700 850

Compute Resources
Compute Units 2 4 5 5 9 10

Stream Cores 16 64 80 80 144 160

Processing Elements 80 320 400 400 720 800

Peak Gflops 104 352 520 620 1008 1360

Cache and Register Sizes
# of Vector Registers/CU 8192 16384 16384 16384 16384 16384

Size of Vector Registers/CU 128k 256k 256k 256k 256k 256k

LDS Size/ CU 32k 32k 32k 32k 32k 32k

LDS Banks / CU 16 16 16 16 32 32

Constant Cache / GPU 4k 16k 16k 16k 24k 24k

Max Constants / CU 4k 8k 8k 8k 8k 8k

L1 Cache Size / CU 8k 8k 8k 8k 8k 8k

L2 Cache Size / GPU 64k 128k 128k 128k 256k 256k

Peak GPU Bandwidths
Register Read (GB/s) 499 1690 2496 2976 4838 6528

LDS Read (GB/s) 83 141 208 248 806 1088

Constant Cache Read (GB/s) 166 563 832 992 1613 2176

L1 Read (GB/s) 83 141 208 248 403 544

L2 Read (GB/s) 83 141 166 198 179 218

Global Memory (GB/s) 13 26 29 64 74 77

Global Limits
Max Wavefronts / GPU 192 248 248 248 248 248

Max Wavefronts / CU (avg) 96.0 62.0 49.6 49.6 27.6 24.8

Max Work-Items / GPU 6144 15872 15872 15872 15872 15872

Memory
Memory Channels 2 4 4 4 4 4

Memory Bus Width (bits) 64 128 128 128 128 128

Memory Type and 
Speed (MHz)

DDR3
800

DDR3
800

DDR3
900

GDDR5
1000

GDDR5
1150

GDDR5
1200

Frame Buffer 1 GB / 512 
MB

1 GB / 512 
MB

1 GB / 512 
MB

1 GB / 512 
MB

1 GB / 512 
MB

1 GB
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Table D.2 Parameters for 58xx, Eyfinity6, and 59xx Devices

Cypress LE CypressPRO Cypress XT Hemlock

Product Name (ATI Radeon™ HD) 5830 5850 5870 5970

Engine Speed (MHz) 800 725 850 725

Compute Resources
Compute Units 14 18 20 40

Stream Cores 224 288 320 640

Processing Elements 1120 1440 1600 3200

Peak Gflops 1792 2088 2720 4640

Cache and Register Sizes
# of Vector Registers/CU 16384 16384 16384 16384

Size of Vector Registers/CU 256k 256k 256k 256k

LDS Size/ CU 32k 32k 32k 32k

LDS Banks / CU 32 32 32 32

Constant Cache / GPU 32k 40k 48k 96k

Max Constants / CU 8k 8k 8k 8k

L1 Cache Size / CU 8k 8k 8k 8k

L2 Cache Size / GPU 512k 512k 512k 2 x 512k

Peak GPU Bandwidths
Register Read (GB/s) 8602 10022 13056 22272

LDS Read (GB/s) 1434 1670 2176 3712

Constant Cache Read (GB/s) 2867 3341 4352 7424

L1 Read (GB/s) 717 835 1088 1856

L2 Read (GB/s) 410 371 435 742

Global Memory (GB/s) 128 128 154 256

Global Limits
Max Wavefronts / GPU 496 496 496 992

Max Wavefronts / CU (avg) 35.4 27.6 24.8 24.8

Max Work-Items / GPU 31744 31744 31744 63488

Memory
Memory Channels 8 8 8 2 x 8

Memory Bus Width (bits) 256 256 256 2 x 256

Memory Type and 
Speed (MHz)

GDDR5
1000

GDDR5
1000

GDDR5
1200

GDDR5
1000

Frame Buffer 1 GB 1GB 1 GB 2 GB
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Glossary of Terms

Term Description

* Any number of alphanumeric characters in the name of a microcode format, microcode 
parameter, or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most 
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{BUF, SWIZ} One of the multiple options listed. In this case, the string BUF or the string SWIZ.

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

0x Indicates that the following is a hexadecimal number.

1011b A binary value, in this example a 4-bit value.

29’b0 29 bits with the value 0.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

ABI Application Binary Interface.

absolute A displacement that references the base of a code segment, rather than an instruction 
pointer. See relative.

active mask A 1-bit-per-pixel mask that controls which pixels in a “quad” are really running. Some 
pixels might not be running if the current “primitive” does not cover the whole quad. A 
mask can be updated with a PRED_SET* ALU instruction, but updates do not take effect 
until the end of the ALU clause.

address stack A stack that contains only addresses (no other state). Used for flow control. Popping 
the address stack overrides the instruction address field of a flow control instruction. 
The address stack is only modified if the flow control instruction decides to jump. 

ACML AMD Core Math Library. Includes implementations of the full BLAS and LAPACK rou-
tines, FFT, Math transcendental and Random Number Generator routines, stream 
processing backend for load balancing of computations between the CPU and GPU 
compute device. 

aL (also AL) Loop register. A three-component vector (x, y and z) used to count iterations of a loop.

allocate To reserve storage space for data in an output buffer (“scratch buffer,” “ring buffer,” 
“stream buffer,” or “reduction buffer”) or for data in an input buffer (“scratch buffer” or 
“ring buffer”) before exporting (writing) or importing (reading) data or addresses to, or 
from that buffer. Space is allocated only for data, not for addresses. After allocating 
space in a buffer, an “export” operation can be done.
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ALU Arithmetic Logic Unit. Responsible for arithmetic operations like addition, subtraction, 
multiplication, division, and bit manipulation on integer and floating point values. In 
stream computing, these are known as stream cores.
ALU.[X,Y,Z,W] - an ALU that can perform four vector operations in which the four oper-

ands (integers or single-precision floating point values) do not have to be 
related. It performs “SIMD” operations. Thus, although the four operands need 
not be related, all four operations execute the same instruction.

ALU.Trans - An ALU unit that can perform one ALU.Trans (transcendental, scalar) oper-
ation, or advanced integer operation, on one integer or single-precision floating-
point value, and replicate the result. A single instruction can co-issue four 
ALU.Trans operations to an ALU.[X,Y,Z,W] unit and one (possibly complex) 
operation to an ALU.Trans unit, which can then replicate its result across all four 
component being operated on in the associated ALU.[X,Y,Z,W] unit. 

AR Address register.

ATI Stream™ SDK A complete software development suite from ATI for developing applications for ATI 
Stream compute devices. Currently, the ATI Stream SDK includes OpenCL and CAL.

aTid Absolute thread id. It is the ordinal count of all threads being executed (in a draw call).

b A bit, as in 1Mb for one megabit, or lsb for least-significant bit.

B A byte, as in 1MB for one megabyte, or LSB for least-significant byte.

BLAS Basic Linear Algebra Subroutines.

border color Four 32-bit floating-point numbers (XYZW) specifying the border color.

branch granularity The number of threads executed during a branch. For ATI, branch granularity is equal 
to wavefront granularity.

burst mode The limited write combining ability. See write combining.

byte Eight bits.

cache A read-only or write-only on-chip or off-chip storage space. 

CAL Compute Abstraction Layer. A device-driver library that provides a forward-compatible 
interface to ATI Stream compute devices. This lower-level API gives users direct control 
over the hardware: they can directly open devices, allocate memory resources, transfer 
data and initiate kernel execution. CAL also provides a JIT compiler for ATI IL.

CF Control Flow.

cfile Constant file or constant register.

channel A component in a vector.

clamp To hold within a stated range. 

clause A group of instructions that are of the same type (all stream core, all fetch, etc.) exe-
cuted as a group. A clause is part of a CAL program written using the compute device 
ISA. Executed without pre-emption.

clause size The total number of slots required for an stream core clause. 

clause temporaries Temporary values stored at GPR that do not need to be preserved past the end of a 
clause. 

clear To write a bit-value of 0. Compare “set”.

Term Description
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command A value written by the host processor directly to the GPU compute device. The com-
mands contain information that is not typically part of an application program, such as 
setting configuration registers, specifying the data domain on which to operate, and ini-
tiating the start of data processing. 

command processor A logic block in the R700 (HD4000-family of devices) that receives host commands, 
interprets them, and performs the operations they indicate. 

component (1) A 32-bit piece of data in a “vector”. (2) A 32-bit piece of data in an array. (3) One 
of four data items in a 4-component register.

compute device A parallel processor capable of executing multiple threads of a kernel in order to pro-
cess streams of data.

compute kernel Similar to a pixel shader, but exposes data sharing and synchronization.

constant buffer Off-chip memory that contains constants. A constant buffer can hold up to 1024 four-
component vectors. There are fifteen constant buffers, referenced as cb0 to cb14. An 
immediate constant buffer is similar to a constant buffer. However, an immediate con-
stant buffer is defined within a kernel using special instructions. There are fifteen 
immediate constant buffers, referenced as icb0 to icb14.

constant cache A constant cache is a hardware object (off-chip memory) used to hold data that remains 
unchanged for the duration of a kernel (constants). “Constant cache” is a general term 
used to describe constant registers, constant buffers or immediate constant buffers.

constant file Same as constant register.

constant index 
register

Same as “AR” register.

constant registers On-chip registers that contain constants. The registers are organized as four 32-bit 
component of a vector. There are 256 such registers, each one 128-bits wide.

constant waterfalling Relative addressing of a constant file. See waterfalling.

context A representation of the state of a CAL device.

core clock See engine clock. The clock at which the GPU compute device stream core runs.

CPU Central Processing Unit. Also called host. Responsible for executing the operating sys-
tem and the main part of the application. The CPU provides data and instructions to 
the GPU compute device.

CRs Constant registers. There are 512 CRs, each one 128 bits wide, organized as four 32-
bit values.

CS Compute shader; commonly referred to as a compute kernel. A shader type, analogous 
to VS/PS/GS/ES.

CTM Close-to-Metal. 
A thin, HW/SW interface layer. This was the predecessor of the ATI CAL.

DC Data Copy Shader.

device A device is an entire ATI Stream compute device. 

DMA Direct-memory access. Also called DMA engine. Responsible for independently trans-
ferring data to, and from, the GPU compute device’s local memory. This allows other 
computations to occur in parallel, increasing overall system performance.

double word Dword. Two words, or four bytes, or 32 bits.

Term Description
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double quad word Eight words, or 16 bytes, or 128 bits. Also called “octword.”

domain of execution A specified rectangular region of the output buffer to which threads are mapped. 

DPP Data-Parallel Processor.

dst.X The X “slot” of an destination operand. 

dword Double word. Two words, or four bytes, or 32 bits.

element A component in a vector.

engine clock The clock driving the stream core and memory fetch units on the GPU compute device.

enum(7) A seven-bit field that specifies an enumerated set of decimal values (in this case, a set 
of up to 27 values). The valid values can begin at a value greater than, or equal to, 
zero; and the number of valid values can be less than, or equal to, the maximum sup-
ported by the field.

event A token sent through a pipeline that can be used to enforce synchronization, flush 
caches, and report status back to the host application. 

export To write data from GPRs to an output buffer (scratch, ring, stream, frame or global 
buffer, or to a register), or to read data from an input buffer (a “scratch buffer” or “ring 
buffer”) to GPRs. The term “export” is a partial misnomer because it performs both input 
and output functions. Prior to exporting, an allocation operation must be performed to 
reserve space in the associated buffer.

FC Flow control.

FFT Fast Fourier Transform.

flag A bit that is modified by a CF or stream core operation and that can affect subsequent 
operations.

FLOP Floating Point Operation.

flush To writeback and invalidate cache data. 

FMA Fused multiply add.

frame A single two-dimensional screenful of data, or the storage space required for it.

frame buffer Off-chip memory that stores a frame. Sometimes refers to the all of the GPU memory 
(excluding local memory and caches).

FS Fetch subroutine. A global program for fetching vertex data. It can be called by a “vertex 
shader” (VS), and it runs in the same thread context as the vertex program, and thus 
is treated for execution purposes as part of the vertex program. The FS provides driver 
independence between the process of fetching data required by a VS, and the VS itself. 
This includes having a semantic connection between the outputs of the fetch process 
and the inputs of the VS. 

function A subprogram called by the main program or another function within an ATI IL stream. 
Functions are delineated by FUNC and ENDFUNC.

gather Reading from arbitrary memory locations by a thread.

gather stream Input streams are treated as a memory array, and data elements are 
addressed directly.

Term Description
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global buffer GPU memory space containing the arbitrary address locations to which uncached ker-
nel outputs are written. Can be read either cached or uncached. When read in 
uncached mode, it is known as mem-import. Allows applications the flexibility to read 
from and write to arbitrary locations in input buffers and output buffers, respectively.

global memory Memory for reads/writes between threads. On HD Radeon 5XXX series devices and 
later, atomic operations can be used to synchronize memory operations.

GPGPU General-purpose compute device. A GPU compute device that performs general-pur-
pose calculations.

GPR General-purpose register. GPRs hold vectors of either four 32-bit IEEE floating-point, 
or four 8-, 16-, or 32-bit signed or unsigned integer or two 64-bit IEEE double precision 
data components (values). These registers can be indexed, and consist of an on-chip 
part and an off-chip part, called the “scratch buffer,” in memory.

GPU Graphics Processing Unit. An integrated circuit that renders and displays graphical 
images on a monitor. Also called Graphics Hardware, Compute Device, and Data Par-
allel Processor.

GPU engine clock 
frequency

Also called 3D engine speed.

GPU compute device A parallel processor capable of executing multiple threads of a kernel in order to pro-
cess streams of data.

GS Geometry Shader.

HAL Hardware Abstraction Layer.

host Also called CPU. 

iff If and only if.

IL Intermediate Language. In this manual, the ATI version: ATI IL. A pseudo-assembly lan-
guage that can be used to describe kernels for GPU compute devices. ATI IL is 
designed for efficient generalization of GPU compute device instructions so that pro-
grams can run on a variety of platforms without having to be rewritten for each platform.

in flight A thread currently being processed.

instruction A computing function specified by the code field of an IL_OpCode token. Compare 
“opcode”, “operation”, and “instruction packet”.

instruction packet A group of tokens starting with an IL_OpCode token that represent a single ATI IL 
instruction.

int(2) A 2-bit field that specifies an integer value.

ISA Instruction Set Architecture. The complete specification of the interface between com-
puter programs and the underlying computer hardware.

kcache A memory area containing “waterfall” (off-chip) constants. The cache lines of these con-
stants can be locked. The “constant registers” are the 256 on-chip constants.

kernel A user-developed program that is run repeatedly on a stream of data. A parallel function 
that operates on every element of input streams. A device program is one type of ker-
nel. Unless otherwise specified, an ATI Stream compute device program is a kernel 
composed of a main program and zero or more functions. Also called Shader Program. 
This is not to be confused with an OS kernel, which controls hardware.

LAPACK Linear Algebra Package.

Term Description
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LDS Local Data Share. Part of local memory. These are read/write registers that support 
sharing between all threads in a group. Synchronization is required. 

LERP Linear Interpolation.

local memory fetch 
units

Dedicated hardware that a) processes fetch instructions, b) requests data from the 
memory controller, and c) loads registers with data returned from the cache. They are 
run at stream core or engine clock speeds. Formerly called texture units.

LOD Level Of Detail.

loop index A register initialized by software and incremented by hardware on each iteration of a 
loop.

lsb Least-significant bit.

LSB Least-significant byte.

MAD Multiply-Add. A fused instruction that both multiplies and adds.

mask (1) To prevent from being seen or acted upon. (2) A field of bits used for a control 
purpose.

MBZ Must be zero.

mem-export An ATI IL term random writes to the global buffer. 

mem-import Uncached reads from the global buffer.

memory clock The clock driving the memory chips on the GPU compute device.

microcode format An encoding format whose fields specify instructions and associated parameters. Micro-
code formats are used in sets of two or four. For example, the two mnemonics, 
CF_DWORD[0,1] indicate a microcode-format pair, CF_DWORD0 and CF_DWORD1.

MIMD Multiple Instruction Multiple Data.
– Multiple SIMD units operating in parallel (Multi-Processor System) 
– Distributed or shared memory

MRT Multiple Render Target. One of multiple areas of local GPU compute device memory, 
such as a “frame buffer”, to which a graphics pipeline writes data. 

MSAA Multi-Sample Anti-Aliasing.

msb Most-significant bit.

MSB Most-significant byte.

neighborhood A group of four threads in the same wavefront that have consecutive thread IDs (Tid). 
The first Tid must be a multiple of four. For example, threads with Tid = 0, 1, 2, and 3 
form a neighborhood, as do threads with Tid = 12, 13, 14, and 15.

normalized A numeric value in the range [a, b] that has been converted to a range of 0.0 to 1.0 
using the formula:   normalized value = value/ (b–a+ 1)

oct word Eight words, or 16 bytes, or 128 bits. Same as “double quad word”. Also referred to as  
word.

opcode The numeric value of the code field of an “instruction”. For example, the opcode for the 
CMOV instruction is decimal 16 (0x10).

opcode token A 32-bit value that describes the operation of an instruction.

Term Description
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operation The function performed by an “instruction”.

PaC Parameter Cache.

PCI Express A high-speed computer expansion card interface used by modern graphics cards, GPU 
compute devices and other peripherals needing high data transfer rates. Unlike previ-
ous expansion interfaces, PCI Express is structured around point-to-point links. Also 
called PCIe.

PoC Position Cache.

pop Write “stack” entries to their associated hardware-maintained control-flow state. The 
POP_COUNT field of the CF_DWORD1 microcode format specifies the number of stack 
entries to pop for instructions that pop the stack. Compare “push.” 

pre-emption The act of temporarily interrupting a task being carried out on a computer system, with-
out requiring its cooperation, with the intention of resuming the task at a later time.

processor Unless otherwise stated, the ATI Stream compute device.

program Unless otherwise specified, a program is a set of instructions that can run on the ATI 
Stream compute device. A device program is a type of kernel. 

PS Pixel Shader, aka pixel kernel.

push Read hardware-maintained control-flow state and write their contents onto the stack. 
Compare pop. 

PV Previous vector register. It contains the previous four-component vector result from a 
ALU.[X,Y,Z,W] unit within a given clause.

quad For a compute kernel, this consists of four consecutive work-items. For pixel and other 
shaders, this is a group of 2x2 threads in the NDRange. Always processed together.

rasterization The process of mapping threads from the domain of execution to the SIMD engine. This 
term is a carryover from graphics, where it refers to the process of turning geometry, 
such as triangles, into pixels.

rasterization order The order of the thread mapping generated by rasterization.

RAT Random Access Target. Same as UAV. Allows, on DX11 hardware, writes to, and reads 
from, any arbitrary location in a buffer. 

RB Ring Buffer.

register For a GPU, this is a 128-bit address mapped memory space consisting of four 32-bit 
components.

relative Referencing with a displacement (also called offset) from an index register or the loop 
index, rather than from the base address of a program (the first control flow [CF] 
instruction).

render backend unit The hardware units in a processing element responsible for writing the results of a ker-
nel to output streams by writing the results to an output cache and transferring the 
cache data to memory.

resource A block of memory used for input to, or output from, a kernel.

ring buffer An on-chip buffer that indexes itself automatically in a circle.

Rsvd Reserved.

Term Description
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sampler A structure that contains information necessary to access data in a resource. Also 
called Fetch Unit.

SC Shader Compiler.

scalar A single data component, unlike a vector which contains a set of two or more data 
elements.

scatter Writes (by uncached memory) to arbitrary locations.

scatter write Kernel outputs to arbitrary address locations. Must be uncached. Must be made to a 
memory space known as the global buffer. 

scratch buffer A variable-sized space in off-chip-memory that stores some of the “GPRs”.

set To write a bit-value of 1. Compare “clear”.

shader processor Pre-OpenCL term that is now deprecated. Also called thread processor.

shader program User developed program. Also called kernel.

SIMD Pre-OpenCL term that is now deprecated. Single instruction multiple data unit.
– Each SIMD receives independent stream core instructions.
– Each SIMD applies the instructions to multiple data elements.

SIMD Engine Pre-OpenCL term that is now deprecated. A collection of thread processors, each of 
which executes the same instruction each cycle.

SIMD pipeline Pre-OpenCL term that is now deprecated. A hardware block consisting of five stream 
cores, one stream core instruction decoder and issuer, one stream core constant 
fetcher, and support logic. All parts of a SIMD pipeline receive the same instruction and 
operate on different data elements. Also known as “slice.”

Simultaneous 
Instruction Issue

Input, output, fetch, stream core, and control flow per SIMD engine.

SKA Stream KernelAnalyzer. A performance profiling tool for developing, debugging, and 
profiling stream kernels using high-level stream computing languages.

slot A position, in an “instruction group,” for an “instruction” or an associated literal constant. 
An ALU instruction group consists of one to seven slots, each 64 bits wide. All ALU 
instructions occupy one slot, except double-precision floating-point instructions, which 
occupy either two or four slots. The size of an ALU clause is the total number of slots 
required for the clause. 

SPU Shader processing unit.

SR Globally shared registers. These are read/write registers that support sharing between 
all wavefronts in a SIMD (not a thread group). The sharing is column sharing, so 
threads with the same thread ID within the wavefront can share data. All operations on 
SR are atomic.

src0, src1, etc. In floating-point operation syntax, a 32-bit source operand. Src0_64 is a 64-bit source 
operand.

stage A sampler and resource pair.

stream A collection of data elements of the same type that can be operated on in parallel.

stream buffer A variable-sized space in off-chip memory that stores an instruction stream. It is an out-
put-only buffer, configured by the host processor. It does not store inputs from off-chip 
memory to the processor.

Term Description
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stream core The fundamental, programmable computational units, responsible for performing inte-
ger, single, precision floating point, double precision floating point, and transcendental 
operations. They execute VLIW instructions for a particular thread. Each processing 
element handles a single instruction within the VLIW instruction.

stream operator A node that can restructure data.

swizzling To copy or move any component in a source vector to any element-position in a desti-
nation vector. Accessing elements in any combination.

thread Pre-OpenCL term that is now deprecated. One invocation of a kernel corresponding to 
a single element in the domain of execution. An instance of execution of a shader pro-
gram on an ALU. Each thread has its own data; multiple threads can share a single 
program counter.

thread group Pre-OpenCL term that is now deprecated. It contains one or more thread blocks. 
Threads in the same thread-group but different thread-blocks might communicate to 
each through global per-SIMD shared memory. This is a concept mainly for global data 
share (GDS). A thread group can contain one or more wavefronts, the last of which can 
be a partial wavefront. All wavefronts in a thread group can run on only one SIMD 
engine; however, multiple thread groups can share a SIMD engine, if there are enough 
resources.

thread processor Pre-OpenCL term that is now deprecated. The hardware units in a SIMD engine 
responsible for executing the threads of a kernel. It executes the same instruction per 
cycle. Each thread processor contains multiple stream cores. Also called shader 
processor. 

thread-block Pre-OpenCL term that is now deprecated. A group of threads which might communicate 
to each other through local per SIMD shared memory. It can contain one or more wave-
fronts (the last wavefront can be a partial wavefront). A thread-block (all its wavefronts) 
can only run on one SIMD engine. However, multiple thread blocks can share a SIMD 
engine, if there are enough resources to fit them in. 

Tid Thread id within a thread block. An integer number from 0 to Num_threads_per_block-1

token A 32-bit value that represents an independent part of a stream or instruction.

UAV Unordered Access View. Same as random access target (RAT). They allow compute 
shaders to store results in (or write results to) a buffer at any arbitrary location. On DX11 
hardware, UAVs can be created from buffers and textures. On DX10 hardware, UAVs 
cannot be created from typed resources (textures).

uncached read/write 
unit

The hardware units in a GPU compute device responsible for handling uncached read 
or write requests from local memory on the GPU compute device.

vector (1) A set of up to four related values of the same data type, each of which is an ele-
ment. For example, a vector with four elements is known as a “4-vector” and a vector 
with three elements is known as a “3-vector”. (2) See “AR”. (3) See ALU.[X,Y,Z,W].

VLIW design Very Long Instruction Word.
– Co-issued up to 6 operations (5 stream cores + 1 FC); where FC = flow control.
– 1.25 Machine Scalar operation per clock for each of 64 data elements
– Independent scalar source and destination addressing

vTid Thread ID within a thread group.
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waterfall To use the address register (AR) for indexing the GPRs. Waterfall behavior is deter-
mined by a “configuration registers.” 

wavefront Group of threads executed together on a single SIMD engine. Composed of quads. A 
full wavefront contains 64 threads; a wavefront with fewer than 64 threads is called a 
partial wavefront. Wavefronts that have fewer than a full set of threads are called partial 
wavefronts. For the HD4000-family of devices, there are 64. 32, 16 threads in a full 
wavefront. Threads within a wavefront execute in lockstep.

write combining Combining several smaller writes to memory into a single larger write to minimize any 
overhead associated with write commands.

Term Description
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