Programming Guide

ATI

STREAM

TECHNOLOGY

ATI Stream Computing
OpenCL"™

August 2010

rev1.05

© 2010 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,
ATI, the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Win-
dows Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other
jurisdictions. Other names are for informational purposes only and may be trademarks of
their respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used
by permission by Khronos.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to
make changes to specifications and product descriptions at any time without notice. The
information contained herein may be of a preliminary or advance nature and is subject to
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever,
and disclaims any express or implied warranty, relating to its products including, but not
limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.

AMD'’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of AMD’s
product could create a situation where personal injury, death, or severe property or envi-
ronmental damage may occur. AMD reserves the right to discontinue or make changes to
its products at any time without notice.

AMD

The future is fusion

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA 94088-3453
www.amd.com

http://www.amd.com/

ATl STREAM COMPUTING

Preface

About This Document

Audience

Organization

This document provides a basic description of the ATl Stream computing
environment and components. It describes the basic architecture of stream
processors and provides useful performance tips. This document also provides
a guide for programmers who want to use the ATI Stream SDK to accelerate their
applications.

This document is intended for programmers. It assumes prior experience in
writing code for CPUs and a basic understanding of threads (work-items). While
a basic understanding of GPU architectures is useful, this document does not
assume prior graphics knowledge. It further assumes an understanding of
chapters 1, 2, and 3 of the OpenCL Specification (for the latest version, see
http://www.khronos.org/registry/cl/).

This ATI Stream Computing document begins, in Chapter 1, with an overview of;
the ATI Stream Computing programming models, OpenCL, the ATI Compute
Abstraction Layer (CAL), the Stream Kernel Analyzer (SKA), and the ATI Stream
Profiler. Chapter 2 discusses the compiling and running of OpenCL programs.
Chapter 3 describes using GNU debugger (GDB) to debug OpenCL programs.
Chapter 4 is a discussion of performance and optimization when programming
for ATI stream compute devices. Appendix A describes the supported optional
OpenCL extensions. Appendix B details the installable cllient driver (ICD) for
OpenCL. Appendix C details the compute kernel and contrasts it with a pixel
shader. The last section of this book is a glossary of acronyms and terms, as
well as an index.

Preface iii
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

Conventions

ATl STREAM COMPUTING

The following conventions are used in this document.

mono-spaced font

A filename, file path, or code.

*

Any number of alphanumeric characters in the name of a code format, parameter,
or instruction.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

x|y} One of the multiple options listed. In this case, x ory.

0.0f A single-precision (32-bit) floating-point value.

0.0 A double-precision (64-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

74 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

italicized word or phrase

The first use of a term or concept basic to the understanding of stream computing.

Related Documents

The OpenCL Specification, Version 1.0, Published by Khronos OpenCL
Working Group, Aaftab Munshi (ed.), 2009.

AMD, R600 Technology, R600 Instruction Set Architecture, Sunnyvale, CA,
est. pub. date 2007. This document includes the RV670 GPU instruction
details.

ISO/IEC 9899:TC2 - International Standard - Programming Languages - C

Kernighan Brian W., and Ritchie, Dennis M., The C Programming Language,
Prentice-Hall, Inc., Upper Saddle River, NJ, 1978.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.
Hanrahan, “Brook for GPUs: stream computing on graphics hardware,” ACM
Trans. Graph., vol. 23, no. 3, pp. 777786, 2004.

ATI Compute Abstraction Layer (CAL) Intermediate Language (IL) Reference
Manual. Published by AMD.

CAL Image. ATI Compute Abstraction Layer Program Binary Format
Specification. Published by AMD.

Buck, lan; Foley, Tim; Horn, Daniel; Sugerman, Jeremy; Hanrahan, Pat;
Houston, Mike; Fatahalian, Kayvon. “BrookGPU”
http://graphics.stanford.edu/projects/brookgpu/

Buck, lan. “Brook Spec v0.2". October 31, 2003.
http://merrimac.stanford.edu/brook/brookspec-05-20-03.pdf

OpenGL Programming Guide, at http://www.glprogramming.com/red/

Microsoft DirectX Reference Website, at http://msdn.microsoft.com/en-
us/directx

iv Preface
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

e GPGPU: http://www.gpgpu.org, and Stanford BrookGPU discussion forum
http://www.gpgpu.org/forums/

Contact Information

To submit questions or comments concerning this document, contact our
technical documentation staff at: streamcomputing@amd.com.

For questions concerning ATI Stream products, please email:
streamcomputing@amd.com.

For questions about developing with ATI Stream, please email:
streamdeveloper@amd.com.

You can learn more about ATI Stream at: http://www.amd.com/stream.

We also have a growing community of ATl Stream users. Come visit us at the
ATI Stream Developer Forum (http://www.amd.com/streamdevforum) to find out
what applications other users are trying on their ATI Stream products.

Preface v
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

vi

ATl STREAM COMPUTING

Preface
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Contents

Preface
Contents

Chapter 1 OpenCL Architecture and the ATI Stream Computing System

11 SOFWAIE OVEIVIEWocvueiiieicie ettt 1-1
111 Data-Parallel Programming MOGElcccooeiiininiiniececee e 11

1.1.2 Task-Parallel Programming MOGEIcccvvvvinniieinnisesesss s 1-1

113 SYNCRIONIZALION. ..o 1-2

1.2 HArAWArE OVEIVIEWcvieiiticeicieieeseiet ettt 1-2
1.3 The ATI Stream Computing Implementation of OPeNCL..........ccccvivriennenniernee s 1-4
131 WOrK-ItBmM PrOCESSING wvrevveeiviesireiiersesietstsssessssssesssssssssssss s sesessssessssssesssssssesseseens 1-7

132 FIOW CONEIOL ... 1-8

133 WOrK-ItEM CreatIONc..cviiieiciieeree e 1-9

134 ATl Compute Abstraction Layer (CAL) ... 1-9

1.4 Memory ArchiteCture ant ACCESS........coueiiriiiiiiiieiee ettt 1-10
14.1 MEIMOIY ACCESSocuiiieiiei ettt bbbkttt bbbt 1-12

142 GIODEI BUFFEE ...t 1-12

143 IMAGE REAGINVIILE ... 1-12

144 MemOIY LOAAISIONE......ccvvieieiiciei et 1-13

15 Communication Between Host and GPU in a Compute DEVICE..........covevivrerniirernirerienniins 1-13
151 PCIEXPIESS BUS ..ot 1-13

152 Processing API Calls: The Command PrOCESSONccoviernieinrnieirneieniseseneeneens 1-13

153 DMA TFANSTEIS ..t 1-14

16 GPU Compute Device SChedUIINGccoveuriiiririinreieres s 1-14
17 TEIMINOIOQY ..ottt bbbttt 1-16
171 COMPULE KEIMEL....oiiiiieeiieeeeesc s 1-16

1.7.2 Wavefronts and WOIKQrOUPSc.cccvvrieiiiineiiin et 1-17

173 Local Data StOre (LDS).....cccvieriirireieinieisins et sssesessssenns 1-17

1.8 Programming MOGEcoiiuriiirieer e 1-17
1.9 EXAMPIE PrOQIaMS.....ocuciiiiiiieieisiiis sttt sttt es e sn s 1-19
19.1 First Example: Simple BUffer WIILEccccoiriiniecce s 1-19

1.9.2 Second Example: SAXPY FUNCHONovviiiiirieirecrecsiecsseses s 1-22

1.9.3 Third Example: Parallel Min() FUNCHIONcocoeriiiiienceeeees e 1-27
Contents vii

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Chapter 2 Building and Running OpenCL Programs

2.1 Compiling the PrOGIAMccociiiieieiicissee e 2-2
211 Compiling 0N WINGOWS ..ot 2-2
2.1.2 COMPIIING ON LINUX 1ot 2-3
2.1.3 OpenCL CoMPIler OPLIONS.......cvieiirieieireeies e 2-3
2.2 RUNNING the PrOGIaM ..ottt bbb 2-4
221 Running Code 0N WINQOWS........ccoieriiiniirrinieisieesseee s seens 2-4
2.2.2 RUNNING COAE ON LINUX w.vvviiiiiicicccce s 2-5
2.3 Calling CONVENTIONScvvveieirceeieieieis sttt b s en s s 2-5
2.4 PredefiNed MACIOScoiiiiiieirie ettt bbb s bbb 2-6

Chapter 3 Debugging OpenCL

3.1 Setting the ENVIFONMENTc.oviiiiieeec e 31
3.2 Setting the Breakpoint in an OpenCL KEINEL.......cccoviveriiiniinniissns e sssssessnens 31
3.3 SAMPIE GDB SESSION ..ottt ettt bbbt 3-2
3 NOEES .. E bR £ bbbt 3-3

Chapter 4 OpenCL Performance and Optimization

41 AT SEEAM PIOTIEToviiiieice s 4-1
4.2 Analyzing Stream ProCesSOr KEIMEIScccviiriierieniessssesssssssssss s sssssessssees 4-3
421 Intermediate Language and GPU Disassembly..........cccccovvvviiiiieeieesssceeeereeenas 4-3
422 Generating IL and ISA COUB.....ccoirriieiiiriertiein et 4-3
4.3 EStiMating PerfOrMANCE.......coviiiiiiieirieirieece s 4-4
431 Measuring EXECULION TIMEcovvierieiirieeisceeis e sssesennes 4-4
432 Using the OpenCL timer with Other System TIMerS.......c.cccoovvivveieesiscireeceenans 4-5
433 Estimating Memory Bandwidth ... 4-6
4.4 Global MemOory OPtIMIZALIONceuiiieiriieceieese e 4-7
441 TWO MEMOIY PANS ... 4-8
442 Channel CONFIICTS ..o s 4-12
443 FIOAt4 OF FIOALL......c.cooiiiiieiricieees s 4-17
444 COoBIESCEU WITEEScoucevrcvcies s 4-19
445 ANGNMENT .ottt 4-21
446 Summary of Copy Performance.........ccccvviiviiieenisceecees e 4-23
447 HArdware VariationS.........cocvierineness e sees 4-23
45 Local Memory (LDS) OPtiMIZatioNcocvieurriieiniieieirinieis et 4-23
4.6 Constant Memory OptiMiZatiON..........cccoeiiiiieinenii s res 4-26
4.7 OpenCL Memory Resources: Capacity and Performancecoooeovviinnnenniennseennnn, 4-27
4.8 NDRange and Execution Range Optimization...........ococerieeriniinienincsn s 4-29
4.8.1 Hiding ALU and Memory LatBNCYcccoieuriiirniriniireiniseinsseseesesssessssesessssssessssssesnns 4-29
482 Resource Limits on Active WaVETTONES........ccoviriiiniiessesseeseeeens 4-30
4.83 Partitioning the WOTK.........ccocoiieiiriescssese s nes 4-34
484 OptiMIZING FOF CRUAANvvvree e 4-37
viii Contents

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

485 Summary of NDRange OptimiZationSccccvverienininnsiesseese e seseeesssesssees 4-38
4.9 Using Multiple OPENCL DEVICEScciuriireerieieiriieieinieisens et 4-38
491 CPU aNd GPU DBVICES ..ottt ssess s sssssssssessssenns 4-38
4.9.2 When to Use MUItIPIE DEVICESccveeeieiiiiiiceiesss s 4-41
493 Partitioning Work for MUltiple DEVICES.........ccouririiinneesese s 4-41
494 SYNChroNization CAVEALS........cccovviviiireieieisser e 4-43
495 GPU and CPU KEIMEISccviieiiiiririiese et 4-44
496 CONEXES AN DEVICES.....coviieiieeiriiees et 4-45
4.10 Instruction Selection OPtIMIZALIONS........c.cvoerieririinriess e 4-45
4.10.1 Instruction BandWidths ... s 4-45
4.10.2 AMD Media INSLIUCHIONScvevireiriieisserceeeisie st 4-47
4.10.3 Math LIDIariESc.ovieeeieeiee s 4-47
4.10.4 VLIW and SSE PACKING ...v.vvevriiiriieisiseeeiesiesss s sses 4-48
411 ClauSE BOUNGAIIES.cuiiiieiiciieicieis sttt 4-50
412 Additional Performance GUIHANCE ..o 4-52
4121 MEMOTY TIlING vt 4-52
O € 1= 4 1= - | T 0TSSR 4-53
4.12.3 Guidance for CUDA Programmers Using OPenCLcccorriinneenineinineeieeeens 4-54
4.12.4 Guidance for CPU Programmers Using OPENCLcccouvvreenrivsnneiesseresssseeesneens 4-54

Appendix A OpenCL Optional Extensions

Al Extension Name CONVENTION ..ot A-l
A2 Querying Extensions for @ PIAtfOrm ...t Al
A3 Querying EXENSIONS fOr @ DEVICE ...vvivuiirircieirieissieieisre sttt sss s esessnns A-2
A4 Using Extensions in KErnel PrOgramS ..o esesssssnsens A-2
A5 Getting Extension FUNCHION POINLEIS ..o A-3
A6 List Of SUPPOITEd EXIENSIONS......ccvivreiriireieiiireinisiseisiss e st es s ssensessnnns A3
AT CL_EXE EXIENSIONS ...ttt A4
A8 AMD Vendor-SPecific EXIENSIONSccviiiruriiiiininiieisieisine ettt A4

ABL CL_amd MEATA OPS ..ottt nnes A5

AB.2 Cl amd PrintF ... A-6
A.9 Supported Functions for Cl_amd_TIB4.........ccovvvcriiiics e A-8
A10 EXtension SUPPOIT DY DEVICE ..ottt sessses s essssssssesnsnsnes A-13

Appendix B The OpenCL Installable Client Driver (ICD)
Bl OVEIVIBW oot B-1
B2 USING ICD oottt B-1

Appendix C Compute Kernel

C.1 Differences from a PiXel Shaderccccoviiiriiniicier e C-1
C.2 INUEXING cttireiieireieieete ettt ettt bbbttt C-1
C.3 Performance COMPAIISONccccvuiriiiieieieiiiiiiesese et en s enes C-2

Contents ix

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Cid PIXEl SNAUET ...t C-2
C.5 COMPULE KEIMEL ...oviieiiteie et bbb C-3
C.6 DS MALriX TrANSPOSEvuervririerireiseseseesssssessssssessssssessssasessssesessssessssssessssssessssssesessssessssnsesessssesssnes C-3
C.7 RESUItS COMPATISON ...oviriieiiiieireeieii ettt C-4

Appendix D Device Parameters

Glossary of Terms

X Contents
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Figures

1.1 Generalized GPU Compute DeVICe SIIUCLUIEcoiiiiiiiiiiiiiiiiiiees s e e e e e e e e e e e e 1-2
1.2 Simplified Block Diagram of the GPU Compute DEVICEcccuiiieiiiiiiiiieeiiiiiee e 1-3
1.3 ATI Stream SoOftWware ECOSYSIEIMuiiiiiieieiiiii it e e err e e e e e e e e e s e arereeeaees 1-4
1.4 Simplified Mapping of OpenCL onto ATI Stream COMPULINGccoeeeeeeeiiieieieeeee e 1-6
1.5 Work-Item Grouping Into Work-Groups and Wavefrontscccccviiiiiiieiiiiiiiee e 1-7
G T O A I U o 1 o g = 1 1 2SR 1-9
1.7 Interrelationship of MemMOry DOMAINS...........ooviiiiiiiiiiiiiiiiiee e e e e e e et e e e e 1-11
1.8 Dataflow between HOSt and GPU ... 1-11
1.9 Simplified Execution Of Work-Items On A Single Stream COre.......ccccceeeeeeveiicicivvinineeeeeeenn 1-15
1.10 Stream Core Stall Due to Data DePeNUENCYuuuvuriiiiiiiiiiiieieie e e e e e e eee e e e 1-16
1.11 OpenCL Programming MOEL..........cooiuiiiiiiiiiiiiii et 1-18
2.1 OpenCL Compiler TOOICNAIN........ccuuiiiiiiiii e r e e e e e e e s e s s nre e eeeees 2-1
2.2 RUNtIME ProCeSSING SLIUCLUIEcccc i e s 2-5
4.1 MEMOIY SYSTEIM ..ciiiiiiiiii ittt ettt e e e e e e e e e e ettt e e e e e et e e e bbb e e et e e e e e e e e e s anrnneees 4-7
4.2 FastPath (blue) vs CompletePath (red) Using floatl.......cccccceeviiiiiiiiiiiiiiiiccee e 4-9
4.3 Transformation to Staggered OffSEtS..........uuuiiiiiiiiiiiiii e 4-16
4.4 Two Kernels: One Using float4 (blue), the Other floatl (red)cccoceeviiiiiiiiiiiiiiiieniiie, 4-18
4.5 Effect of Varying Degrees of Coalescing - Coal (blue), NoCoal (red), Split (green) 4-20
4.6 Unaligned Access UsiNg floatl.........oooviiiiiiiiiiiiiiiiie i e e e e e e e e e e 4-22
o A U 1014 o ToTo [1= To [oo o BRSO UPRTPPPN 4-48
4.8 KerNel UNFOHEA 4X...ooo ittt e et e et e e e st e e e s neeeeas 4-48
4.9 Unrolled Loop with StOres CIUSIEIEd.........c.vviviiiiiiiiiieie oo e e e e e e e 4-49
4.10 Unrolled Kernel Using float4 for VECONZationc..eeviiiiiiiiieiiiiiiee e 4-49
4,11 One Example of a Tiled Layout FOrMat............oooiiiiiiieiiiiiieee et r e e e e 4-52
C.1 Pixel Shader MatriX TraNSPOSEcceeeeieiiieieieieeeie e as e s e e e e e e e e e e e ae et aeaee e e aeaaaaaeaaes C-2
C.2 Compute Kernel MatriX TIraNSPOSEuuiiieiiiiiieeeiiiieiee e ettt e e e sttt e e e st e e e st ee e e e s abbeeeee s e C-3
C.3 LDS MALIX TrANSPOSE ..vvvererrieeeeesiisietenteeeereteeaeeesssssasssssasseeraeaeeaesssiaaassssnsseereeeeeeesessannsssnnneees C-4

Contents Xi
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Xii Contents
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Chapter 1
OpenCL Architecture and the ATI
Stream Computing System

This chapter provides a general software and hardware overview of the ATI
Stream computing implementation of the OpenCL standard. It explains the
memory structure and gives simple programming examples.

1.1 Software Overview

OpenCL supports data-parallel and task-parallel programming models, as well as
hybrids of these models. Of the two, the primary one is the data parallel model.

1.1.1 Data-Parallel Programming Model

In the data parallel programming model, a computation is defined in terms of a
sequence of instructions executed on multiple elements of a memory object.
These elements are in an index space,! which defines how the execution maps
onto the work-items. In the OpenCL data-parallel model, it is not a strict
requirement that there be one work-item for every element in a memory object
over which a kernel is executed in parallel.

The OpenCL data-parallel programming model is hierarchical. The hierarchical
subdivision can be specified in two ways:

e Explicitly - the developer defines the total number of work-items to execute
in parallel, as well as the division of work-items into specific work-groups.

e Implicitly - the developer specifies the total number of work-items to execute
in parallel, and OpenCL manages the division into work-groups.

1.1.2 Task-Parallel Programming Model

In this model, a kernel instance is executed independent of any index space. This
is equivalent to executing a kernel on a compute device with a work-group and
NDRange containing a single work-item. Parallelism is expressed using vector
data types implemented by the device, enqueuing multiple tasks, and/or
enqueuing native kernels developed using a programming model orthogonal to
OpenCL.

1. See section 3.2, “Execution Model,” of the OpenCL Specification.

ATI Stream SDK - OpenCL Programming Guide 11
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

113

ATl STREAM COMPUTING

Synchronization

The two domains of synchronization in OpenCL are work-items in a single work-
group and command-queue(s) in a single context. Work-group barriers enable
synchronization of work-items in a work-group. Each work-item in work-group
must first execute the barrier before executing any beyond the work-group
barrier. Either all of, or none of, the work-items in a work-group must encounter
the barrier. As currently defined in the OpenCL Specification, global
synchronization is not allowed.

There are two types of synchronization between commands in a command-
queue:

e command-queue barrier - enforces ordering within a single queue. Any
resulting changes to memory are available to the following commands in the
queue.

e events - enforces ordering between or within queues. Enqueued commands
in OpenCL return an event identifying the command as well as the memory
object updated by it. This ensures that following commands waiting on that
event see the updated memory objects before they execute.

1.2 Hardware Overview

Figure 1.1 shows a simplified block diagram of a generalized GPU compute
device.

GPU
Compute Device

Compute Compute Compute
Unit Unit Unit

Stream Cores IIIIII)

Processing Elements [JICI[] e« «

Figure 1.1 Generalized GPU Compute Device Structure

Figure 1.2 is a simplified diagram of an ATl Stream GPU compute device.
Different GPU compute devices have different characteristics (such as the
number of compute units), but follow a similar design pattern.

GPU compute devices comprise groups of compute units (see Figure 1.1). Each

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

compute unit contains numerous stream cores, which are responsible for
executing kernels, each operating on an independent data stream. Stream cores,
in turn, contain numerous processing elements, which are the fundamental,
programmable computational units that perform integer, single-precision floating-
point, double-precision floating-point, and transcendental operations. All stream
cores within a compute unit execute the same instruction sequence; different
compute units can execute different instructions.

Ultra-Threaded Dispatch Processor

v v v v v v 3
G CH D

[(L
F) R

(0l
[

[
[

7
\

4

A

Ve

AL [
-

‘
i

-
]
(]
e
(3

!

3|

Ve

AL [
-

E
i

Vs

:

%
AL (!
-
-
e
]
o
]

(!

[|

Vs

El
EEEE EEEE

3
£l

/

(i
IRJUIE
(L e
IpJYIE
(L e
IpJVIE
[
[JIp]VIE

Compute Compute Compute
Unit Unit Unit
Instruction
Stream Core and Control
Flow
Branch
Execution
Unit
T-Processing - Processi
Element ~ rocessing
Element

eneraI-Purpose Registers /

Figure 1.2 Simplified Block Diagram of the GPU Compute Device

1

1. Much of this is transparent to the programmer.

1.2 Hardware Overview 1-3
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

A stream core is arranged as a five-way very long instruction word (VLIW)
processor (see bottom of Figure 1.2). Up to five scalar operations can be co-
issued in a VLIW instruction, each of which are executed on one of the
corresponding five processing elements. Processing elements can execute
single-precision floating point or integer operations. One of the five processing
elements also can perform transcendental operations (sine, cosine, logarithm,
etc.)!. Double-precision floating point operations are processed by connecting
two or four of the processing elements (excluding the transcendental core) to
perform a single double-precision operation. The stream core also contains one
branch execution unit to handle branch instructions.

Different GPU compute devices have different numbers of stream cores. For
example, the ATI Radeon™ HD 5870 GPU has 20 compute units, each with 16
stream cores, and each stream core contains five processing elements; this
yields 1600 physical processing elements.

1.3 The ATI Stream Computing Implementation of OpenCL

ATI Stream Computing harnesses the tremendous processing power of GPUs for
high-performance, data-parallel computing in a wide range of applications. The
ATI Stream Computing system includes a software stack and the ATI Stream
GPUs. Figure 1.3 illustrates the relationship of the ATI Stream Computing
components.

Stream Applications

Libraries Third-Party Tools

OpenCL Runtime

Compute Abstraction Layer

Multicore
CPUs

ATI Stream
GPUs

Figure 1.3 ATI Stream Software Ecosystem

The ATI Stream Computing software stack provides end-users and developers
with a complete, flexible suite of tools to leverage the processing power in ATI

1. For a more detailed explanation of operations, see the ATI Compute Abstraction Layer (CAL) Pro-
gramming Guide.

1-4 Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Stream GPUs. ATI software embraces open-systems, open-platform standards.
The ATI open platform strategy enables ATI technology partners to develop and
provide third-party development tools.

The software includes the following components:

e OpenCL compiler and runtime

e Device Driver for GPU compute device — ATI Compute Abstraction Layer
(CAL).L

e Performance Profiling Tools — Stream KernelAnalyzer and Microsoft® Visual
Studio® OpenCL Profiler.

e Performance Libraries — AMD Core Math Library (ACML) for optimized
NDRange-specific algorithms.

The latest generation of ATl Stream GPUs are programmed using the unified
shader programming model. Programmable GPU compute devices execute
various user-developed programs, called stream kernels (or simply: kernels).
These GPU compute devices can execute non-graphics functions using a data-
parallel programming model that maps executions onto compute units. In this
programming model, known as ATI Stream computing, arrays of input data
elements stored in memory are accessed by a humber of compute units.

Each instance of a kernel running on a compute unit is called a work-item. A
specified rectangular region of the output buffer to which work-items are mapped
is known as the n-dimensional index space, called an NDRange.

The GPU schedules the range of work-items onto a group of stream cores, until
all work-items have been processed. Subsequent kernels then can be executed,
until the application completes. A simplified view of the ATl Stream Computing
programming model and the mapping of work-items to stream cores is shown in
Figure 1.4.

1. See the ATl Compute Abstraction Layer (CAL) Programming Guide.

1.3 The ATI Stream Computing Implementation of OpenCL 1-5

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1-6

ATl STREAM COMPUTING

Stream Core,

Registers/Constants/Literals

Processing | | | Processing Processing
Element, Element, Element

Memory Interface

Steam | | Steam | | Steam % Memory
Core, Core, Core,_, =
o]
Compute Unit <> O | |[<—> Input Output
z g‘ Data Data
€
Scheduler g

Compute Device

Scheduler maps work-item (i, j) onto Stream Core k

Figure 1.4 Simplified Mapping of OpenCL onto ATI Stream Computing

OpenCL maps the total number of work-items to be launched onto an n-
dimensional grid (ND-Range). The developer can specify how to divide these
items into work-groups. AMD GPUs execute on wavefronts; there are an integer
number of wavefronts in each work-group. Thus, as shown in Figure 1.5,
hardware that schedules work-items for execution in the ATl Stream computing
environment includes the intermediate step of specifying wavefronts within a
work-group. This permits achieving maximum performance from AMD GPUs. For
a more detailed discussion of wavefronts, see Section 1.7.2, “Wavefronts and
Workgroups,” page 1-17.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

NDRange Work-Group
~«——— Global Domain, —— Work-Group Id = (B,, B))
get_global_size(0) 4
e o Wavefront ~ Wavefront =~ Wavefront
1 2
Work-Group | | Work-Group | | WWork-Group >
1 2 - =9
/// ~ q)
o0 Wavefront ~ Wavefront ~ Wavefront | o, &
E g 3
S 'l Work-Group | | Work-Group | | Work-Group 90
[o _~<,'_
T g i 1P
8% - es
o = T
o » / ~_ Wavefront Waygfront Wavefro?t
o S~ 1o
Work-Group | | Work-Group | | Work-Group e i III
n Tty i !
/// get_group_size(0) I/I
.~ ~&——— Work-Group Size G, +—>
//// III
-7 /
// /
-7 /
-, 7
// 1
-7 7
-7 /
Rd II
il Wavefront /
Work-ltem Work-ltem
W-1, =(0,0) W-I, = (Gx-1,0)
global,, = « « «| global, =
(B, G, B,*G)) (B G, +G,-1,BG))
Work-ltem Work-ltem
W-1,,= (0,Gy-1) W-1,= (G,-1, Gy-1)
global , = « « +| global, =
(B,G,, B,*G+ G -1) (B,*G,+G,-1,
By*Gy+Gy-1)

Figure 1.5 Work-Item Grouping Into Work-Groups and Wavefronts

131 Work-Item Processing

All stream cores within a compute unit execute the same instruction for each
cycle. A work item can issue one VLIW instruction per clock cycle. The block of
work-items that are executed together is called a wavefront. To hide latencies
due to memory accesses and processing element operations, up to four work-
items from the same wavefront are pipelined on the same stream core. For

1.3 The ATI Stream Computing Implementation of OpenCL 1-7

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1.3.2

1-8

ATl STREAM COMPUTING

example, on the ATI Radeon™ HD 5870 GPU compute device, the 16 stream
cores execute the same instructions for four cycles, which effectively appears as
a 64-wide compute unit in execution width.

The size of wavefronts can differ on different GPU compute devices. For
example, the ATl Radeon™ HD 5400 series graphics cards has a wavefront size
of 32 work-items. The ATlI Radeon™ HD 5800 series has a wavefront size of 64
work-items.

Compute units operate independently of each other, so it is possible for each
array to execute different instructions.

Flow Control

Before discussing flow control, it is necessary to clarify the relationship of a
wavefront to a work-group. If a user defines a work-group, it consists of one or
more wavefronts. Wavefronts are units of execution, where one wavefront
consists of 64 or fewer work-items, two wavefronts would be between 65 to 128
work-items, etc., on a device with a wavefront size of 64. For optimum hardware
usage, an integer multiple of 64 work-items is recommended.

Flow control, such as branching, is done by combining all necessary paths as a
wavefront. If work-items within a wavefront diverge, all paths are executed
serially. For example, if a work-item contains a branch with two paths, the
wavefront first executes one path, then the second path. The total time to
execute the branch is the sum of each path time. An important point is that even
if only one work-item in a wavefront diverges, the rest of the work-items in the
wavefront execute the branch. The number of work-items that must be executed
during a branch is called the branch granularity. On ATl hardware, the branch
granularity is the same as the wavefront granularity.

Masking of wavefronts is effected by constructs such as:

ifx)
//items within these braces = A
3
else
i . .
//items within these braces = B
3

The wavefront mask is set true for lanes (elements/items) in which x is true, then
execute A. The mask then is inverted, and B is executed.

Example 1: If two branches, A and B, take the same amount of time t to execute
over a wavefront, the total time of execution, if any work-item diverges, is 2t.

Loops execute in a similar fashion, where the wavefront occupies a compute unit
as long as there is at least one work-item in the wavefront still being processed.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Thus, the total execution time for the wavefront is determined by the work-item
with the longest execution time.

Example 2: If t is the time it takes to execute a single iteration of a loop; and
within a wavefront all work-items execute the loop one time, except for a single
work-item that executes the loop 100 times, the time it takes to execute that
entire wavefront is 100t.

Work-ltem Creation

For each work-group, the GPU compute device spawns the required number of
wavefronts on a single compute unit. If there are non-active work-items within a
wavefront, the stream cores that would have been mapped to those work-items
are idle. An example is a work-group that is a non-multiple of a wavefront size
(for example: if the work-group size is 32, the wavefront is half empty and
unused).

ATI Compute Abstraction Layer (CAL)

The ATI Compute Abstraction Layer (CAL) is a device driver library that provides
a forward-compatible interface to ATI GPU compute devices (see Figure 1.6).
CAL lets software developers interact with the GPU compute devices at the
lowest-level for optimized performance, while maintaining forward compatibility.
CAL provides:

e Device-specific code generation

e Device management

e Resource management

e Kernel loading and execution

e Multi-device support

e Interoperability with 3D graphics APls

GPU GPU
Compute Device Compute Device
Executable Buffers
Y Y
Y Y Y
Compute Compute .o o Compute
Device 0 Device 1 Device n

Figure 1.6 CAL Functionality

CAL includes a set of C routines and data types that allow higher-level software
tools to control hardware memory buffers (device-level streams) and GPU

1.3 The ATI Stream Computing Implementation of OpenCL 1-9

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

compute device programs (device-level kernels). The CAL runtime accepts
kernels written in ATI IL and generates optimized code for the target architecture.
It also provides access to device-specific features.

1.4 Memory Architecture and Access

1-10

OpenCL has four memory domains: private, local, global, and constant; the ATI
Stream computing system also recognizes host (CPU) and PCI Express®
(PCle®) memory.

private memory - specific to a work-item; it is not visible to other work-items.

local memory - specific to a work-group; accessible only by work-items
belonging to that work-group.

global memory - accessible to all work-items executing in a context, as well
as to the host (read, write, and map commands).

constant memory - region for host-allocated and -initialized objects that are
not changed during kernel execution.

host (CPU) memory - region for an application’s data structures and program
data.

PCle memory - part of host (CPU) memory accessible from, and modifiable
by, the host program and the GPU compute device. Modifying this memory
requires synchronization between the GPU compute device and the CPU.

Figure 1.7 illustrates the interrelationship of the memories.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Compute Device
Compute Unit n
Private Memory
; (Reg Files) m
Compute Unit 1 Private Memory Ae*
Private Memory (Reg Files) 1 2| ®
(Reg Files) I
I m . A Y
Private Memory A, * . IProc_ Elem.
(Reg Files) | 2| ‘ I (ALU)
Proc. Elem.
A Y (ALU) |—
Y IProc. Elem.
- (ALU) A A A
Proc. Elem.
e Y Y Y
A A A Local Mem. L1 Color Buffer
rRO| w0 oo (LDS) n
Y Y Y >A >A A 2
Local Mem 5 5 é :
(LDS) 1 L1 Color Buffer § é % t_%
o [0)
A A =
IMAGE / CONSTANT DATA;
------- CACHE (L2) (read-only)
A A
comoute bevice Y YYYY Y oma | Host
ompute Device » -
Memory (VRAM) | GLOBAL MEMORY| |CONSTANT MEMORY | | <€ = | PCIel

Figure 1.7 Interrelationship of Memory Domains

Figure 1.8 illustrates the standard dataflow between host (CPU) and GPU.

> >| G - | > ;
H P T A 51> |
o C 0

c v

s | B A A
T e A <1

L T

- - L | -« E

Figure 1.8 Dataflow between Host and GPU

There are two ways to copy data from the host to the GPU compute device
memory:
e Implicitly by using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

e Explicitly through clEnqueueReadBuffer and clEnqueueWriteBuffer
(clEnqueueReadlmage, clEnqueuelWritelmage.).

1.4 Memory Architecture and Access 1-11
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

141

14.2

143

1-12

ATl STREAM COMPUTING

When using these interfaces, it is important to consider the amount of copying
involved. There is a two-copy processes: between host and PCle, and between
PCle and GPU compute device. This is why there is a large performance
difference between the system GFLOPS and the kernel GFLOPS.

With proper memory transfer management and the use of system pinned
memory (host/CPU memory remapped to the PCle memory space), copying
between host (CPU) memory and PCle memory can be skipped. Note that this
is not an easy API call to use and comes with many constraints, such as page
boundary and memory alignment.

Double copying lowers the overall system memory bandwidth. In GPU compute
device programming, pipelining and other techniques help reduce these
bottlenecks. See Chapter 4, “OpenCL Performance and Optimization,” for more
specifics about optimization techniques.

Memory Access

Using local memory (known as local data store, or LDS, as shown in Figure 1.7)
typically is an order of magnitude faster than accessing host memory through
global memory (VRAM), which is one order of magnitude faster again than PCle.
However, stream cores do not directly access memory; instead, they issue
memory requests through dedicated hardware units. When a work-item tries to
access memory, the work-item is transferred to the appropriate fetch unit. The
work-item then is deactivated until the access unit finishes accessing memory.
Meanwhile, other work-items can be active within the compute unit, contributing
to better performance. The data fetch units handle three basic types of memory
operations: loads, stores, and streaming stores. GPU compute devices now can
store writes to random memory locations using global buffers.

Global Buffer

The global buffer lets applications read from, and write to, arbitrary locations in
memory. When using a global buffer, memory-read and memory-write operations
from the stream kernel are done using regular GPU compute device instructions
with the global buffer used as the source or destination for the instruction. The
programming interface is similar to load/store operations used with CPU
programs, where the relative address in the read/write buffer is specified.

Image Read/Write

Image reads are done by addressing the desired location in the input memory
using the fetch unit. The fetch units can process either 1D or 2 D addresses.
These addresses can be normalized or un-normalized. Normalized coordinates
are between 0.0 and 1.0 (inclusive). For the fetch units to handle 2D addresses
and normalized coordinates, pre-allocated memory segments must be bound to
the fetch unit so that the correct memory address can be computed. For a single
kernel invocation, up to 128 images can be bound at once for reading, and eight
for writing. The maximum number of 2D addresses is 8192 x 8192.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Image reads are cached through the texture system (corresponding to the L2 and
L1 caches).

144 Memory Load/Store

When using a global buffer, each work-item can write to an arbitrary location
within the global buffer. Global buffers use a linear memory layout. If consecutive
addresses are written, the compute unit issues a burst write for more efficient
memory access. Only read-only buffers, such as constants, are cached.

1.5 Communication Between Host and GPU in a Compute Device

The following subsections discuss the communication between the host (CPU)
and the GPU in a compute device. This includes an overview of the PCle bus,
processing API calls, and DMA transfers.

15.1 PCl Express Bus

Communication and data transfers between the system and the GPU compute
device occur on the PCle channel. ATl Stream Computing cards use PCle 2.0
x16 (second generation, 16 lanes). Generation 1 x16 has a theoretical maximum
throughput of 4 GBps in each direction. Generation 2 x16 doubles the throughput
to 8 GBps in each direction. Actual transfer performance is CPU and chipset
dependent.

Transfers from the system to the GPU compute device are done either by the
command processor or by the DMA engine. The GPU compute device also can
read and write system memory directly from the compute unit through kernel
instructions over the PCle bus.

152 Processing API Calls: The Command Processor

The host application does not interact with the GPU compute device directly. A
driver layer translates and issues commands to the hardware on behalf of the
application.

Most commands to the GPU compute device are buffered in a command queue
on the host side. The command queue is sent to the GPU compute device, and
the commands are processed by it. There is no guarantee as to when commands
from the command queue are executed, only that they are executed in order.

Unless the GPU compute device is busy, commands are executed immediately.

Command queue elements include:

e Kernel execution calls
e Kernels
e Constants

e Transfers between device and host

1.5 Communication Between Host and GPU in a Compute Device 1-13
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

153

ATl STREAM COMPUTING

DMA Transfers

Direct Memory Access (DMA) memory transfers can be executed separately from
the command queue using the DMA engine on the GPU compute device. DMA
calls are executed immediately; and the order of DMA calls and command queue
flushes is guaranteed.

DMA transfers can occur asynchronously. This means that a DMA transfer is
executed concurrently with other system or GPU compute device operations.
However, data is not guaranteed to be ready until the DMA engine signals that
the event or transfer is completed. The application can query the hardware for
DMA event completion. If used carefully, DMA transfers are another source of
parallelization.

1.6 GPU Compute Device Scheduling

1-14

GPU compute devices are very efficient at parallelizing large numbers of work-
items in a manner transparent to the application. Each GPU compute device
uses the large number of wavefronts to hide memory access latencies by having
the resource scheduler switch the active wavefront in a given compute unit
whenever the current wavefront is waiting for a memory access to complete.
Hiding memory access latencies requires that each work-item contain a large
number of ALU operations per memory load/store.

Figure 1.9 shows the timing of a simplified execution of work-items in a single
stream core. At time 0, the work-items are queued and waiting for execution. In
this example, only four work-items (T0...T3) are scheduled for the compute unit.
The hardware limit for the number of active work-items is dependent on the
resource usage (such as the number of active registers used) of the program
being executed. An optimally programmed GPU compute device typically has
thousands of active work-items.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Work-ltem
7o (OO0
STALL READY

OO0
READY STALL

T2 <
READY STALL

s ¢ A X))
READY STALL

0 20 40 60 80

@ - executing () =ready (not executing) (m = stalled

Figure 1.9 Simplified Execution Of Work-Items On A Single Stream Core

At runtime, work-item TO executes until cycle 20; at this time, a stall occurs due
to a memory fetch request. The scheduler then begins execution of the next
work-item, T1. Work-item T1 executes until it stalls or completes. New work-items
execute, and the process continues until the available number of active work-
items is reached. The scheduler then returns to the first work-item, TO.

If the data work-item TO is waiting for has returned from memory, TO continues
execution. In the example in Figure 1.9, the data is ready, so TO continues. Since
there were enough work-items and processing element operations to cover the
long memory latencies, the stream core does not idle. This method of memory
latency hiding helps the GPU compute device achieve maximum performance.

If none of TO — T3 are runnable, the stream core waits (stalls) until one of TO —
T3 is ready to execute. In the example shown in Figure 1.10, TO is the first to
continue execution.

1.6 GPU Compute Device Scheduling 1-15

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Work-ltem

o @ X000000CROO D

STALL

1 O XXKR)

STALL

12 OOOOO00OOXXX

STALL

™K YEOQOOXXXXXD

STALL

0 20 40 60 80

- = executing <:> = ready (not executing) <XXZ> = stalled

Figure 1.10 Stream Core Stall Due to Data Dependency

The causes for this situation are discussed in the following sections.

1.7 Terminology

171

1-16

Compute Kernel

To define a compute kernel, it is first necessary to define a kernel. A kernel is a
small, user-developed program that is run repeatedly on a stream of data. It is a
parallel function that operates on every element of input streams (called an
NDRange). Unless otherwise specified, an ATl compute device program is a
kernel composed of a main program and zero or more functions. This also is
called a shader program. This kernel is not to be confused with an OS kernel,
which controls hardware. The most basic form of an NDRange is simply mapped
over input data and produces one output item for each input tuple. Subsequent
extensions of the basic model provide random-access functionality, variable
output counts, and reduction/accumulation operations. Kernels are specified
using the kernel keyword.

There are multiple kernel types that are executed on ATI Stream compute device,
including vertex, pixel, geometry, domain, hull, and now compute. Before the

development of compute kernels, pixel shaders were sometimes used for non-
graphic computing. Instead of relying on pixel shaders to perform computation,
new hardware supports compute kernels, which are a better suited for general
computation, and which also can be used to supplement graphical applications,
enabling rendering techniques beyond those of the traditional graphics pipeline.
A compute kernel is a specific type of kernel that is not part of the traditional

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

graphics pipeline. The compute kernel type can be used for graphics, but its
strength lies in using it for non-graphics fields such as physics, Al, modeling,
HPC, and various other computationally intensive applications.

1.7.1.1 Work-ltem Spawn Order

In a compute kernel, the work-item spawn order is sequential. This means that
on a chip with N work-items per wavefront, the first N work-items go to wavefront
1, the second N work-items go to wavefront 2, etc. Thus, the work-item IDs for
wavefront K are in the range (KeN) to ((K+1)*N) - 1.

1.7.2 Wavefronts and Workgroups

Wavefronts and groups are two concepts relating to compute kernels that provide
data-parallel granularity. Wavefronts execute N number of work-items in parallel,
where N is specific to the hardware chip (for the ATI Radeon HD 5870 series, it
is 64). A single instruction is executed over all work-items in a wavefront in
parallel. It is the lowest level that flow control can affect. This means that if two
work-items inside of a wavefront go divergent paths of flow control, all work-items
in the wavefront go to both paths of flow control.

Grouping is a higher-level granularity of data parallelism that is enforced in
software, not hardware. Synchronization points in a kernel guarantee that all
work-items in a work-group reach that point (barrier) in the code before the next
statement is executed.

Work-groups are composed of wavefronts. Best performance is attained when
the group size is an integer multiple of the wavefront size.

1.7.3 Local Data Store (LDS)

The LDS is a high-speed, low latency memory private to each compute unit. It is
a full gather/scatter model: a work-group can write anywhere in its allocated
space. This model is for the ATI Radeon HD5XXX series. The constraints of the
current LDS model are:

1. All read/writes are 32-bits and dword aligned.

2. The LDS size is allocated per work-group. Each work-group specifies how
much of the LDS it requires. The hardware scheduler uses this information
to determine which work groups can share a compute unit.

Data can only be shared within work-items in a work-group.

4. Memory accesses outside of the work-group result in undefined behavior.

1.8 Programming Model

The OpenCL programming model is based on the notion of a host device,
supported by an application API, and a number of devices connected through a
bus. These are programmed using OpenCL C. The host API is divided into
platform and runtime layers. OpenCL C is a C-like language with extensions for

1.8 Programming Model 1-17

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1-18

ATl STREAM COMPUTING

parallel programming such as memory fence operations and barriers. Figure 1.11
illustrates this model with queues of commands, reading/writing data, and
executing kernels for specific devices.

AT\

<~ G AR
Context
_kernel foo(...) { _kernel foo(...) { —— Queue Queue
Wi, Wi, Wi, Wi_ Wi, Wi, Wi, V{in
t%arr?er(.?)
% 0 T R
% - %
})
| Local Memory | | Local Memory |
))

! !

Global/Constant Memory

Figure 1.11 OpenCL Programming Model

The devices are capable of running data- and task-parallel work. A kernel can be
executed as a function of multi-dimensional domains of indices. Each element is
called a work-item; the total number of indices is defined as the global work-size.
The global work-size can be divided into sub-domains, called work-groups, and
individual work-items within a group can communicate through global or locally
shared memory. Work-items are synchronized through barrier or fence
operations. Figure 1.11 is a representation of the host/device architecture with a
single platform, consisting of a GPU and a CPU.

An OpenCL application is built by first querying the runtime to determine which
platforms are present. There can be any number of different OpenCL
implementations installed on a single system. The next step is to create a
context. As shown in Figure 1.11, an OpenCL context has associated with it a
number of compute devices (for example, CPU or GPU devices),. Within a
context, OpenCL guarantees a relaxed consistency between these devices. This
means that memory objects, such as buffers or images, are allocated per
context; but changes made by one device are only guaranteed to be visible by
another device at well-defined synchronization points. For this, OpenCL provides
events, with the ability to synchronize on a given event to enforce the correct
order of execution.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Many operations are performed with respect to a given context; there also are
many operations that are specific to a device. For example, program compilation
and kernel execution are done on a per-device basis. Performing work with a
device, such as executing kernels or moving data to and from the device’s local
memory, is done using a corresponding command queue. A command queue is
associated with a single device and a given context; all work for a specific device
is done through this interface. Note that while a single command queue can be
associated with only a single device, there is no limit to the number of command
gueues that can point to the same device. For example, it is possible to have
one command queue for executing kernels and a command queue for managing
data transfers between the host and the device.

Most OpenCL programs follow the same pattern. Given a specific platform, select
a device or devices to create a context, allocate memory, create device-specific
command queues, and perform data transfers and computations. Generally, the
platform is the gateway to accessing specific devices, given these devices and a
corresponding context, the application is independent of the platform. Given a
context, the application can:

e Create one or more command queues.
e Create programs to run on one or more associated devices.
e Create kernels within those programs.

e Allocate memory buffers or images, either on the host or on the device(s).
(Memory can be copied between the host and device.)

e \Write data to the device.

e Submit the kernel (with appropriate arguments) to the command queue for
execution.

e Read data back to the host from the device.

The relationship between context(s), device(s), buffer(s), program(s), kernel(s),
and command queue(s) is best seen by looking at sample code.

1.9 Example Programs

The following subsections provide simple programming examples with
explanatory comments.

19.1 First Example: Simple Buffer Write

This sample shows a minimalist OpenCL C program that sets a given buffer to
some value. It illustrates the basic programming steps with a minimum amount
of code. This sample contains no error checks and the code is not generalized.
Yet, many simple test programs might look very similar. The entire code for this
sample is provided at the end of this section.

1. The host program must select a platform, which is an abstraction for a given
OpenCL implementation. Implementations by multiple vendors can coexist on
a host, and the sample uses the first one available.

1.9 Example Programs 1-19

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1-20

ATl STREAM COMPUTING

A device id for a GPU device is requested. A CPU device could be requested
by using CL_DEVICE_TYPE_CPU instead. The device can be a physical device,
such as a given GPU, or an abstracted device, such as the collection of all
CPU cores on the host.

On the selected device, an OpenCL context is created. A context ties
together a device, memory buffers related to that device, OpenCL programs,
and command queues. Note that buffers related to a device can reside on
either the host or the device. Many OpenCL programs have only a single
context, program, and command queue.

Before an OpenCL kernel can be launched, its program source is compiled,
and a handle to the kernel is created.

A memory buffer is allocated on the device.

The kernel is launched. While it is necessary to specify the global work size,
OpenCL determines a good local work size for this device. Since the kernel
was launch asynchronously, clFinish() is used to wait for completion.

The data is mapped to the host for examination. Calling

clEnqueueMapBuffer ensures the visibility of the buffer on the host, which in
this case probably includes a physical transfer. Alternatively, we could use
clEnqueueWriteBuffer(), which requires a pre-allocated host-side buffer.

Example Code 1 -
//
// Copyright (c¢) 2010 Advanced Micro Devices, Inc. All rights reserved.
//
// A minimalist OpenCL program.

#include <CL/cl._h>
#include <stdio.h>

#define NWITEMS 512
// A simple memset kernel

const char *source =

-~

" _kernel void memset(__global uint *dst) \n"'
\n*
" dst[get _global_id(0)] = get global_id(0); \n"'
\n"';

o

int main(int argc, char ** argv)

{ // 1. Get a platform.
cl_platform_id platform;
clGetPlatformIDs(1, &platform, NULL);

// 2. Find a gpu device.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

cl_device_id device;

clGetDevicelDs(platform, CL_DEVICE_TYPE_GPU,
1,
&device,
NULL);

// 3. Create a context and command queue on that device.

cl_context context = clCreateContext(NULL,
1,
&device,
NULL, NULL, NULL);

cl_command_queue queue = clCreateCommandQueue(context,
device,
0, NULL);

// 4. Perform runtime source compilation, and obtain kernel entry point.

cl_program program = clCreateProgramWithSource(context,
1,
&source,
NULL, NULL);

clBuildProgram(program, 1, &device, NULL, NULL, NULL);
cl_kernel kernel = clCreateKernel(program, "memset', NULL);
// 5. Create a data buffer.

cl_mem buffer = clCreateBuffer(context,
CL_MEM WRITE_ONLY,
NWITEMS * sizeof(cl_uint),
NULL, NULL);

// 6. Launch the kernel. Let OpenCL pick the local work size.
size_t global_work size = NWITEVS;
clSetkernelArg(kernel, 0, sizeof(buffer), (void*) &buffer);

clEnqueueNDRangeKernel (queue,
kernel,
1,
NULL,
&global_work_size,
NULL, O, NULL, NULL);

clFinish(queue);
// 7. Look at the results via synchronous buffer map.

cl_uint *ptr;
ptr = (cl_uint *) clEnqueueMapBuffer(queue,
buffer,
CL_TRUE,
CL_MAP_READ,
o,
NWITEMS * sizeof(cl_uint),
0, NULL, NULL, NULL);

1.9 Example Programs 1-21

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

19.2

1-22

int i;

ATl STREAM COMPUTING

for(i=0; 1 < NWITEMS; i++)
printfC%d %d\n", i, ptr[i]);

return O;

}

Second Example: SAXPY Function

This section provides an introductory sample for beginner-level OpenCL
programmers using C++ bindings.

The sample implements the SAXPY function (Y = aX + Y, where X and Y are
vectors, and a is a scalar). The full code is reproduced at the end of this section.
It uses C++ bindings for OpenCL. These bindings are available in the CL/cl .hpp
file in the ATI Stream SDK; they also are downloadable from the Khronos
website: http://www.khronos.org/registry/cl .

The following steps guide you through this example.

1.

Enable error checking through the exception handling mechanism in the C++
bindings by using the following define.

#define _ CL_ENABLE_EXCEPTIONS

This removes the need to error check after each OpenCL call. If there is an
error, the C++ bindings code throw an exception that is caught at the end of
the try block, where we can clean up the host memory allocations. In this
example, the C++ objects representing OpenCL resources (cl: :Context,
cl::CommandQueue, etc.) are declared as automatic variables, so they do not
need to be released. If an OpenCL call returns an error, the error code is
defined in the CL/cl .h file.

The kernel is very simple: each work-item, i, does the SAXPY calculation for
its corresponding elements Y[i] = aX][i] + Y[i]. Both X and Y vectors are stored
in global memory; X is read-only, Y is read-write.
__kernel void saxpy(const _ _global float * X,

__global float * Y,

const float a)

uint gid = get _global_id(0);
Y[oid] = a* X[gid] + Y[gid];

List all platforms on the machine, then select one.
cl: :Platform: :get(&platforms);

Create an OpenCL context on that platform.

cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM,
(cl_context_properties)(*iter)(), 0 };

context = cl: :Context(CL_DEVICE _TYPE GPU, cps);

Get OpenCL devices from the context.

devices = context.getinfo<CL_CONTEXT_DEVICES>();

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

6. Create an OpenCL command queue.

queue = cl::CommandQueue(context, devices[0]);

7. Create two buffers, corresponding to the X and Y vectors. Ensure the host-
side buffers, pX and pY, are allocated and initialized. The
CL_MEM_COPY_HOST_PTR flag instructs the runtime to copy over the
contents of the host pointer pX in order to initialize the buffer bufX. The bufX
buffer uses the CL_MEM_READ_ONLY flag, while bufY requires the
CL_MEM_READ_WRITE flag.

bufX = cl::Buffer(context, CL_MEM READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float) * length, pX);

8. Create a program object from the kernel source string, build the program for
our devices, and create a kernel object corresponding to the SAXPY kernel.
(At this point, it is possible to create multiple kernel objects if there are more
than one.)

cl::Program::Sources sources(l, std::make pair(kernelStr.c_str(),
kernelStr._length(Q)));

program = cl::Program(context, sources);

program._build(devices);

kernel = cl::Kernel(program, ‘'saxpy'’);

9. Enqueue the kernel for execution on the device (GPU in our example).

Set each argument individually in separate kernel .setArg() calls. The
arguments, do not need to be set again for subsequent kernel enqueue calls.
Reset only those arguments that are to pass a new value to the kernel. Then,
enqueue the kernel to the command queue with the appropriate global and
local work sizes.

kernel .setArg(0, bufX);

kernel .setArg(1, bufY);

kernel .setArg(2, a);

queue .enqueueNDRangeKernel (kernel, cl::NDRange(),
cl::NDRange(length), cl::NDRange(64));

10. Read back the results from bufY to the host pointer pY. We will make this a
blocking call (using the CL_TRUE argument) since we do not want to proceed
before the kernel has finished execution and we have our results back.

queue .enqueueReadBuffer(bufy, CL_TRUE, O, length * sizeof(cl_float),
pY);

11. Clean up the host resources (pX and pY). OpenCL resources is cleaned up
by the C++ bindings support code.

The catch(cl::Error err) block handles exceptions thrown by the C++
bindings code. If there is an OpenCL call error, it prints out the name of the call
and the error code (codes are defined in CL/cl .h). If there is a kernel compilation
error, the error code is CL_BUILD_PROGRAM _FAILURE, in which case it is
necessary to print out the build log.

1.9 Example Programs 1-23

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1-24

ATl STREAM COMPUTING

Example Code 2 -

#define _ CL_ENABLE EXCEPTIONS

#include <CL/cl.hpp>
#include <string>
#include <iostream>
#include <string>

using std::cout;
using std::cerr;
using std::endl;
using std::string;

LI1777777777777777777777777777777777//7//7//7//7//7//7//7//7/77/7
// Helper function to print vector elements
LI17117777777777777777777777777777777/77/7//7//7//7//7//7//7/77/7
void printVector(const std::string arrayName,

const cl_float * arrayData,

const unsigned int length)

{
int numElementsToPrint = (256 < length) ? 256 : length;
cout << endl << arrayName << '"':"" << endl;
for(int i = 0; 1 < numElementsToPrint; ++i)
cout << arrayData[i] << " ";
cout << endl;
}

L1117 17777777777777777777777777777777/777/77//7/7/7/7//7/7///777/777/7777
// Globals
L1117 17777777777777777777777777777777/7777777/7/7/77/7/7/7/7//777/777/7777

int length = 256;
cl_float * pX = NULL;
cl_float * pY = NULL;
cl_float a =2.T;

std: :vector<cl: :Platform> platforms;
cl::Context context;

std: :vector<cl::Device> devices;
cl::CommandQueue queue;

cl: :Program program;
cl::Kernel kernel;
cl: :Buffer bufX;
cl::Buffer bufy;

LI17117177777777777777777777777/77/77/7//77/7//7//7/7/7/7/7/77/77/7
// The saxpy kernel
LI17117777777777777777777777777/77/77/7//7//7/7/7//7/7/7/7/7/7/7/77/7
string kernelStr =
" __kernel void saxpy(const __global float * x,\n"
" __global float * y,\n"
const float a)\n"

uint gid = get global_id(0);\n"

" y[gid] = a* x[gid] + y[gid];:\n"
“"N\n";

{\n

L1711 7177777777777777777777777/77/77/7//7//7//7//7//7/7/7/7/7/77/7
// Allocate and initialize memory on the host
L1711 7177777777777777777777777/77/77/7//7//7//7//7//7/7/7/7/7/77/7
void initHost(Q)
{

size_t sizelnBytes = length * sizeof(cl_float);

pX = (cl_float *) malloc(sizelnBytes);

if(pX == NULL)

throw(string("Error: Failed to allocate input memory on host\n'));

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

pY = (cl_float *) malloc(sizelnBytes);
if(pY == NULL)

throw(string("Error: Failed to allocate input memory on host\n'"));

for(int i = 0; i1 < length; i++)

pX[i] = cl_float(i);
pY[i] = cl_float(length-1-1);

printvVector("'’X", pX, length);
printVector('Y", pY, length);

}

LI1711777777777777777777777777777777/777/7//7/7/7//7//7//7/7/7/77/7
// Release host memory
LI17717777777777777777777777777777777/7//7//7/7/7//7//7/7/7/7/7/77/7
void cleanupHost()

if(pxX)
free(pX);
pX = NULL;

}
if(pY != NULL)

}
}

void

free(pY);
pY = NULL;

main(int argc, char * argv[])

Devices,

L1717 777777777777777777777/77777/77/77/77/77/77/77/7//7//7//7//
// Allocate and initialize memory on the host
LII1117777777777777777777777777777/77/77/77/77/77/77/7//7//7//7//
initHost();

LI1711777777777777777777777777777777/77//7/7/7/77/7/7/77/77/7//77/7
// Find the platform
LI1717777777777777777777777777777777/77//7/77/7/7/77/77/77/7//77/7
cl: :Platform: :get(&platforms);

std: :vector<cl: :Platform>: : iterator iter;

for(iter = platforms._begin(); iter != platforms.end(); ++iter)

if((*iter).getinfo<CL_PLATFORM_VENDOR>() == "‘Advanced Micro
Inc.™)
break;
}

L1717 777777777777777777777777777777/77/7/7//7/7/7/77/77/77/7//77/7
// Create an OpenCL context
LI17177777777777777777777777777/7//7//7//7/77//7//7/77/77/7//7//7
cl_context _properties cps[3] = { CL_CONTEXT_PLATFORM,

(cl_context_properties)(*iter)(),

1.9 Example Programs

0 };
context = cl::Context(CL DEVICE TYPE GPU, cps);

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1-25

1-26

ATl STREAM COMPUTING

LI1711777777777777777777777777777777/77/77/7/7/77/7/7/77/77/7//77/7
// Detect OpenCL devices
LI1717777777777777777777777777/77/77777/77//7//7//7/77/77/7//7//7
devices = context.getinfo<CL_CONTEXT_DEVICES>();

L1717 777777777777777777777777/77/77/77/77/77/77/77/7//7//7//7//
// Create an OpenCL command queue

L1717 777777777777777777777/77/77/77/77/77/77/77/77/7//7//7//7//
queue = cl::CommandQueue(context, devices[0]);

LI1711777777777777777777777777777777/77/77/77/77/7/7/77/77/7//77/7
// Create OpenCL memory buffers
LI1711777777777777777777777777777777/77//7/7/7/77/77/77/77/7//7//7
bufX = cl::Buffer(context,
CL_MEM_READ ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float) * length,
pPX);
bufyY = cl::Buffer(context,
CL_MEM_READ WRITE | CL_MEM COPY_HOST_PTR,
sizeof(cl_float) * length,
pY);

LI1711777777777777777777777777777777/77//7/7/7/7/7//7/77/77/7//77/7

// Load CL file, build CL program object, create CL kernel object

LI1711777777777777777777777777777777/77/77/7/7//7/7/7/7/7/77/7//7//7

cl::Program::Sources sources(l, std::make pair(kernelStr.c_str(),
kernelstr. length()));

program = cl: zProgram(context, sources);

program.build(devices);

kernel = cl::Kernel(program, '‘saxpy');

L1117 17777777777777777777777777/77/7/7/7/7/7/7//7/7/7/7/77///7/7/
// Set the arguments that will be used for kernel execution

L1117 177777777777777777/7777777777/7/7/7/777/7//7/7/7/7/7///7//7/7/
kernel .setArg(0, bufX);

kernel _.setArg(1, bufY);

kernel .setArg(2, a);

LI117171777777777777777777777777777777/777/7/7//7/7/7/7/7///77/7/

// Enqueue the kernel to the queue

// with appropriate global and local work sizes

L1117 777777777777777777/7777777/77/7/7/7/7/7/7//7/7/7/7/7//////7/

queue .engqueueNDRangeKernel (kernel, cl::NDRange(),
cl::NDRange(length), cl::NDRange(64));

L1117 177777777777777777/7777777777/7/7/7/7/777//7/7/7/7/7////7/7/

// Enqueue blocking call to read back buffer Y

L1117 177777777777777777/7777777/77/7/7/7/7/7/7//7/7/7/7/7/////7/7/

queue .enqueueReadBuffer(bufy, CL TRUE, O, length *
sizeof(cl_float), pY);

printVector('Y", pY, length);

L1711 777 7777777777777 777777777777777/777777/77/7/7//7/7/7/7/77/77/7
// Release host resources

L1711 7777777777777777777777777777777/777777/7777/7//7/7/7/77777/7
cleanupHost();

}
catch (cl::Error err)

LI17117777777777777777777777777/7/777/7//7//7/7/7/7/7/77/77/7//77/7

// Catch OpenCL errors and print log if it is a build error

LI1717777777777777777777777777777777//7//7/77/7/7//7/77/77/7//7//7

cerr << "ERROR: " << err.what() << "(" << err.err() << ")" <<
endl;

if (err.err() == CL_BUILD_PROGRAM_FAILURE)

{

string str =

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

program.getBui ldInfo<CL_PROGRAM BUILD_LOG>(devices[0]);
cout << “Program Info: " << str << endl;

}

cleanupHost();
catch(string msg)
{

cerr << “Exception caught in main(Q): " << msg << endl;
cleanupHost();

1.9.3 Third Example: Parallel Min() Function

This medium-complexity sample shows how to implement an efficient parallel
min() function.

The code is written so that it performs very well on either CPU or GPU. The
number of threads launched depends on how many hardware processors are
available. Each thread walks the source buffer, using a device-optimal access
pattern selected at runtime. A multi-stage reduction using __local and __global
atomics produces the single result value.

The sample includes a number of programming techniques useful for simple
tests. Only minimal error checking and resource tear-down is used.

Runtime Code -

1. The source memory buffer is allocated, and initialized with a random pattern.
Also, the actual min() value for this data set is serially computed, in order to
later verify the parallel result.

2. The compiler is instructed to dump the intermediate IL and ISA files for
further analysis.

3. The main section of the code, including device setup, CL data buffer creation,
and code compilation, is executed for each device, in this case for CPU and
GPU. Since the source memory buffer exists on the host, it is shared. All
other resources are device-specific.

4. The global work size is computed for each device. A simple heuristic is used
to ensure an optimal number of threads on each device. For the CPU, a
given CL implementation can translate one work-item per CL compute unit
into one thread per CPU core.

On the GPU, an initial multiple of the wavefront size is used, which is
adjusted to ensure even divisibility of the input data over all threads. The
value of 7 is a minimum value to keep all independent hardware units of the
compute units busy, and to provide a minimum amount of memory latency
hiding for a kernel with little ALU activity.

5. After the kernels are built, the code prints errors that occurred during kernel
compilation and linking.

6. The main loop is set up so that the measured timing reflects the actual kernel
performance. If a sufficiently large NLOOPS is chosen, effects from kernel
launch time and delayed buffer copies to the device by the CL runtime are

1.9 Example Programs 1-27

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1-28

ATl STREAM COMPUTING

minimized. Note that while only a single clFinish() is executed at the end
of the timing run, the two kernels are always linked using an event to ensure
serial execution.

The bandwidth is expressed as “number of input bytes processed.” For high-
end graphics cards, the bandwidth of this algorithm should be an order of
magnitude higher than that of the CPU, due to the parallelized memory
subsystem of the graphics card.

The results then are checked against the comparison value. This also
establishes that the result is the same on both CPU and GPU, which can
serve as the first verification test for newly written kernel code.

Note the use of the debug buffer to obtain some runtime variables. Debug
buffers also can be used to create short execution traces for each thread,
assuming the device has enough memory.

Kernel Code -

9.

10.

11.

12.

13.

The code uses four-component vectors (uint4) so the compiler can identify
concurrent execution paths as often as possible. On the GPU, this can be
used to further optimize memory accesses and distribution across ALUs. On
the CPU, it can be used to enable SSE-like execution.

The kernel sets up a memory access pattern based on the device. For the
CPU, the source buffer is chopped into continuous buffers: one per thread.
Each CPU thread serially walks through its buffer portion, which results in
good cache and prefetch behavior for each core.

On the GPU, each thread walks the source buffer using a stride of the total
number of threads. As many threads are executed in parallel, the result is a
maximally coalesced memory pattern requested from the memory back-end.
For example, if each compute unit has 16 physical processors, 16 uint4

requests are produced in parallel, per clock, for a total of 256 bytes per clock.

The kernel code uses a reduction consisting of three stages: __global to
__private, _private to _local, which is flushed to __global, and finally
__global to __global. In the first loop, each thread walks __global
memory, and reduces all values into a min value in __private memory
(typically, a register). This is the bulk of the work, and is mainly bound by
__global memory bandwidth. The subsequent reduction stages are brief in
comparison.

Next, all per-thread minimum values inside the work-group are reduced to a
__local value, using an atomic operation. Access to the __ local value is
serialized; however, the number of these operations is very small compared
to the work of the previous reduction stage. The threads within a work-group
are synchronized through a local barrier(). The reduced min value is
stored in __global memory.

After all work-groups are finished, a second kernel reduces all work-group
values into a single value in __global memory, using an atomic operation.
This is a minor contributor to the overall runtime.

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Example Code 3 -

//
// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

#include <CL/cl.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "Timer.h"

#define NDEVS 2
// A parallel min() kernel that works well on CPU and GPU
const char *kernel_source =

“#pragma OPENCL EXTENSION cl_khr_local_int32_extended atomics : enable
"#pragma OPENCL EXTENSION cl_khr_global_int32_extended atomics : enable

// 9. The source buffer is accessed as 4-vectors.
"' __kernel void minp(__global uint4 *src,
__global uint *gmin,
__local uint *Imin,
__global uint *dbg,
size t nitems,
uint dev)

// 10. Set up _ global memory access pattern.

uint count = (nitems / 4) / get_global_size(0);

uint idx = (dev == 0) ? get_global_id(0) * count
- get_global_id(0);

" uint stride = (dev = 0) ? 1 : get _global_size(0);

uint pmin = (uint) -1;

// 11_ First, compute private min, for this work-item.

for(int n=0; n < count; n++, idx += stride)

R ¢

" pmin = min(pmin, src[idx].x);

" pmin = min(pmin, src[idx].y);

" pmin = min(pmin, src[idx]-z);

" pmin = min(pmin, src[idx].w);
}

// 12. Reduce min values inside work-group.

" 1f(get_local_id(0) = 0)
" Imin[0] = (uint) -1;

" barrier(CLK_LOCAL_MEM_FENCE);
(void) atom min(Imin, pmin);
barrier(CLK_LOCAL MEM FENCE);
// Write out to __global.

if(get_local_id(0) == 0)
gmin[get_group_id(0)] = Imin[0];

1.9 Example Programs
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

1-29

1-30

ATl STREAM COMPUTING

// Dump some debug information.

if(get global_id(0) == 0)
{

dbg[0] = get_num _groups(0);
dbg[1] = get global_size(0);
dbg[2] = count;
dbg[3] = stride;

"}
3

""// 13. Reduce work-group min values from __ global to _ global.

" _kernel void reduce(__global uint4 *src,
" __global uint *gmin)

(void) atom min(gmin, gmin[get_global_id(0)]) ;

int main(int argc, char ** argv)
{
cl_platform_id platform;
int dev, nw;
cl_device _type devs[NDEVS] = { CL_DEVICE TYPE_CPU,
CL_DEVICE_TYPE GPU };

cl_uint *src_ptr;
unsigned int num_src_items = 4096*4096;

// 1. quick & dirty MAC random init of source buffer.
// Random seed (portable).

time_t Itime;
time(<ime);

src_ptr = (cl_uint *) malloc(num_src_items * sizeof(cl_uint));
cl_uint a (cl_uint) Itime,

b (cl_uint) Itime;
cl_uint min = (cl_uint) -1;

// Do serial computation of min() for result verification.
for(int i=0; 1 < num_src_items; i++)
src_ptr[i] = (cl_uint) (b=(Ca* (b &6553)) + (b>>16));

min = src_ptr[i] < min ? src_ptr[i] : min;

}

// 2. Tell compiler to dump intermediate .il and .isa GPU files.
putenv(**GPU_DUMP_DEVICE_KERNEL=3"");
// Get a platform.

clGetPlatformIDs(1, &platform, NULL);

Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

$445949494999445944¢

ATI

STREAM COMPUTING

// 3. lterate over devices.

for(dev=0; dev < NDEVS; dev++)

{
cl_device_id device;
cl_context context;
cl_command_queue queue;
cl_program program;
cl_kernel minp;
cl_kernel reduce;
cl_mem src_buf;
cl_mem dst_buf;
cl_mem dbg_buf;
cl_uint *dst_ptr,
*dbg_ptr;
printfC"\n%s: ', dev == 0 ? "CPU" : "GPU'");

// Find the device.

clGetDevicelDs(platform,
devs[dev],
&aevice,
NULL);

// 4. Compute work sizes.

cl_uint compute_units;
size_t global_work_size;
size t local_work size;

size_t num_groups;

clGetDevicelnfo(device,
CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof(cl_uint),
&compute_units,
NULL);

if(devs[dev] == CL_DEVICE TYPE CPU)
{

global_work_size = compute_units * 1;
local_work size = 1;

// 1 thread per core

}
else
{ _
cl_uint ws = 64;
global_work_size = compute_units * 7 * ws; // 7 wavefronts per SIMD
while((num_src_items /7 4) % global_work_size 1= 0)
global_work_size += ws;
local_work_size = ws;
}

num_groups = global_work size / local_work_size;

1.9 Example Programs 1-31

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

// Create a context and command queue on that device.

context = clCreateContext(NULL,
1,
&device,
NULL, NULL, NULL);

queue = clCreateCommandQueue(context,
device,
0, NULL);

// Minimal error check.
if(queue == NULL)

printf('Compute device setup failed\n™);
return(-1);
}

// Perform runtime source compilation, and obtain kernel entry point.

program = clCreateProgramWithSource(context,
1,
&kernel_source,
NULL, NULL);

cl_int ret = clBuildProgram(program, 1, &device, NULL, NULL, NULL);
// 5. Print compiler error messages

if(ret 1= CL_SUCCESS)

{
printfC'clBuildProgram failed: %d\n", ret);

char buf[0x10000];

clGetProgramBui ldInfo(program,
device,
CL_PROGRAM BUILD LOG,
0x10000,
buf,
NULL);

printFC\n%s\n"", buf);

return(-1);

}

minp
reduce

clCreateKernel (program, "minp", NULL);
clCreateKernel (program, *‘reduce', NULL);

// Create input, output and debug buffers.

src_buf = clCreateBuffer(context,
CL_MEM_READ ONLY | CL_MEM_COPY_HOST_PTR,
num_src_items * sizeof(cl_uint),
src_ptr,
NULL);

dst_buf = clCreateBuffer(context,
CL_MEM_READ WRITE,
num_groups * sizeof(cl_uint),
NULL, NULL);

1-32 Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

dbg_buf = clCreateBuffer(context,

CL_MEM _WRITE_ONLY,
global_work_size * sizeof(cl_uint),

NULL, NULL);

clSetKernelArg(minp,
clSetKernelArg(minp,
clSetKernelArg(minp,

0, sizeof(void *),
1
2
clSetKernelArg(minp, 3, sizeof(void *),
4
5

, sizeof(void *),

clSetKernelArg(minp,
clSetkernelArg(minp, 5, sizeof(dev),

clSetKkernelArg(reduce, 0, sizeof(void *),
clSetKkernelArg(reduce, 1, sizeof(void *),

CPerfCounter t;
t.Reset();

t.StartQ;

// 6. Main timing loop.
#define NLOOPS 500

cl_event ev;
int nloops = NLOOPS;

while(nloops--)

clEnqueueNDRangeKernel (queue,
minp,
1,
NULL,

, 1*sizeof(cl_uint),

(void*) &src buf);
(void*) &dst buf);
(void*) NULL);

(void*) &dbg buf);

, sizeof(num_src_items), (void*) &um src_items);

(void*) &dev);

(void*) &src buf);
(void*) &dst _buf);

&global_work_size,
&local_work_size,

0, NULL, &ev);

clEnqueueNDRangeKernel (queue,

reduce,

1,

NULL,

&num_groups,

NULL, 1, &ev, NULL);
bs
clFinish(queue);
t.Stop(Q;

printfC'B/W %.2F GB/sec, ', ((float) num src_items *
sizeof(cl_uint) * NLOOPS) /
t.GetElapsedTime() 7 1e9);

// 7. Look at the results via synchronous buffer map.

dst_ptr = (cl_uint *) clEnqueueMapBuffer(queue,

1.9 Example Programs
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

dst_buf,
CL_TRUE,
CL_MAP_READ,
0,

num_groups * sizeof(cl_uint),

0, NULL, NULL, NULL);

1-33

ATl STREAM COMPUTING

dbg_ptr = (cl_uint *) clEnqueueMapBuffer(queue,
dbg_buf,
CL_TRUE,
CL_MAP_READ,
0,
global_work_size *
sizeof(cl_uint),
0, NULL, NULL, NULL);

// 8. Print some debug info.

printfF(C'%d groups, %d threads, count %d, stride %d\n", dbg ptr[0O],
dbg_ptr[1],
dbg_ptr[2],
dbg_ptr[3]);

if(dst_ptr[0] == min)
printf('result correct\n');
else
printf('result INcorrect\n'");

}
printfC\n'");
return O;
}
1-34 Chapter 1. OpenCL Architecture and the ATl Stream Computing System

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Chapter 2
Building and Running OpenCL
Programs

The compiler tool-chain provides a common framework for both CPUs and
GPUs, sharing the front-end and some high-level compiler transformations. The
back-ends are optimized for the device type (CPU or GPU). Figure 2.1 is a high-
level diagram showing the general compilation path of applications using
OpenCL. Functions of an application that benefit from acceleration are re-written
in OpenCL and become the OpenCL source. The code calling these functions
are changed to use the OpenCL API. The rest of the application remains
unchanged. The kernels are compiled by the OpenCL compiler to either CPU
binaries or GPU binaries, depending on the target device.

é OpenCL Compiler\

Built-In
Library

LLVM IR

OpenCL
Source »

rO>sc oo O

R
u
n
t
i Comed
m
e| \o _J

/ \

LLVMAS / \ ATIIL
CPU GPU

Figure 2.1 OpenCL Compiler Toolchain

For CPU processing, the OpenCL runtime uses the LLVM AS to generate x86
binaries. The OpenCL runtime automatically determines the number of
processing elements, or cores, present in the CPU and distributes the OpenCL
kernel between them.

For GPU processing, the OpenCL runtime post-processes the incomplete ATI IL
from the OpenCL compiler and turns it into complete ATI IL. This adds macros
(from a macro database, similar to the built-in library) specific to the GPU. The

ATI Stream SDK - OpenCL Programming Guide 2-1
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

OpenCL Runtime layer then removes unneeded functions and passes the
complete IL to the CAL compiler for compilation to GPU-specific binaries.

2.1 Compiling the Program

211

2-2

An OpenCL application consists of a host program (C/C++) and an optional
kernel program (.cl). To compile an OpenCL application, the host program must
be compiled; this can be done using an off-the-shelf compiler such as g++ or
MSVC++. The application kernels are compiled into device-specific binaries
using the OpenCL compiler.

This compiler uses a standard C front-end, as well as the low-level virtual
machine (LLVM) framework, with extensions for OpenCL. The compiler starts
with the OpenCL source that the user program passes through the OpenCL
runtime interface (Figure 2.1). The front-end translates the OpenCL source to
LLVM IR. It keeps OpenCL-specific information as metadata structures. (For
example, to debug kernels, the front end creates metadata structures to hold the
debug information; also, a pass is inserted to translate this into LLVM debug
nodes, which includes the line numbers and source code mapping.) The front-
end supports additional data-types (int4, float8, etc.), additional keywords (kernel,
global, etc.) and built-in functions (get_global_idQ), barrier(), etc.). Also, it
performs additional syntactic and semantic checks to ensure the kernels meet
the OpenCL specification. The input to the LLVM linker is the output of the front-
end and the library of built-in functions. This links in the built-in OpenCL functions
required by the source and transfers the data to the optimizer, which outputs
optimized LLVM IR.

For GPU processing, the LLVM IR-to-CAL IL module receives LLVM IR and
generates optimized IL for a specific GPU type in an incomplete format, which is
passed to the OpenCL runtime, along with some metadata for the runtime layer
to finish processing.

For CPU processing, LLVM AS generates x86 binary.

Compiling on Windows

To compile OpenCL applications on Windows requires that Visual Studio 2008
Professional Edition or the Intel C compiler are installed. All C++ files must be
added to the project, which must have the following settings.

e Project Properties —» C/C++ — Additional Include Directories
These must include $(ATISTREAMSDKROOT)/include for OpenCL headers.
Optionally, they can include $(ATISTREAMSDKSAMPLESROOT)/ include for
SDKUtil headers.

e Project Properties —» C/C++ — Preprocessor Definitions
These must define ATI_OS_WIN.

e Project Properties — Linker — Additional Library Directories
These must include $(ATISTREAMSDKROOT)/ 1ib/x86 for OpenCL libraries.

Chapter 2: Building and Running OpenCL Programs

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Optionally, they can include $(ATISTREAMSDKSAMPLESROOT)/ 1ib/x86 for
SDKUMil libraries.

e Project Properties — Linker — Input — Additional Dependencies
These must include OpenCL. lib. Optionally, they can include SDKUtil.lib.

2.1.2 Compiling on Linux

To compile OpenCL applications on Linux requires that the gcc or the Intel C
compiler is installed. There are two major steps to do this: compiling and linking.

1. Compile all the C++ files (Template.cpp), and get the object files.
For 32-bit object files on a 32-bit system, or 64-bit object files on 64-bit
system:

g++ -0 Template.o -DATI_OS LINUX -c Template.cpp -1$ATISTREAMSDKROOT/include

For building 32-bit object files on a 64-bit system:
g++ -0 Template.o -DATI_OS _LINUX -c Template.cpp -1$ATISTREAMSDKROOT/include

2. Link all the object files generated in the previous step to the OpenCL library
and create an executable.

For linking to a 64-bit library:
g++ -0 Template Template.o -10penCL -L$ATISTREAMSDKROOT/1ib/x86_64

For linking to a 32-bit library:
g++ -0 Template Template.o -10penCL -L$ATISTREAVMSDKROOT/1ib/x86

The OpenCL samples in the ATl Stream SDK depend on the SDKUHil library. In
Linux, the samples use the shipped SDKUtil. lib, whether or not the sample is
built for release or debug. When compiling all samples from the samples/opencl
folder, the SDKUtil.lib is created first; then, the samples use this generated
library. When compiling the SDKUIil library, the created library replaces the
shipped library.

The following are linking options if the samples depend on the SDKULil Library
(assuming the SDKUIil library is created in $ATISTREAMSDKROOT/ 11b/x86_64 for
64-bit libraries, or $SATISTREAMSDKROOT/1ib/x86 for 32-bit libraries).

g++ -0 Template Template.o -1SDKUtil -10penCL -L$ATISTREAMSDKROOT/1ib/x86_64

g++ -0 Template Template.o -I1SDKUtil -10penCL -L$ATISTREAMSDKROOT/1ib/x86
2.1.3 OpenCL Compiler Options
The currently supported options are:

e -1 dir — Add the directory dir to the list of directories to be searched for
header files. When parsing #include directives, the OpenCL compiler
resolves relative paths using the current working directory of the application.

2.1 Compiling the Program 2-3

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

e —g— This is an experimental feature that lets you use the GNU project
debugger, GDB, to debug kernels on x86 CPUs running Linux or
cygwin/minGW under Windows. For more details, see Chapter 3, “Debugging
OpenCL.”

2.2 Running the Program

221

2-4

The runtime system assigns the work in the command queues to the underlying
devices. Commands are placed into the queue using the clEnqueue commands
shown in the listing below.

OpenCL API Function Description
clCreateCommandQueue() Create a command queue for a specific device (CPU,
GPU).

clCreateProgramWithSource() Create a program object using the source code of the
clCreateProgramWithBinary() application kernels.

clBuildProgram() Compile and link to create a program executable from
the program source or binary.

clCreateKernel() Creates a kernel object from the program object.

clCreateBuffer() Creates a buffer object for use via OpenCL kernels.

clSetKernelArg() Set the kernel arguments, and enqueue the kernel in a

clEnqueueNDRangeKernel() command queue.

clEnqueueReadBuffer(), Enqueue a command in a command queue to read from

clEnqueueWriteBuffer() a buffer object to host memory, or write to the buffer

object from host memory.
clEnqueueWaitForEvents() Wait for the specified events to complete.

The commands can be broadly classified into three categories:

e Kernel commands (for example, clEnqueueNDRangeKernel (), etc.),
e Memory commands (for example, clEnqueueReadBuffer(), etc.), and

e Event commands (for example, clEnqueueWaitForEvents(), etc.

As illustrated in Figure 2.2, the application can create multiple command queues
(some in libraries, for different components of the application, etc.). These
gueues are muxed into one queue per device type. The figure shows command
gueues 1 and 3 merged into one CPU device queue (blue arrows); command
gueue 2 (and possibly others) are merged into the GPU device queue (red
arrow). The device queue then schedules work onto the multiple compute
resources present in the device. Here, K = kernel commands, M = memory
commands, and E = event commands.

Running Code on Windows

The following steps ensure the execution of OpenCL applications on Windows.

1. The path to OpenCL. lib ($ATISTREAMSDKROOT/ 1i1b/x86) must be included in
path environment variable.

Chapter 2: Building and Running OpenCL Programs

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

2. Generally, the path to the kernel file (Template Kernel .cl) specified in the
host program is relative to the executable. Unless an absolute path is
specified, the kernel file must be in the same directory as the executable.

Programming [I 3 n
Layer - - > \
Command | (M, [Ki{E, [K|M, [K M, | ---
Queues
For CPU queue For CPU queue For GPU queue

Device _I_ — _V _____ * GPU
C d R VIR
G L R 8 O IR

Ko Koy | Scheduler |

CPU Core 1 CPU Core 2 GPU Core 1 GPU Core 2

Figure 2.2 Runtime Processing Structure

2.2.2 Running Code on Linux

The following steps ensure the execution of OpenCL applications on Linux.
1. The path to FibOpenCL.so ($ATISTREAMSDKROOT/ 1ib/x86) must be included
in $LD_LIBRARY_PATH.

2. /usr/1ib/OpenCL/vendors/ must have libatiocl32.so and/or
libatiocl64.so.

3. Generally, the path to the kernel file (Template_Kernel .cl) specified in the
host program is relative to the executable. Unless an absolute path is
specified, the kernel file must be in the same directory as the executable.

2.3 Calling Conventions

For all Windows platforms, the __ stdcall calling convention is used. Function
names are undecorated.

For Linux, the calling convention is __cdecl.

2.3 Calling Conventions 2-5
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

2.4 Predefined Macros

The following macros are predefined when compiling OpenCL™ C kernels.
These macros are defined automatically based on the device for which the code
is being compiled.

GPU devices:

__Cypress__
__Juniper__
__Redwood
__Cedar__
__ATL_RV770__
__ATI_RV730__
__ATL_RV710
_GPU__

CPU devices:

_CPU__
~X86__
T X86 64

Note that _ GPU__or _ CPU__ are predefined whenever a GPU or CPU device
is the compilation target.

An example kernel is provided below.

#pragma OPENCL EXTENSION cl_amd printf : enable
const char* getDeviceName() {
#ifdef _ Cypress
return ""Cypress';
#elif defined(__Juniper_)
return "“Juniper’;
#elif defined(__Redwood)
return ""Redwood™;
#elif defined(__Cedar_)
return "‘Cedar’';
#elif defined(__ATI_RV770_)
return "RV770";
#elif defined(__ATI_RV730_)
return "RV730'";
#elif defined(__ATI_RV710_)
return "RV710';
#elif defined(__GPU_)
return "‘GenericGPU";
#elif defined(__X86_)
return ""X86CPU'";
#elif defined(__X86 64)
return ""X86-64CPU"*;
#elif defined(__CPU_)
return "‘GenericCPU";
#else
return "‘UnknownDevice'';
#endif

¥
kernel void test pf(global int* a)

printf("'Device Name: %s\n", getDeviceName());

}

2-6 Chapter 2: Building and Running OpenCL Programs

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Chapter 3
Debugging OpenCL

ATI Stream Computing provides an experimental feature that lets you use the
GNU project debugger, GDB, to debug kernels on x86 CPUs running Linux or
cygwin/minGW under Windows.

3.1 Setting the Environment

The OpenCL program to be debugged first is compiled by passing the “-g”’
option to the compiler through the options string to clBui ldProgram. For
example, using the C++ API:

err = program.build(devices, "-g'");
To avoid source changes, set the environment variable as follows:
CPU_COMPILER_OPTIONS=""-g""

Below is a sample debugging session of a program with a simple hello world
kernel. The following GDB session shows how to debug this kernel. Ensure that
your program is configured to be executed on the CPU. It is important to set
CPU_MAX_COMPUTE_UNITS=1. This ensures that the program is executed
deterministically.

3.2 Setting the Breakpoint in an OpenCL Kernel

To set a breakpoint, use:

b [N | function | kernel _name]

where N is the line number in the source code, function is the function name,
and kernel _name is constructed as follows: if the name of the kernel is
bitonicSort, the kernel_name is __ OpenCL_bitonicSort kernel.

Note that if no breakpoint is set, the program does not stop until execution is
complete.

Also note that OpenCL kernel symbols are not visible in the debugger until the
kernel is loaded. A simple way to check for known OpenCL symbols is to set a
breakpoint in the host code at clEnqueueNDRangeKernel, and to use the GDB
info functions _ OpenCL command, as shown in the example below.

ATI Stream SDK - OpenCL Programming Guide 3-1
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

3.3 Sample GDB Session

3-2

The following is a sample debugging session. Note that two separate breakpoints
are set. The first is set in the host code, at clEnqueueNDRangeKernel (). The
second breakpoint is set at the actual CL kernel function.

$ export CPU_COMPILER OPTIONS="-g"

$ export CPU_MAX_COMPUTE_UNITS=1

$ gdb BitonicSort

GNU gdb 6.8

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl -html>

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type *'show copying™
and "'show warranty" for details.

This GDB was configured as '"x86_64-suse-linux'...

(gdb) b clEnqueueNDRangeKernel

Function "‘clEnqueueNDRangeKernel™ not defined.

Make breakpoint pending on future shared library load? (y or [n]) vy

Breakpoint 1 (clEnqueueNDRangeKernel) pending.

(gdb) r —-device cpu

Starting program: /usr/local/ati-stream-sdk-v2.01-TC2-
Inx64/samples/opencl/bin/x

86_64/BitonicSort --device cpu

[Thread debugging using libthread db enabled]

Unsorted Input

145 219 149 153 197 149 200 164 208 77 215 106 127 64 120 187 33 238 144

33 116

231 193 222 161 44 160 220 7 144 210 153 108 104 50 49 254 251 214 206 73
173 57

201 238 178 132 15 160 20 49 21 251 243 243 157 32 148 121 39 36 76 192

144

[New Thread Ox7fe2b3035700 (LWP 8021)]
[New Thread 0x41417950 (LWP 8024)]
[New Thread Ox4056d950 (LWP 8025)]
Executing kernel for 1 iterations

[Switching to Thread Ox7fe2b3035700 (LWP 8021)]

Breakpoint 1, 0x00007fe2b28219e0 in clEnqueueNDRangeKernel O

from /usr/local/ati-stream-sdk-v2.01-TC2-1nx64/1ib/x86_64/1ib0OpenCL.so
(gdb) info functions __ OpenCL
All functions matching regular expression **__OpenCL":

File OCLFYRFxO.cl:
void _ OpenCL_bitonicSort _kernel(void *, unsigned int, unsigned int,
unsigned int, unsigned Int);

Non-debugging symbols:

0x00007fe29e6b8778 __ OpenCL_bitonicSort_kernel@plt
0x00007fe29e6b8900 __ OpenCL_bitonicSort_stub

(gdb) b _ OpenCL_bitonicSort _kernel

Breakpoint 2 at Ox7fe29e6b8790: file OCLFYRFxO.cl, line 31.
(gdb) c

Continuing.

[Switching to Thread 0x4056d950 (LWP 8025)]

Breakpoint 2, _ OpenCL_bitonicSort kernel (theArray=0x0, stage=0,
passOfStage=0, width=0, direction=0) at OCLFYRFxO.cl:31

31
(gdb) p get global_id(0)
$1 =0

(gdb) c
Continuing.

Chapter 3: Debugging OpenCL

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

3.4 Notes

ATl STREAM COMPUTING

Breakpoint 2, _ OpenCL_bitonicSort kernel (theArray=0x0, stage=0,
passOfStage=0, width=0, direction=0) at OCLFYRFx0.cl:31

31 {

(gdb) p get global_id(0)
$2 =1

(gdb)

1. To make a breakpoint in a working thread with some particular ID in
dimension N, one technique is to set a conditional breakpoint when the
get global_id(N) == ID. To do this, use:

b [N | function | kernel_name] if (get global_id(N)==ID)
where Ncan be 0, 1, or 2.

2. For complete GDB documentation, see
http://www.gnu.org/software/gdb/documentation/ .

3. For debugging OpenCL kernels in Windows, a developer can use GDB
running in cygwin or minGW. It is done in the same way as described in
sections 3.1 and 3.2.

Notes:

— Only OpenCL kernels are visible to GDB when running cygwin or
minGW. GDB under cygwin/minGW currently does not support host code
debugging.

— ltis not possible to use two debuggers attached to the same process.
Do not try to attach Visual Studio to a process, and concurrently GDB to
the kernels of that process.

— Continue to develop application code using Visual Studio. gcc running in
cygwin or minGW currently is not supported.

3.4 Notes 3-3

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

3-4

ATl STREAM COMPUTING

Chapter 3: Debugging OpenCL

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Chapter 4
OpenCL Performance and
Optimization

This chapter discusses performance and optimization when programming for ATI
Stream GPU compute devices, as well as CPUs and multiple devices.

4.1 ATI Stream Profiler

The ATI Stream Profiler provides a Microsoft® Visual Studio® integrated view of
key static kernel characteristics such as workgroup dimensions and memory
transfer sizes, as well as kernel execution time, dynamic hardware performance
counter information (ALU operations, local bank conflicts), and kernel
disassembly. For information on installing the profiler, see the ATI Stream SDK
Installation Notes. The performance counters available through the Profiler are
listed in Table 4.1.

After following the installation instructions, you can run the ATI Stream Profiler

from within Visual Studio to generate profile information for your application. After
verifying that the application compiles and runs successfully, click Start Profiling
to generate the profile information. The profiling process may run the application
multiple times to generate the complete set of performance information.

Some sections in the remainder of this document reference information and
analysis that can be provided by the ATI Stream Profiler.

Table 4.1 lists and briefly describes the performance counters available through
the ATI Stream Profiler.

Table 4.1 Performance Counter Descriptions

Name Description
Method The kernel name or the memory operation name.
ExecutionOrder The order of execution for the kernel and memory operations from the program.
GlobalWorkSize The global work-item size of the kernel.
GroupWorkSize The work-group size of the kernel.
For a kernel dispatch operation: time spent executing the kernel in milliseconds
Time (does not include the kernel setup time). For a buffer or image object operation,
time spent transferring bits in milliseconds.
LocalMem The amount of local memory in bytes being used by the kernel.

MemTransferSize

The data transfer size in kilobytes.

ATI Stream SDK - OpenCL Programming Guide 4-1
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Name Description
GPR The number of General Purpose Register allocated by the kernel.
The maximum number of scratch registers needed by the kernel. To improve
ScratchReg performance, get this number down to zero by reducing the number of GPR used
by the kernel.
The maximum number of flow control stack size needed by the kernel (only for
StackSize GPU device). This number may affect the number of wavefronts in-flight. To
reduce the stack size, reduce the amount of flow control nesting in the kernel.
Wavefront Total wavefronts.
ALU The average ALU instructions executed per work-item (affected by flow control).
Fetch The average Fetch instructions from the global memory executed per work-item
(affected by flow control).
Write The average Write instructions to the global memory executed per work-item
(affected by flow control).
ALUBuUsy The percentage of GPUTime ALU instructions are processed.
. The ratio of ALU to Fetch instructions. If the number of Fetch instruction is zero,
ALUFetchRatio then one will be used instead.
The ALU vector packing efficiency (in percentage). This value indicates how well
ALUPackin the Shader Compiler packs the scalar or vector ALU in your kernel to the 5-way
9 VLIW instructions. Values below 70 percent indicate that ALU dependency chains
may be preventing full utilization of the processor.
FetchMem The total kilobytes fetched from the global memory.
L1CacheHit The percentage of fetches from the global memory that hit the L1 cache. Only
fetches from image objects are cached.
FetchUnitBusy The percentage of GPUTime the Fetch unit is active. This is measured with all

extra fetches and any cache or memory effects taken into account.

FetchUnitStalled

The percentage of GPUTime the Fetch unit is stalled. Try reducing the number
of fetches or reducing the amount per fetch if possible.

WriteUnitStalled

The percentage of GPUTime Write unit is stalled.

Performance Counters Specifically for Evergreen-Series GPUs

LDSFetch

The average Fetch instructions from the local memory executed per work-item
(affected by flow control).

LDSWrite

The average Write instructions to the local memory executed per work-item
(affected by flow control).

FastPath

The total kilobytes written to the global memory through the FastPath which only
support basic operations: no atomics or sub-32 bit types. This is an optimized path
in the hardware.

CompletePath

The total kilobytes written to the global memory through the CompletePath which
supports atomics and sub-32 bit types (byte, short). This number includes bytes
for load, store and atomics operations on the buffer. This number may indicate a
big performance impact (higher number equals lower performance). If possible,
remove the usage of this Path by moving atomics to the local memory or partition
the kernel.

4-2

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Name

Description

PathUtilization

The percentage of bytes written through the FastPath or CompletePath compared
to the total number of bytes transferred over the bus. To increase the path utiliza-
tion, use the FastPath.

ALUStalledByLDS

The percentage of GPUTime ALU is stalled by the LDS input queue being full or
the output queue is not ready. If there are LDS bank conflicts, reduce it. Otherwise,
try reducing the number of LDS accesses if possible.

LDSBankConflict

The percentage of GPUTime LDS is stalled by bank conflicts.

LDSBankConflictAccess | The percentage of LDS accesses that caused a bank conflict.

4.2 Analyzing Stream Processor Kernels

421 Intermediate Language and GPU Disassembly

The ATI Stream Computing software exposes the Intermediate Language (IL)
and instruction set architecture (ISA) code generated for OpenCL"™" kernels
through an environment variable, GPU_DUMP_DEVICE_KERNEL.

The ATI Intermediate Language (IL) is an abstract representation for hardware
vertex, pixel, and geometry shaders, as well as compute kernels that can be
taken as input by other modules implementing the IL. An IL compiler uses an IL
shader or kernel in conjunction with driver state information to translate these
shaders into hardware instructions or a software emulation layer. For a complete
description of IL, see the ATI Intermediate Language (IL) Specification v2.

The instruction set architecture (ISA) defines the instructions and formats
accessible to programmers and compilers for the AMD GPUs. The Evergreen-
family ISA instructions and microcode are documented in the AMD Evergreen-
Family ISA Instructions and Microcode. (For a complete description of the R700
ISA, see the R700-Family Instruction Set Architecture.)

422 Generating IL and ISA Code

In Microsoft Visual Studio, the ATI Stream Profiler provides an integrated tool to
view IL and ISA code. After running the profiler, single-click the name of the
kernel for detailed programming and disassembly information. The associated
ISA disassembly is shown in a new tab. A drop-down menu provides the option
to view the IL, ISA, or source OpenCL for the selected kernel.

Developers also can generate IL and ISA code from their OpenCL™ kernel by
setting the environment variable GPU_DUMP_DEVICE_KERNEL to one of the
following possible values:

Value Description
1 Save intermediate IL files in local directory.

2 Disassemble ISA file and save in local directory.
3 Save both the IL and ISA files in local directory.

4.2 Analyzing Stream Processor Kernels 4-3
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

After setting the flag, run the OpenCL host application. When the host application
builds the kernel, the OpenCL compiler saves the .il and .1isa files for each
kernel in the local directory. The AMD Stream Profiler currently works only with
32-bit applications.

4.3 Estimating Performance

43.1

4-4

Measuring Execution Time

The OpenCL runtime provides a built-in mechanism for timing the execution of
kernels by setting the CL_QUEUE_PROFILING_ENABLE flag when the queue is
created. Once profiling is enabled, the OpenCL runtime automatically records
timestamp information for every kernel and memory operation submitted to the
queue.

OpenCL provides four timestamps:

e CL PROFILING_COMMAND_QUEUED - Indicates when the command is enqueued
into a command-queue on the host. This is set by the OpenCL runtime when
the user calls an clEnqueue* function.

e CL PROFILING COMMAND SUBMIT - Indicates when the command is submitted
to the device. For AMD GPU devices, this time is only approximately defined
and is not detailed in this section.

e CL_PROFILING COMMAND_START - Indicates when the command starts
execution on the requested device.

e CL_PROFILING COMMAND END - Indicates when the command finishes
execution on the requested device.

The sample code below shows how to compute the kernel execution time (End-
Start):

cl_event myEvent;
cl_ulong startTime, endTime;

clCreateCommandQueue (.., CL_QUEUE_PROFILING_ENABLE, NULL);
clEnqueueNDRangeKernel (.., &myEvent);
clFinish(myCommandQ); // wait for all events to finish

clGetEventProfilinglnfo(myEvent, CL_PROFILING_COMMAND_ START,
sizeof(cl_ulong), &startTime, NULL);

clGeteEventProfilingInfo(myEvent, CL_PROFILING COMMAND_END,
sizeof(cl_ulong), &endTimeNs, NULL);

cl_ulong kernelExecTimeNs = endTime-startTime;

The ATI Stream Profiler also can record the execution time for a kernel
automatically. The Kernel Time metric reported in the profiler output uses the
built-in OpenCL timing capability and reports the same result as the
kernelExecTimeNs calculation shown above.

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Another interesting metric to track is the kernel launch time (Start — Queue). The
kernel launch time includes both the time spent in the user application (after
enqueuing the command, but before it is submitted to the device), as well as the
time spent in the runtime to launch the kernel. For CPU devices, the kernel
launch time is fast (tens of us), but for discrete GPU devices it can be several
hundred ps. Enabling profiling on a command queue adds approximately 10 us
to 40 us overhead to each kernel launch. Much of the profiling overhead affects
the start time; thus, it is visible in the launch time. Be careful when interpreting
this metric. To reduce the launch overhead, the AMD OpenCL runtime combines
several command submissions into a batch. Commands submitted as batch
report similar start times and the same end time.

4.3.2 Using the OpenCL timer with Other System Timers

The resolution of the timer, given in ns, can be obtained from:

clGetDevicelnfo(..,CL_DEVICE_PROFILING_TIMER_RESOLUTION..);

AMD CPUs and GPUs report a timer resolution of 1 ns. AMD OpenCL devices
are required to correctly track time across changes in frequency and power
states. Also, the AMD OpenCL SDK uses the same time-domain for all devices
in the platform; thus, the profiling timestamps can be directly compared across
the CPU and GPU devices.

The sample code below can be used to read the current value of the OpenCL
timer clock. The clock is the same routine used by the AMD OpenCL runtime to
generate the profiling timestamps. This function is useful for correlating other
program events with the OpenCL profiling timestamps.

uinté4_t
timeNanos(Q)
{
#ifdef linux
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return (unsigned long long) tp.-tv_sec * (1000ULL * 1000ULL * 1000ULL) +
(unsigned long long) tp.tv_nsec;
#else
LARGE INTEGER current;
QueryPerformanceCounter(¤t) ;
return (unsigned long long) ((double)current.QuadPart / m_ticksPerSec * 1€9);
#endif

}

Any of the normal CPU time-of-day routines can measure the elapsed time of a
GPU kernel. GPU kernel execution is non-blocking, that is, calls to
engueue*Kernel return to the CPU before the work on the GPU is finished. For
an accurate time value, ensure that the GPU is finished. In OpenCL, you can
force the CPU to wait for the GPU to become idle by inserting calls to
clFinish() before and after the sequence you want to time. The routine
clFinish(Q) blocks the CPU until all previously enqueued OpenCL commands
have finished.

For more information, see section 5.9, “Profiling Operations on Memory Objects

and Kernels,” of the OpenCL 1.0 Specification.

4.3 Estimating Performance 4-5
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

433

4-6

ATl STREAM COMPUTING

Estimating Memory Bandwidth

The memory bandwidth required by a kernel is perhaps the most important
performance consideration. To calculate this:

Effective Bandwidth = (B, + B)/T

where:

B, = total number of bytes read from global memory.

B,, = total number of bytes written to global memory.

T = time required to run kernel, specified in nanoseconds.

If B, and By, are specified in bytes, and T in ns, the resulting effective bandwidth
is measured in GB/s, which is appropriate for current CPUs and GPUs for which
the peak bandwidth range is 20-200 GB/s. Computing B, and By, requires a
thorough understanding of the kernel algorithm; it also can be a highly effective
way to optimize performance. For illustration purposes, consider a simple matrix
addition: each element in the two source arrays is read once, added together,
then stored to a third array. The effective bandwidth for a 1024x1024 matrix
addition is calculated as:

B, = 2 x (1024 x 1024 x 4 bytes) = 8388608 bytes ;; 2 arrays, 1024x1024, each
element 4-byte float

B,y = 1 x (1024 x 1024 x 4 bytes) = 4194304 bytes ;; 1 array, 1024x1024, each
element 4-byte float.

If the elapsed time for this copy as reported by the profiling timers is 1000000 ns
(1 million ns, or .001 sec), the effective bandwidth is:

(B,+B,,)/T = (8388608+4194304)/1000000 = 12.6GB/s

The ATI Stream Profiler can report the number of dynamic instructions per thread
that access global memory through the Fetch and Write counters. The Fetch and
Write reports average the per-thread counts; these can be fractions if the threads
diverge. The profiler also reports the dimensions of the global NDRange for the
kernel in the GlobalWorkSize field. The total number of threads can be
determined by multiplying together the three components of the range. If all (or
most) global accesses are the same size, the counts from the profiler and the
approximate size can be used to estimate B, and By,

B, = Fetch * GlobalWorkitems * Size
B,, = Write * GlobalWorkitems * Element Size
An example profiler output and bandwidth calculation:

Method GlobalWorkSize Time Fetch Write

runKernel_Cypress {192; 144; 1} 0.9522 70.8 0.5

GlobalWaveFrontSize = 192*144*1 = 27648 global work items.

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

In this example, assume we know that all accesses in the kernel are four bytes;
then, the bandwidth can be calculated as:

Br = 70.8 * 27648 * 4 = 7829914 bytes
Bw = 0.5 * 27648 * 4 = 55296 bytes
The bandwidth then can be calculated as:

(Br + Bw)/T = (7829914 bytes + 55296 bytes) / .9522 ms / 1000000
= 8.2 GBIs

4.4 Global Memory Optimization

Figure 4.1 is a block diagram of the GPU memory system. The up arrows are
read paths, the down arrows are write paths. WC is the write cache.

CuU CuU CuU CuU CuU CuU CuU Cu
16 pe 16 pe 16 pe 16 pe oo o 16 pe 16 pe 16 pe 16 pe
LDS LDS LDS LDS LDS LDS LDS LDS

Compute Unit <> Memory Channel Xbar

Y Y Y
Complete % Complete % Complete % lete %
Path o Path o Path o o
Atomics | | & Atomics | | & Atomics | | & @
w w w w
Y Y Y Y Y Y Y
~ ~ ~ ~
Memory Channel Memory Channel e Memory Channel Memory Channel
— — — —
Channel Channel Channel Channel
((Address / 256) % n) == 0 ((Address / 256) % n) == 1 ((Address / 256) % n) == n-2 ((Address / 256) % n) == n-1
Figure 4.1 Memory System
4.4 Global Memory Optimization 4-7

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

441

4-8

ATl STREAM COMPUTING

The GPU consists of multiple compute units. Each compute unit contains 32 kB
local (on-chip) memory, L1 cache, registers, and 16 processing elements. Each
processing element contains a five-way VLIW processor. Individual work-items
execute on a single processing element; one or more work-groups execute on a
single compute unit. On a GPU, hardware schedules the work-items. On the ATI
Radeon™ HD 5000 series of GPUs, hardware schedules groups of work-items,
called wavefronts, onto processing elements; thus, work-items within a wavefront
execute in lock-step; the same instruction is executed on different data.

The L1 cache is 8 kB per compute unit. (For the ATl Radeon™ HD 5870 GPU,
this means 160 kB for the 20 compute units.) The L1 cache bandwidth on the
ATl Radeon™ HD 5870 GPU is one terabyte per second:

L1 Bandwidth = Compute Units * Wavefront Size/Compute Unit *
EngineClock

Multiple compute units share L2 caches. The L2 cache size on the ATI Radeon™
HD 5870 GPUs is 512 kB:

L2 Cache Size = Number or channels * L2 per Channel
The bandwidth between L1 caches and the shared L2 cache is 435 GB/s:
L2 Bandwidth = Number of channels * Wavefront Size * Engine Clock

The ATI Radeon™ HD 5870 GPU has eight memory controllers (“Memory
Channel” in Figure 4.1). The memory controllers are connected to multiple banks
of memory. The memory is GDDR5, with a clock speed of 1200 MHz and a data
rate of 4800 Mb/pin. Each channel is 32-bits wide, so the peak bandwidth for the
ATl Radeon™ HD 5870 GPU is:

(8 memory controllers) * (4800 Mb/pin) * (32 bits) * (1 B/8b) = 154 GB/s

The peak memory bandwidth of your device is available in Appendix D, “Device
Parameters.”

If two memory access requests are directed to the same controller, the hardware
serializes the access. This is called a channel conflict. Similarly, if two memory
access requests go to the same memory bank, hardware serializes the access.
This is called a bank conflict. From a developer’s point of view, there is not much
difference between channel and bank conflicts. A large power of two stride
results in a channel conflict; a larger power of two stride results in a bank conflict.
The size of the power of two stride that causes a specific type of conflict depends
on the chip. A stride that results in a channel conflict on a machine with eight
channels might result in a bank conflict on a machine with four.

In this document, the term bank conflict is used to refer to either kind of conflict.

Two Memory Paths

ATI Radeon™ HD 5000 series graphics processors have two, independent
memory paths between the compute units and the memory:

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

e FastPath performs only basic operations, such as loads and stores (data
sizes must be a multiple of 32 bits). This often is faster and preferred when
there are no advanced operations.

e CompletePath, supports additional advanced operations, including atomics
and sub 32 bit (byte/short) data transfers.

44.1.1 Performance Impact of FastPath and CompletePath

There is a large difference in performance on ATI Radeon™ HD 5000 series
hardware between FastPath and CompletePath. Figure 4.2 shows two kernels
(one FastPath, the other CompletePath) and the delivered DRAM bandwidth for
each kernel on the ATI Radeon™ HD 5870 GPU. Note that atomic add forces

CompletePath.
| | | I
100000 - |
ooaooee—0—0—F e oo .
'7,?4_--:;;-':! o509
80000 4 ¢ |
0
m
=3
<
©
= 60000 |
©
C
@©
m
40000 _
200004 R
oo ee-656000060600)) . .

T T T T

0e+00 1e+07 2e+07 3e+07

Figure 4.2 FastPath (blue) vs CompletePath (red) Using floatl

The kernel code follows. Note that the atomic extension must be enabled under
OpenCL 1.0.

__kernel void
CopyFastPath(__global const float * input,
__global float * output)
{

int gid = get_global_id(0);
output[gid] = input[gid];
return ;

__kernel void
CopyComplete(__global const float * input, _ global float* output)

4.4 Global Memory Optimization 4-9

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

{
int gid = get_global_id(0);
if (gid <0){
atom_add((__global int *) output,l);
output[gid] = input[gid];
return ;
}

Table 4.2 lists the effective bandwidth and ratio to maximum bandwidth.

Table 4.2 Bandwidths for 1D Copies

Effective Ratio to Peak

Kernel Bandwidth Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%

The difference in performance between FastPath and CompletePath is
significant. If your kernel uses CompletePath, consider if there is another way to
approach the problem that uses FastPath. OpenCL read-only images always use
FastPath.

4.4.1.2 Determining The Used Path

Since the path selection is done automatically by the OpenCL compiler, your
kernel may be assigned to CompletePath. This section explains the strategy the
compiler uses, and how to find out what path was used.

The compiler is conservative when it selects memory paths. The compiler often
maps all user data into a single unordered access view (UAV),! so a single
atomic operation (even one that is not executed) may force all loads and stores
to use CompletePath.

The effective bandwidth listing above shows two OpenCL kernels and the
associated performance. The first kernel uses the FastPath while the second
uses the CompletePath. The second kernel is forced to CompletePath because
in CopyComplete, the compiler noticed the use of an atomic.

There are two ways to find out which path is used. The first method uses the ATI
Stream Profiler, which provides the following three performance counters for this
purpose:

1. FastPath counter: The total bytes written through the FastPath (no atomics,
32-bit types only).

2. CompletePath counter: The total bytes read and written through the
CompletePath (supports atomics and non-32-bit types).

3. PathUtilization counter: The percentage of bytes read and written through the
FastPath or CompletePath compared to the total number of bytes transferred
over the bus.

1. UAVs allow compute shaders to store results in (or write results to) a buffer at any arbitrary location.

4-10

On DX11 hardware, UAVs can be created from buffers and textures. On DX10 hardware, UAVs can-
not be created from typed resources (textures). This is the same as a random access target (RAT).

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

The second method is static and lets you determine the path by looking at a
machine-level ISA listing (using the Stream KernelAnalyzer in OpenCL).

MEM_RAT_CACHELESS -> FastPath
MEM_RAT -> CompPath
MEM_RAT_NOP_RTN -> Comp_load

FastPath operations appear in the listing as:
TEX: ...

--- VFETCH ...

... MEM_RAT CACHELESS STORE RAW: ...

The vfetch Instruction is a load type that in graphics terms is called a vertex
fetch (the group control TEX indicates that the load uses the texture cache.)

The instruction MEM_RAT CACHELESS indicates that FastPath operations are used.

Loads in CompletePath are a split-phase operation. In the first phase, hardware
copies the old value of a memory location into a special buffer. This is done by
performing atomic operations on the memory location. After the value has
reached the buffer, a normal load is used to read the value. Note that RAT stands
for random access target, which is the same as an unordered access view (UAV);
it allows, on DX11 hardware, writes to, and reads from, any arbitrary location in
a buffer.

The listing shows:

. MEM_RAT_NOP_RTN_ACK: RAT(1)

.. WAIT_ACK: Outstanding_acks <= 0
.. TEX: ADDR(64) CNT(1)

.. VFETCH ...

The instruction sequence means the following:

MEM RAT Read into a buffer using CompletePath, do no operation on the
memory location, and send an ACK when done.

WAIT_ACK Suspend execution of the wavefront until the ACK is received. If
there is other work pending this might be free, but if there is no other
work to be done this could take 100’s of cycles.

TEX Use the texture cache for the next instruction.
VFETCH Do a load instruction to (finally) get the value.
Stores appear as:

. MEM_RAT STORE RAW: RAT(1)

The instruction MEM_RAT_STORE is the store along the CompletePath.

MEM_RAT means CompletePath; MEM_RAT_CACHELESS means FastPath.

4.4 Global Memory Optimization 4-11

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

442

4-12

ATl STREAM COMPUTING

Channel Conflicts

The important concept is memory stride: the increment in memory address,
measured in elements, between successive elements fetched or stored by
consecutive work-items in a kernel. Many important kernels do not exclusively
use simple stride one accessing patterns; instead, they feature large non-unit
strides. For instance, many codes perform similar operations on each dimension
of a two- or three-dimensional array. Performing computations on the low
dimension can often be done with unit stride, but the strides of the computations
in the other dimensions are typically large values. This can result in significantly
degraded performance when the codes are ported unchanged to GPU systems.
A CPU with caches presents the same problem, large power-of-two strides force
data into only a few cache lines.

One solution is to rewrite the code to employ array transpositions between the
kernels. This allows all computations to be done at unit stride. Ensure that the
time required for the transposition is relatively small compared to the time to
perform the kernel calculation.

For many kernels, the reduction in performance is sufficiently large that it is
worthwhile to try to understand and solve this problem.

In GPU programming, it is best to have adjacent work-items read or write
adjacent memory addresses. This is one way to avoid channel conflicts.

When the application has complete control of the access pattern and address
generation, the developer must arrange the data structures to minimize bank
conflicts. Accesses that differ in the lower bits can run in parallel; those that differ
only in the upper bits can be serialized.

In this example:

for (ptr=base; ptr<max; ptr += 16KB)
RO = *ptr ;

where the lower bits are all the same, the memory requests all access the same
bank on the same channel and are processed serially.

This is a low-performance pattern to be avoided. When the stride is a power of
2 (and larger than the channel interleave), the loop above only accesses one
channel of memory.

The hardware byte address bits are:

31:x

bank channel 7:0 address

e On all ATI Radeon™ HD 5000-series GPUs, the lower eight bits select an
element within a bank.

e The next set of bits select the channel. The number of channel bits varies,
since the number of channels is not the same on all parts. With eight

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

channels, three bits are used to select the channel; with two channels, a
single bit is used.

e The next set of bits selects the memory bank. The number of bits used
depends on the number of memory banks.

e The remaining bits are the rest of the address.

On the ATl Radeon™ HD 5870 GPU, the channel selection are bits 10:8 of the
byte address. This means a linear burst switches channels every 256 bytes.
Since the wavefront size is 64, channel conflicts are avoided if each work-item
in a wave reads a different address from a 64-word region. All ATI Radeon™ HD
5000 series GPUs have the same layout: channel ends at bit 8, and the memory
bank is to the left of the channel.

A burst of 2 kB (8 * 256 bytes) cycles through all the channels.

When calculating an address as y*width+x, but reading a burst on a column
(incrementing y), only one memory channel of the system is used, since the width
is likely a multiple of 256 words = 2048 bytes. If the width is an odd multiple of
256B, then it cycles through all channels.

Similarly, the bank selection bits on the ATl Radeon™ HD 5870 GPU are bits
14:11, so the bank switches every 2 kB. A linear burst of 32 kB cycles through
all banks and channels of the system. If accessing a 2D surface along a column,
with a y*width+x calculation, and the width is some multiple of 2 kB dwords (32
kB), then only 1 bank and 1 channel are accessed of the 16 banks and 8
channels available on this GPU.

All ATl Radeon™ HD 5000-series GPUs have an interleave of 256 bytes (64
dwords).

If every work-item in a work-group references consecutive memory addresses,
the entire wavefront accesses one channel. Although this seems slow, it actually
is a fast pattern because it is necessary to consider the memory access over the
entire device, not just a single wavefront.

One or more work-groups execute on each compute unit. On the ATl Radeon™
HD 5000-series GPUs, work-groups are dispatched in a linear order, with x
changing most rapidly. For a single dimension, this is:

DispatchOrder = get_group_id(0)
For two dimensions, this is:
DispatchOrder = get_group_id(0) + get group id(1) * get num groups(0)

This is row-major-ordering of the blocks in the index space. Once all compute
units are in use, additional work-groups are assigned to compute units as
needed. Work-groups retire in order, so active work-groups are contiguous.

At any time, each compute unit is executing an instruction from a single
wavefront. In memory intensive kernels, it is likely that the instruction is a
memory access. Since there are eight channels on the ATl Radeon HD 5870

4.4 Global Memory Optimization 4-13

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

GPU, at most eight of the compute units can issue a memory access operation
in one cycle. It is most efficient if the accesses from eight wavefronts go to
different channels. One way to achieve this is for each wavefront to access
consecutive groups of 256 = 64 * 4 bytes.

An inefficient access pattern is if each wavefront accesses all the channels. This
is likely to happen if consecutive work-items access data that has a large power
of two strides.

In the next example of a kernel for copying, the input and output buffers are
interpreted as though they were 2D, and the work-group size is organized as 2D.

The kernel code is:

#define WIDTH 1024
#define DATA TYPE float
#define A(y , x) AL (y¥) * WIDTH + (x)]
#define C(y , x) CL (y¥) * WIDTH+(x)]
kernel void copy_float (__global const
DATA TYPE * A,
__global DATA TYPE* C)

{
int idx = get_global_id(0);
int idy = get _global_id(1);
C(idy, idx) = A(idy, idx);
}

By changing the width, the data type and the work-group dimensions, we get a
set of kernels out of this code.

Given a 64x1 work-group size, each work-item reads a consecutive 32-bit
address. Given a 1x64 work-group size, each work-item reads a value separated
by the width in a power of two bytes.

The following listing shows how much the launch dimension can affect
performance. Table 4.3 lists each kernel's effective bandwidth and ratio to
maximum bandwidth.

Table 4.3 Bandwidths for Different Launch Dimensions

Effective Ratio to Peak

Kernel Bandwidth Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3 -93 GB/s 0 - 60%
copy 128-bit 2D 7 - 122 GB/s 5-80%

To avoid power of two strides:

e Add an extra column to the data matrix.

e Change the work-group size so that it is not a power of 21,

1. Generally, it is not a good idea to make the work-group size something other than an integer multiple
of the wavefront size, but that usually is less important than avoiding channel conflicts.

4-14 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

e |t is best to use a width that causes a rotation through all of the memory
channels, instead of using the same one repeatedly.

e Change the kernel to access the matrix with a staggered offset.

4.4.2.1 Staggered Offsets

Staggered offsets apply a coordinate transformation to the kernel so that the data
is processed in a different order. Unlike adding a column, this technique does not
use extra space. It is also relatively simple to add to existing code.

The global ID values reflect the order that the hardware initiates work-groups.
The values of get group ID are in ascending launch order.

global_id(0) = get group_id(0) * get local_size(0) + get local_id(0)

global_id(2)

get_group_id(1) * get local_size(1l) + get local_id(1)
The hardware launch order is fixed, but it is possible to change the launch order,

as shown in the following example.

Assume a work-group size of k x k, where k is a power of two, and a large 2D
matrix of size 2" x 2™ in row-major order. If each work-group must process a
block in column-order, the launch order does not work out correctly: consecutive
work-groups execute down the columns, and the columns are a large power-of-
two apart; so, consecutive work-groups access the same channel.

By introducing a transformation, it is possible to stagger the work-groups to avoid
channel conflicts. Since we are executing 2D work-groups, each work group is
identified by four numbers.

1. get group_id(0) - the x coordinate or the block within the column of the
matrix.

2. get _group_id(1) - the y coordinate or the block within the row of the matrix.
get _global_id(0) - the x coordinate or the column of the matrix.

4. get _global_id(2) - the y coordinate or the row of the matrix.

Figure 4.3 illustrates the transformation to staggered offsets.

4.4 Global Memory Optimization 4-15

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING
Work-
Group Work-Group size k by k
2N
gL 0,0
Matrix in row
A f
1,0 major order 1,0 fter transform
2,0 20
0,0 0,0 0.0
| I |
| 2N | ON |
Linear format (each group
is a power of two apart)
0,0 1,0 20
| | |
K+ 2N | 2K + 2N

power of two apart)

Offset format (each group is not a

Figure 4.3 Transformation to Staggered Offsets

To transform the code, add the following four lines to the top of the kernel.

get group_id O = get group id(0);
get group_id 1 = (get_group_id(0) + get group_id(1)) % get local_size(0);
get_group_id O * get_local_size(0) + get_local_id(0);
get group_id 1 * get local_size(1) + get_local_id(1);

get global_id_0
get global_id_1

Then, change the global IDs and group IDs to the staggered form. The result is:

__kernel void

copy_float (
__global const DATA TYPE * A,
__global DATA TYPE * C)

size_t get group_id 0 = get_group_id(0);
size_t get group_id_1 =

(get_group_id(0) + get group_id(1)) %
get_local_size(0);

size_t get global_id 0 = get_group_id 0 * get_local_size(0) +
get _local_id(0);
size_t get global_id 1 = get_group_id 1 * get_local_size(1) +
get local_id(1);

int idx = get _global_id 0; //changed to staggered form
int idy = get _global_id 1; //changed to staggered form
4-16 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

C(idy , idx) = A(idy , idx);

4.4.2.2 Reads Of The Same Address

Under certain conditions, one unexpected case of a channel conflict is that
reading from the same address is a conflict, even on the FastPath.

This does not happen on the read-only memories, such as constant buffers,
textures, or shader resource view (SRV); but it is possible on the read/write UAV
memory or OpenCL global memory.

From a hardware standpoint, reads from a fixed address have the same upper
bits, so they collide and are serialized. To read in a single value, read the value
in a single work-item, place it in local memory, and then use that location:

Avoid:
temp = input[3] // if input is from global space

Use:
if (get _local_id(0) == 0) {
local = input[3]

}
barrier(CLK_LOCAL_MEM_FENCE);
temp = local

443 Float4 Or Floatl

The internal memory paths on ATl Radeon™ HD 5000-series devices support
128-bit transfers. This allows for greater bandwidth when transferring data in
float4 format. In certain cases (when the data size is a multiple of four), float4
operations are faster.

The performance of these kernels can be seen in Figure 4.4. Changing to float4
has a medium effect. Do this after eliminating the conflicts.

4.4 Global Memory Optimization 4-17

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

4-18

ATl STREAM COMPUTING

130000

120000 @

110000 - |

Bandwidth (MB/s)

100000 —

90000 -

80000 -

T T T

0e+00 1e+07 2e+07

Size (Bytes)

Figure 4.4 Two Kernels: One Using float4 (blue), the Other floatl (red)

The following code example has two kernels, both of which can do a simple copy,

but Copy4 uses float4 data types.

__kernel void
Copy4(__global const float4 * input,
__global float4 * output)

int gid = get_global_id(0);
output[gid] = input[gid];
return;

__kernel void
Copyl(__global const float * input,
__global float * output)

int gid = get_global_id(0);
output[gid] = input[gid];
return;

Copying data as float4 gives the best result: 84% of absolute peak. It also speeds

up the 2D versions of the copy (see Table 4.4).

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

3e+07

ATl STREAM COMPUTING

Table 4.4 Bandwidths Including floatl and float4

Effective Ratio to Peak

Kernel Bandwidth Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3 -93 GB/s 0-61%
copy 128-bit 2D 7 - 122 GBJ/s 5 - 80%
copy4 float4 1D FP 127 GBIs 83%

444 Coalesced Writes

On some other vendor devices, it is important to reorder your data to use
coalesced writes. The ATl Radeon™ HD 5000-series devices also support
coalesced writes, but this optimization is less important than other
considerations, such as avoiding bank conflicts.

In non-coalesced writes, each compute unit accesses the memory system in
guarter-wavefront units. The compute unit transfers a 32-bit address and one
element-sized piece of data for each work-item. This results in a total of 16
elements + 16 addresses per quarter-wavefront. On ATl Radeon" HD 5000-
series devices, processing quarter-wavefront requires two cycles before the data
is transferred to the memory controller.

In coalesced writes, the compute unit transfers one 32-bit address and 16
element-sized pieces of data for each quarter-wavefront, for a total of 16
elements +1 address per quarter-wavefront. For coalesced writes, processing
guarter-wavefront takes one cycle instead of two. While this is twice as fast, the
times are small compared to the rate the memory controller can handle the data.
See Figure 4.5.

On ATI Radeon™ HD 5000-series devices, the coalescing is only done on the
FastPath because it supports only 32-bit access.

If a work-item does not write, coalesce detection ignores it.

4.4 Global Memory Optimization 4-19

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

amd —— amd-Split o
amd-NOCoal
1 1 | 1
95000 L
4 @ oo &—e—a—a—9
@ 90000 - g r
o) { f -
=
<
T
z
g 85000 -
©
m
80000 - -

T T I T

0e+00 1e+07 2e+07 3e+07
Size (Bytes)

Figure 4.5 Effect of Varying Degrees of Coalescing - Coal (blue), NoCoal
(red), Split (green)

The first kernel Copyl maximizes coalesced writes: work-item k writes to address
k. The second kernel writes a shifted pattern: In each quarter-wavefront of 16
work-items, work-item k writes to address k-1, except the first work-item in each
guarter-wavefront writes to address k+16. There is not enough order here to
coalesce on some other vendor machines. Finally, the third kernel has work-item
k write to address k when k is even, and write address 63-k when k is odd. This
pattern never coalesces.

Write coalescing can be an important factor for AMD GPUs.
The following are sample kernels with different coalescing patterns.

// best access pattern
__kernel void
Copyl(__global const float * input, _ global float * output)

uint gid = get global_id(0);
output[gid] = input[gid];
return;

4-20 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

__kernel void NoCoal (__global const float * input,
__global float * output)

// (shift by 16)

{

int gid = get_global_id(0)-1;
if((get_local_id(0) & 0xF) == 0)

gid = gid +16;

output[gid] = input[gid];
return;
__kernel void
// inefficient pattern
Split (__global const float * input, _ global float * output)
{
int gid = get_global_id(0);
if((gid & Ox1) ==
gid = (gid & (C63)) +62 - get_local_id(0);

}
output[gid] = input[gid];
return;

Table 4.5 lists the effective bandwidth and ratio to maximum bandwidth for each
kernel type.

Table 4.5 Bandwidths Including Coalesced Writes

Effective Ratio to Peak

Kernel Bandwidth Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3 -93 GB/s 0-61%
copy 128-hit 2D 7 - 122 GBI/s 5 - 80%
copy4 float4 1D FP 127 GBIs 83%
Coal 32-bit 97 63%
NoCoal 32-bit 93 GB/s 61%
Split 32-bit 90 GB/s 59%

There is not much performance difference, although the coalesced version is
slightly faster.

445 Alignment

The program in Figure 4.6 shows how the performance of a simple, unaligned
access (floatl) of this kernel varies as the size of offset varies. Each transfer was
large (16 MB). The performance gain by adjusting alignment is small, so
generally this is not an important consideration on AMD GPUs.

4.4 Global Memory Optimization 4-21

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

96000 ‘ | -
95000 - | L
24000 | | i) ‘ -
]
T L
93000 - || J\ |H i
|| |
|| || I || ||
02000 { deoP R || | || | wﬂ?ﬂ"“&ﬁ L
bed
I I I T
0 20 40 60

Offset

Figure 4.6 Unaligned Access Using floatl

__kernel void

CopyAdd(global const float * input,
__global float * output,

const int offset)

{
int gid = get_global_id(0)+ offset;

output[gid] = input[gid];
return;

}

Table 4.6 lists the effective bandwidth and ratio to maximum bandwidth for each
kernel type.

4-22 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Table 4.6 Bandwidths Including Unaligned Access
Effective Ratio to Peak
Kernel Bandwidth Bandwidth
copy 32-bit 1D FP 96 GB/s 63%
copy 32-bit 1D CP 18 GB/s 12%
copy 32-bit 2D .3-93 GB/s 0-61%
copy 128-bit 2D 7 - 122 GBJ/s 5 - 80%
copy4 float4 1D FP 127 GBIs 83%
Coal 97 63%
NoCoal 32-bit 90 GB/s 59%
Split 32-bit 90 GB/s 59%
CopyAdd 32-bit 92 GB/s 60%

Summary of Copy Performance

The performance of a copy can vary greatly, depending on how the code is
written. The measured bandwidth for these copies varies from a low of 0.3 GB/s,
to a high of 127 GB/s.

The recommended order of steps to improve performance is:

4.4.6
1.
2.
4.
5.
447

Examine the code to ensure you are using FastPath, not CompletePath,
everywhere possible. Check carefully to see if you are minimizing the number
of kernels that use CompletePath operations. You might be able to use
textures, image-objects, or constant buffers to help.

Examine the data-set sizes and launch dimensions to see if you can get rid
eliminate bank conflicts.

Try to use float4 instead of floatl.

Try to change the access pattern to allow write coalescing. This is important
on some hardware platforms, but only of limited importance for AMD GPU
devices.

Finally, look at changing the access pattern to allow data alignment.

Hardware Variations

For a listing of the AMD GPU hardware variations, see Appendix D, “Device
Parameters.” This appendix includes information on the number of memory
channels, compute units, and the L2 size per device.

45 Local Memory (LDS) Optimization

AMD Evergreen GPUs include a Local Data Store (LDS) cache, which
accelerates local memory accesses. LDS is not supported in OpenCL on AMD
R700-family GPUs. LDS provides high-bandwidth access (more than 10X higher
than global memory), efficient data transfers between work-items in a work-
group, and high-performance atomic support. Local memory offers significant

4.5 Local Memory (LDS) Optimization

4-23

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

4-24

ATl STREAM COMPUTING

advantages when the data is re-used; for example, subsequent accesses can
read from local memory, thus reducing global memory bandwidth. Another
advantage is that local memory does not require coalescing.

To determine local memory size:

clGetDevicelnfo(.., CL DEVICE_LOCAL MEM SIZE, ..);

All AMD Evergreen GPUs contain a 32K LDS for each compute unit. On high-
end GPUs, the LDS contains 32-banks, each bank is four bytes long, and the

bank address is determined by bits 6:2 in the address. On lower-end GPUs, the
LDS contains 16 banks, each bank is still 4 bytes in size, and the bank used is
determined by bits 5:2 in the address. Appendix D, “Device Parameters” shows
how many LDS banks are present on the different AMD Evergreen products. As
shown below, programmers should carefully control the bank bits to avoid bank
conflicts as much as possible.

In a single cycle, local memory can service a request for each bank (up to 32
accesses each cycle on the ATl Radeon™ HD 5870 GPU). For an ATl Radeon™
HD 5870 GPU, this delivers a memory bandwidth of over 100 GB/s for each
compute unit, and more than 2 TB/s for the whole chip. This is more than 14X
the global memory bandwidth. However, accesses that map to the same bank
are serialized and serviced on consecutive cycles. A wavefront that generates
bank conflicts stalls on the compute unit until all LDS accesses have completed.
The GPU reprocesses the wavefront on subsequent cycles, enabling only the
lanes receiving data, until all the conflicting accesses complete. The bank with
the most conflicting accesses determines the latency for the wavefront to
complete the local memory operation. The worst case occurs when all 64 work-
items map to the same bank, since each access then is serviced at a rate of one
per clock cycle; this case takes 64 cycles to complete the local memory access
for the wavefront. A program with a large number of bank conflicts (as measured
by the LDSBankConflict performance counter) might benefit from using the
constant or image memory rather than LDS.

Thus, the key to effectively using the local cache memory is to control the access
pattern so that accesses generated on the same cycle map to different banks in
the local memory. One notable exception is that accesses to the same address
(even though they have the same bits 6:2) can be broadcast to all requestors
and do not generate a bank conflict. The LDS hardware examines the requests
generated over two cycles (32 work-items of execution) for bank conflicts.
Ensure, as much as possible, that the memory requests generated from a
guarter-wavefront avoid bank conflicts by using unique address bits 6:2. A simple
sequential address pattern, where each work-item reads a float2 value from LDS,
generates a conflict-free access pattern on the ATl Radeon™ HD 5870 GPU.
Note that a sequential access pattern, where each work-item reads a float4 value
from LDS, uses only half the banks on each cycle on the ATI Radeon™ HD 5870
GPU and delivers half the performance of the float2 access pattern.

Each stream processor can generate up to two 4-byte LDS requests per cycle.
Byte and short reads consume four bytes of LDS bandwidth. Since each stream
processor can execute five operations in the VLIW each cycle (typically requiring

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

10-15 input operands), two local memory requests might not provide enough
bandwidth to service the entire instruction. Developers can use the large register
file: each compute unit has 256 kB of register space available (8X the LDS size)
and can provide up to twelve 4-byte values/cycle (6X the LDS bandwidth).
Registers do not offer the same indexing flexibility as does the LDS, but for some
algorithms this can be overcome with loop unrolling and explicit addressing.

LDS reads require one ALU operation to initiate them. Each operation can initiate
two loads of up to four bytes each.

The ATI Stream Profiler provides two performance counters to help optimize local
memory usage:

e |DSBankConflict: The percentage of time accesses to the LDS are stalled
due to bank conflicts relative to GPU Time. In the ideal case, there are no
bank conflicts in the local memory access, and this number is zero.

e ALUStalledByLDS: The percentage of time (relative to GPU Time) that ALU
units are stalled because the LDS input queue is full and its output queue is
not ready. Stalls can occur due to bank conflicts or too many accesses to the
LDS.

Local memory is software-controlled “scratchpad” memory. In contrast, caches
typically used on CPUs monitor the access stream and automatically capture
recent accesses in a tagged cache. The scratchpad allows the kernel to explicitly
load items into the memory; they exist in local memory until the kernel replaces
them, or until the work-group ends. To declare a block of local memory, use the

__local keyword; for example:
__local float localBuffer|[64]

These declarations can be either in the parameters to the kernel call or in the
body of the kernel. The __local syntax allocates a single block of memory, which
is shared across all work-items in the workgroup.

To write data into local memory, write it into an array allocated with __local. For
example:

localBuffer[i] = 5.0;

A typical access pattern is for each work-item to collaboratively write to the local
memory: each work-item writes a subsection, and as the work-items execute in
parallel they write the entire array. Combined with proper consideration for the
access pattern and bank alignment, these collaborative write approaches can
lead to highly efficient memory accessing. Local memory is consistent across
work-items only at a work-group barrier; thus, before reading the values written
collaboratively, the kernel must include a barrier() instruction.

The following example is a simple kernel section that collaboratively writes, then
reads from, local memory:

4.5 Local Memory (LDS) Optimization 4-25

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

__kernel void localMemoryExample (__global float *In,
__local float localBuffer[64];
uint t~< = get_local_id(0);
uint gx = get_global_id(0);

global float *0ut) {

// Initialize local memory:

// Copy from this work-group’s section of global memory to local:
// Each work-item writes one element; together they write it all
localBuffer[tx] = In[gx];

// Ensure writes have completed:
barrier(CLK_LOCAL_MEM_FENCE);

// Toy computation to compute a partial factorial, shows re-use from local

float = localBuffer[t];
for (uint I=tx+1; i<64; i++) {
T *= localBuffer[i];

}
Out[gx] = T;

Note the host code cannot read from, or write to, local memory. Only the kernel
can access local memory.

4.6 Constant Memory Optimization

The AMD implementation of OpenCL provides three levels of performance for the
“constant” memory type.

1. Simple Direct-Addressing Patterns

Very high bandwidth can be attained when the compiler has available the
constant address at compile time and can embed the constant address into
the instruction. Each processing element can load up to 4x4-byte direct-
addressed constant values each cycle. Typically, these cases are limited to
simple non-array constants and function parameters. The GPU loads the
constants into a hardware cache at the beginning of the clause that uses the
constants. The cache is a tagged cache, typically each 8k blocks is shared
among four compute units. If the constant data is already present in the
constant cache, the load is serviced by the cache and does not require any
global memory bandwidth. The constant cache size for each device is given
in Appendix D, “Device Parameters”; it varies from 4k to 48k per GPU.

2. Same Index

Hardware acceleration also takes place when all work-items in a wavefront
reference the same constant address. In this case, the data is loaded from
memory one time, stored in the L1 cache, and then broadcast to all wave-
fronts. This can reduce significantly the required memory bandwidth.

3. Varying Index

More sophisticated addressing patterns, including the case where each work-
item accesses different indices, are not hardware accelerated and deliver the
same performance as a global memory read.

4-26 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

To further improve the performance of the AMD OpenCL stack, two methods
allow users to take advantage of hardware constant buffers. These are:

1. Globally scoped constant arrays. These arrays are initialized, globally
scoped, and in the constant address space (as specified in section 6.5.3 of
the OpenCL specification). If the size of an array is below 16 kB, it is placed
in hardware constant buffers; otherwise, it uses global memory. An example
of this is a lookup table for math functions.

2. Per-pointer attribute specifying the maximum pointer size. This is specified
using the max_constant _size(N) attribute. The attribute form conforms to
section 6.10 of the OpenCL 1.0 specification. This attribute is restricted to
top-level kernel function arguments in the constant address space. This
restriction prevents a pointer of one size from being passed as an argument
to a function that declares a different size. It informs the compiler that indices
into the pointer remain inside this range and it is safe to allocate a constant
buffer in hardware, if it fits. Using a constant pointer that goes outside of this
range results in undefined behavior. All allocations are aligned on the 16 byte
boundary. For example:

kernel void mykernel(global int* a,
constant int* b __ attribute _((max_constant_size (16384)))

)

{

size_t i1dx = get_global_id(0);
a[idx] = b[idx & Ox3FFF];

¥

A kernel that uses constant buffers must use CL_DEVICE_MAX_CONSTANT_ARGS to
query the device for the maximum number of constant buffers the kernel can
support. This value might differ from the maximum number of hardware constant
buffers available. In this case, if the number of hardware constant buffers is less
than the CL_DEVICE_MAX CONSTANT_ARGS, the compiler allocates the largest
constant buffers in hardware first and allocates the rest of the constant buffers in
global memory. As an optimization, if a constant pointer A uses n bytes of
memory, where n is less than 16 kB, and constant pointer B uses m bytes of
memory, where m is less than (16 kB — n) bytes of memory, the compiler can
allocate the constant buffer pointers in a single hardware constant buffer. This
optimization can be applied recursively by treating the resulting allocation as a
single allocation and finding the next smallest constant pointer that fits within the
space left in the constant buffer.

4.7 OpenCL Memory Resources: Capacity and Performance

Table 4.7 summarizes the hardware capacity and associated performance for the
structures associated with the five OpenCL Memory Types. This information
specific to the ATl Radeon™ HD5870 GPUs with 1 GB video memory. See
Appendix D, “Device Parameters” for more details about other GPUs.

4.7 OpenCL Memory Resources: Capacity and Performance 4-27
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Table 4.7 Hardware Performance Parameters

OpenCL
Memory Type

Peak Read
Bandwidth/ Stream
Core

Hardware Resource Size/CU Size/GPU

Private

GPRs 256k 5120k 48 bytes/cycle

Local

LDS 32k 640k 8 bytes/cycle

Constant

Direct-addressed constant 48k

16 bytes/cycle

Same-indexed constant 4 bytesl/cycle

Varying-indexed constant ~0.6 bytes/cycle

Images

L1 Cache 4 bytes/cycle

L2 Cache ~1.6 bytes/cycle

Global

Global Memory ~0.6 bytes/cycle

4-28

The compiler tries to map private memory allocations to the pool of GPRs in the
GPU. In the event GPRs are not available, private memory is mapped to the
“scratch” region, which has the same performance as global memory.

Section 4.8.2, “Resource Limits on Active Wavefronts,” page 4-30, has more
information on register allocation and identifying when the compiler uses the
scratch region. GPRs provide the highest-bandwidth access of any hardware
resource. In addition to reading up to 48 bytes/cycle from the register file, the
hardware can access results produced in the previous cycle (through the
Previous Vector/Previous Scalar register without consuming any register file
bandwidth. GPRs have some restrictions about which register ports can be read
on each cycle; but generally, these are not exposed to the OpenCL programmer.

Same-indexed constants can be cached in the L1 and L2 cache. Note that
“same-indexed” refers to the case where all work-items in the wavefront
reference the same constant index on the same cycle. The performance shown
assumes an L1 cache hit.

Varying-indexed constants use the same path as global memory access and are
subject to the same bank and alignment constraints described in Section 4.4,
“Global Memory Optimization,” page 4-7.

The L1 and L2 caches are currently only enabled for images and same-indexed
constants.

The L1 cache can service up to four address request per cycle, each delivering
up to 16 bytes. The bandwidth shown assumes an access size of 16 bytes;
smaller access sizes/requests result in a lower peak bandwidth for the L1 cache.
Using float4 with images increases the request size and can deliver higher L1
cache bandwidth.

Each memory channel on the GPU contains an L2 cache that can deliver up to
64 bytes/cycle. The ATl Radeon™ HD 5870 GPU has eight memory channels;
thus, it can deliver up to 512bytes/cycle; divided among 320 stream cores, this
provides up to ~1.6 bytes/cycle for each stream core.

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Global Memory bandwidth is limited by external pins, not internal bus bandwidth.
The ATl Radeon™ HD 5870 GPU supports up to 153 GB/s of memory bandwidth
which is an average of 0.6 bytes/cycle for each stream core.

Note that Table 4.7 shows the performance for the ATI Radeon™ HD 5870 GPU.
The “Size/Compute Unit” column and many of the bandwidths/processing
element apply to all Evergreen-class GPUs; however, the “Size/GPU” column
and the bandwidths for varying-indexed constant, L2, and global memory vary
across different GPU devices. The resource capacities and peak bandwidth for
other AMD GPU devices can be found in Appendix D, “Device Parameters.”

4.8 NDRange and Execution Range Optimization

Probably the most effective way to exploit the potential performance of the GPU
is to provide enough threads to keep the device completely busy. The
programmer specifies a three-dimensional NDRange over which to execute the
kernel; bigger problems with larger NDRanges certainly help to more effectively
use the machine. The programmer also controls how the global NDRange is
divided into local ranges, as well as how much work is done in each work-item,
and which resources (registers and local memory) are used by the kernel. All of
these can play a role in how the work is balanced across the machine and how
well it is used. This section introduces the concept of latency hiding, how many
wavefronts are required to hide latency on AMD GPUs, how the resource usage
in the kernel can impact the active wavefronts, and how to choose appropriate
global and local work-group dimensions.

48.1 Hiding ALU and Memory Latency

The read-after-write latency for most arithmetic operations (a floating-point add,
for example) is only eight cycles. For most AMD GPUs, each compute unit can
execute 16 VLIW instructions on each cycle. Each wavefront consists of 64 work-
items; each compute unit executes a quarter-wavefront on each cycle, and the
entire wavefront is executed in four consecutive cycles. Thus, to hide eight cycles
of latency, the program must schedule two wavefronts. The compute unit
executes the first wavefront on four consecutive cycles; it then immediately
switches and executes the other wavefront for four cycles. Eight cycles have
elapsed, and the ALU result from the first wavefront is ready, so the compute unit
can switch back to the first wavefront and continue execution. Compute units
running two wavefronts (128 threads) completely hide the ALU pipeline latency.

Global memory reads generate a reference to the off-chip memory and
experience a latency of 300 to 600 cycles. The wavefront that generates the
global memory access is made idle until the memory request completes. During
this time, the compute unit can process other independent wavefronts, if they are
available.

Kernel execution time also plays a role in hiding memory latency: longer kernels
keep the functional units busy and effectively hide more latency. To better
understand this concept, consider a global memory access which takes 400
cycles to execute. Assume the compute unit contains many other wavefronts,

4.8 NDRange and Execution Range Optimization 4-29

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

each of which performs five ALU instructions before generating another global
memory reference. As discussed previously, the hardware executes each
instruction in the wavefront in four cycles; thus, all five instructions occupy the
ALU for 20 cycles. Note the compute unit interleaves two of these wavefronts
and executes the five instructions from both wavefronts (10 total instructions) in
40 cycles. To fully hide the 400 cycles of latency, the compute unit requires
(400/40) = 10 pairs of wavefronts, or 20 total wavefronts. If the wavefront
contains 10 instructions rather than 5, the wavefront pair would consume 80
cycles of latency, and only 10 wavefronts would be required to hide the 400
cycles of latency.

Generally, it is not possible to predict how the compute unit schedules the
available wavefronts, and thus it is not useful to try to predict exactly which ALU
block executes when trying to hide latency. Instead, consider the overall ratio of
ALU operations to fetch operations — this metric is reported by the Stream Profiler
in the ALUFetchRatio counter. Each ALU operation keeps the compute unit busy
for four cycles, so you can roughly divide 500 cycles of latency by
(4*ALUFetchRatio) to determine how many wavefronts must be in-flight to hide
that latency. Additionally, a low value for the ALUBusy performance counter can
indicate that the compute unit is not providing enough wavefronts to keep the
execution resources in full use. (This counter also can be low if the kernel
exhausts the available DRAM bandwidth. In this case, generating more
wavefronts does not improve performance; it can reduce performance by creating
more contention.)

Increasing the wavefronts/compute unit does not indefinitely improve
performance; once the GPU has enough wavefronts to hide latency, additional
active wavefronts provide little or no performance benefit. A closely related metric
to wavefronts/compute unit is “occupancy,” which is defined as the ratio of active
wavefronts to the maximum number of possible wavefronts supported by the
hardware. Many of the important optimization targets and resource limits are
expressed in wavefronts/compute units, so this section uses this metric rather
than the related “occupancy” term.

4.8.2 Resource Limits on Active Wavefronts

AMD GPUs have two important global resource constraints that limit the number
of in-flight wavefronts:

e Each compute unit supports a maximum of eight work-groups. Recall that
AMD OpenCL supports up to 256 work-items (four wavefronts) per work-
group; effectively, this means each compute unit can support up to 32
wavefronts.

e Each GPU has a global (across all compute units) limit on the number of
active wavefronts. The GPU hardware is generally effective at balancing the
load across available compute units. Thus, it is useful to convert this global
limit into an average wavefront/compute unit so that it can be compared to
the other limits discussed in this section. For example, the ATl Radeon™ HD
5870 GPU has a global limit of 496 wavefronts, shared among 20 compute
units. Thus, it supports an average of 24.8 wavefronts/compute unit.

4-30 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Appendix D, “Device Parameters” contains information on the global number
of wavefronts supported by other AMD GPUs. Some AMD GPUs support up
to 96 wavefronts/compute unit.

These limits are largely properties of the hardware and, thus, difficult for
developers to control directly. Fortunately, these are relatively generous limits.
Frequently, the register and LDS usage in the kernel determines the limit on the
number of active wavefronts/compute unit, and these can be controlled by the
developer.

4.8.2.1 GPU Registers

Each compute unit provides 16384 GP registers, and each register contains
4x32-bit values (either single-precision floating point or a 32-bit integer). The total
register size is 256 kB of storage per compute unit. These registers are shared
among all active wavefronts on the compute unit; each kernel allocates only the
registers it needs from the shared pool. This is unlike a CPU, where each thread
is assigned a fixed set of architectural registers. However, using many registers
in a kernel depletes the shared pool and eventually causes the hardware to
throttle the maximum number of active wavefronts. Table 4.8 shows how the
registers used in the kernel impacts the register-limited wavefronts/compute unit.

Table 4.8 Impact of Register Type on Wavefronts/CU

GP Registers used Register-Limited
by Kernel Wavefronts / Compute-Unit
0-1 248
2 124
3 82
4 62
5 49
6 41
7 35
8 31
9 27
10 24
11 22
12 20
13 19
14 17
15 16
16 15
17 14
18-19 13
19-20 12
21-22 11
23-24 10
4.8 NDRange and Execution Range Optimization 4-31

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

GP Registers used Register-Limited
by Kernel Wavefronts / Compute-Unit

25-27 9
28-31
32-35
36-41
42-49
50-62
63-82
83-124

Nlw| OO |N| 00

For example, a kernel that uses 30 registers (120x32-bit values) can run with
eight active wavefronts on each compute unit. Because of the global limits
described earlier, each compute unit is limited to 32 wavefronts; thus, kernels can
use up to seven registers (28 values) without affecting the number of
wavefronts/compute unit. Finally, note that in addition to the GPRs shown in the
table, each kernel has access to four clause temporary registers.

AMD provides the following tools to examine the number of general-purpose
registers (GPRs) used by the kernel.

e The ATI Stream Profiler displays the number of GPRs used by the kernel.

e Alternatively, the ATI Stream Profiler generates the ISA dump (described in
Section 4.2, “Analyzing Stream Processor Kernels,” page 4-3), which then
can be searched for the string :NUM_GPRS.

e The Stream KernelAnalyzer also shows the GPR used by the kernel, across
a wide variety of GPU compilation targets.

The compiler generates spill code (shuffling values to, and from, memory) if it
cannot fit all the live values into registers. Spill code uses long-latency global
memory and can have a large impact on performance. The ATI Stream Profiler
reports the static number of register spills in the ScratchReg field. Generally, it
is a good idea to re-write the algorithm to use fewer GPRs, or tune the work-
group dimensions specified at launch time to expose more registers/kernel to the
compiler, in order to reduce the scratch register usage to 0.

4.8.2.2 Specifying the Default Work-Group Size at Compile-Time

4-32

The number of registers used by a work-item is determined when the kernel is
compiled. The user later specifies the size of the work-group. Ideally, the OpenCL
compiler knows the size of the work-group at compile-time, so it can make
optimal register allocation decisions. Without knowing the work-group size, the
compiler must assume an upper-bound size to avoid allocating more registers in
the work-item than the hardware actually contains.

For example, if the compiler allocates 70 registers for the work-item, Table 4.8
shows that only three wavefronts (192 work-items) are supported. If the user later
launches the kernel with a work-group size of four wavefronts (256 work-items),

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

the launch fails because the work-group requires 70*256=17920 registers, which
is more than the hardware allows. To prevent this from happening, the compiler
performs the register allocation with the conservative assumption that the kernel
is launched with the largest work-group size (256 work-items). The compiler
guarantees that the kernel does not use more than 62 registers (the maximum
number of registers which supports a work-group with four wave-fronts), and
generates low-performing register spill code, if necessary.

Fortunately, OpenCL provides a mechanism to specify a work-group size that the
compiler can use to optimize the register allocation. In particular, specifying a
smaller work-group size at compile time allows the compiler to allocate more
registers for each kernel, which can avoid spill code and improve performance.
The kernel attribute syntax is:

__attribute__ ((reqd_work group_size(X, Y, 2)))
Section 6.7.2 of the OpenCL specification explains the attribute in more detalil.

4.8.2.3 Local Memory (LDS) Size

In addition to registers, shared memory can also serve to limit the active
wavefronts/compute unit. Each compute unit has 32k of LDS, which is shared
among all active work-groups. LDS is allocated on a per-work-group granularity,
so it is possible (and useful) for multiple wavefronts to share the same local
memory allocation. However, large LDS allocations eventually limits the number
of workgroups that can be active. Table 4.9 provides more details about how LDS
usage can impact the wavefronts/compute unit.

Table 4.9 Effect of LDS Usage on Wavefronts/CU?

LDS-Limited
Work- LDS-Limited
LDS / Work-Group Groups Wavefronts/CU
<4K 8 32
4.0K-4.6K 7 28
4.6K-5.3K 6 24
5.3K-6.4K 5 20
6.4K-8.0K 4 16
8.0K-10.7K 3 12
10.7K-16.0K 2 8
16.0K-32.0K 1 4

1. Assumes each work-group uses four wavefronts (the maximum supported by the AMD
OpenCL SDK).

4.8 NDRange and Execution Range Optimization 4-33

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

4.8.3

ATl STREAM COMPUTING

AMD provides the following tools to examine the amount of LDS used by the
kernel:

e The ATI Stream Profiler displays the LDS usage. See the LocalMem counter.

e Alternatively, use the ATI Stream Profiler to generate the ISA dump
(described in Section 4.2, “Analyzing Stream Processor Kernels,” page 4-3),
then search for the string SQ_LDS ALLOC:SIZE in the ISA dump. Note that
the value is shown in hexadecimal format.

Partitioning the Work

In OpenCL, each kernel executes on an index point that exists in a global
NDRange. The partition of the NDRange can have a significant impact on
performance; thus, it is recommended that the developer explicitly specify the
global (#work-groups) and local (#work-items/work-group) dimensions, rather
than rely on OpenCL to set these automatically (by setting local _work size to
NULL in clEnqueueNDRangeKernel). This section explains the guidelines for
partitioning at the global, local, and work/kernel levels.

4.8.3.1 Global Work Size

OpenCL does not explicitly limit the number of work-groups that can be submitted
with a clEnqueueNDRangeKernel command. The hardware limits the available in-
flight threads, but the OpenCL SDK automatically partitions a large number of
work-groups into smaller pieces that the hardware can process. For some large
workloads, the amount of memory available to the GPU can be a limitation; the
problem might require so much memory capacity that the GPU cannot hold it all.
In these cases, the programmer must partition the workload into multiple
clEnqueueNDRangeKernel commands. The available device memory can be
obtained by querying clDevicelnfo.

At a minimum, ensure that the workload contains at least as many work-groups
as the number of compute units in the hardware. Work-groups cannot be split
across multiple compute units, so if the number of work-groups is less than the
available compute units, some units are idle. Current-generation AMD GPUs
typically have 2-20 compute units. (See Appendix D, “Device Parameters” for a
table of device parameters, including the number of compute units, or use
clGetDevicelnfo(.CL DEVICE_MAX_COMPUTE_UNITS) to determine the value
dynamically).

4.8.3.2 Local Work Size (#Work-ltems per Work-Group)

4-34

OpenCL limits the number of work-items in each group. Call clDevicelnfo with
the CL_DEVICE_MAX_WORK_GROUP_SIZE to determine the maximum number of
work-groups supported by the hardware. Currently, AMD GPUs with SDK 2.1
return 256 as the maximum number of work-items per work-group. Note the
number of work-items is the product of all work-group dimensions; for example,
a work-group with dimensions 32x16 requires 512 work-items, which is not
allowed with the current AMD OpenCL SDK.

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

The fundamental unit of work on AMD GPUs is called a wavefront. Each
wavefront consists of 64 work-items; thus, the optimal local work size is an
integer multiple of 64 (specifically 64, 128, 192, or 256) work-items per work-

group.

Work-items in the same work-group can share data through LDS memory and
also use high-speed local atomic operations. Thus, larger work-groups enable
more work-items to efficiently share data, which can reduce the amount of slower
global communication. However, larger work-groups reduce the number of global
work-groups, which, for small workloads, could result in idle compute units.
Generally, larger work-groups are better as long as the global range is big
enough to provide 1-2 Work-Groups for each compute unit in the system; for
small workloads it generally works best to reduce the work-group size in order to
avoid idle compute units. Note that it is possible to make the decision
dynamically, when the kernel is launched, based on the launch dimensions and
the target device characteristics.

4.8.3.3 Moving Work to the Kernel

Often, work can be moved from the work-group into the kernel. For example, a
matrix multiply where each work-item computes a single element in the output
array can be written so that each work-item generates multiple elements. This
technique can be important for effectively using the processing elements
available in the 5-wide VLIW processing engine (see the ALUPacking
performance counter reported by the Stream Profiler). The mechanics of this
technique often is as simple as adding a for loop around the kernel, so that the
kernel body is run multiple times inside this loop, then adjusting the global work
size to reduce the work-items. Typically, the local work-group is unchanged, and
the net effect of moving work into the kernel is that each work-group does more
effective processing, and fewer global work-groups are required.

When moving work to the kernel, often it is best to combine work-items that are
separated by 16 in the NDRange index space, rather than combining adjacent
work-items. Combining the work-items in this fashion preserves the memory
access patterns optimal for global and local memory accesses. For example,
consider a kernel where each kernel accesses one four-byte element in array A.
The resulting access pattern is:

Work-item‘0‘1‘2‘3‘

Cycle0 ‘ A+0 ‘ A+l ‘ A+2 ‘ A+3 ‘

If we naively combine four adjacent work-items to increase the work processed
per kernel, so that the first work-item accesses array elements A+0 to A+3 on
successive cycles, the overall access pattern is:

4.8 NDRange and Execution Range Optimization 4-35

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Work-item 0 1 2 3 4 5

Cycle0 A+0 A+4 A+8 A+12 A+16 A+20
Cyclel A+l A+5 A+9 A+13 A+17 A+21
Cycle2 A+2 A+6 A+10 A+14 A+18 A+22
Cycle3 A+3 A+7 A+11 A+15 A+19 A+23

This pattern shows that on the first cycle the access pattern contains “holes.”
Also, this pattern results in bank conflicts on the LDS. A better access pattern is
to combine four work-items so that the first work-item accesses array elements
A+0, A+16, A+32, and A+48. The resulting access pattern is:

Work-item 0 1 2 3 4 5

Cycle0 A+0 A+l A+2 A+3 A+4 A+5
Cyclel A+16 A+17 A+18 A+19 A+20 A+21
Cycle2 A+32 A+33 A+34 A+35 A+36 A+37
Cycle3 A+48 A+49 A+50 A+51 A+52 A+53

Note that this access patterns preserves the sequentially-increasing addressing
of the original kernel and generates efficient global and LDS memory references.

Increasing the processing done by the kernels can allow more processing to be
done on the fixed pool of local memory available to work-groups. For example,

consider a case where an algorithm requires 32x32 elements of shared memory.
If each work-item processes only one element, it requires 1024 work-items/work-
group, which exceeds the maximum limit. Instead, each kernel can be written to
process four elements, and a work-group of 16x16 work-items could be launched
to process the entire array. A related example is a blocked algorithm, such as a
matrix multiply; the performance often scales with the size of the array that can

be cached and used to block the algorithm. By moving processing tasks into the
kernel, the kernel can use the available local memory rather than being limited

by the work-items/work-group.

4.8.3.4 Work-Group Dimensions vs Size

4-36

The local NDRange can contain up to three dimensions, here labeled X, Y, and
Z. The X dimension is returned by get local_id(0), Y is returned by
get_local_id(1), and Z is returned by get_local_i1d(2). The GPU hardware
schedules the kernels so that the X dimensions moves fastest as the work-items
are packed into wavefronts. For example, the 128 threads in a 2D work-group of
dimension 32x4 (X=32 and Y=4) would be packed into two wavefronts as follows
(notation shown in X,Y order):

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

0,0

1,0

20(30(40|50|60 708090 |10,0/11,0|12,0(13,0|14,0|15,0

WaveFront

16,0

17,0

18,0|19,0(20,0|21,0(22,0|23,0|24,0|25,0|26,0|27,0|28,0|29,0|30,0|31,0

0,1

11

2131|4151 |61|71|81|091|101(11,1|12,1|13,1|141|151

16,1

171

18,119,1/20,1|21,1(22,1|23,1|24,1|25,1|26,1|27,1|28,1|29,1|30,1|31,1

0,2

1,2

2213242 |52|62|72|82|92|10,2|11,2|12,2|13,2|14,2|15,2

WaveFrontl

16,2

17,2

18,219,2|120,2|21,2|22,2|23,2|24,2|25,2|26,2|27,2|28,2|29,2|30,2|31,2

0,3

13

2313343 |53|63|73|8393/10,3|11,3|12,3|13,3|14,3|15;3

16,3

17,3

18,3|19,3|20,3|21,3|22,3|23,3|24,3|25,3|26,3|27,3|28,3|29,3|30,3|31,3

The total number of work-items in the work-group is typically the most important
parameter to consider, in particular when optimizing to hide latency by increasing
wavefronts/compute unit. However, the choice of XYZ dimensions for the same
overall work-group size can have the following second-order effects.

Work-items in the same quarter-wavefront execute on the same cycle in the
processing engine. Thus, global memory coalescing and local memory bank
conflicts can be impacted by dimension, particularly if the fast-moving X
dimension is small. Typically, it is best to choose an X dimension of at least
16, then optimize the memory patterns for a block of 16 work-items which
differ by 1 in the X dimension.

Work-items in the same wavefront have the same program counter and
execute the same instruction on each cycle. The packing order can be
important if the kernel contains divergent branches. If possible, pack together
work-items that are likely to follow the same direction when control-flow is
encountered. For example, consider an image-processing kernel where each
work-item processes one pixel, and the control-flow depends on the color of
the pixel. It might be more likely that a square of 8x8 pixels is the same color
than a 64x1 strip; thus, the 8x8 would see less divergence and higher
performance.

When in doubt, a square 16x16 work-group size is a good start.

4.8.4 Optimizing for Cedar

To focus the discussion, this section has used specific hardware characteristics
that apply to most of the Evergreen series. The value Evergreen part, referred to
as Cedar and used in products such as the ATI Radeon™ HD 5450 GPU, has
different architecture characteristics, as shown below.

Cypross. Juniper,| EVerareen
Redwood
Work-items/Wavefront 64 32
Stream Cores / CU 16 8
GP Registers / CU 16384 8192
Local Memory Size 32K 32K
4.8 NDRange and Execution Range Optimization 4-37

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

The difference in total register size can impact the compiled code and cause
register spill code for kernels that were tuned for other devices. One technique
that can be useful is to specify the required work-group size as 128 (half the
default of 256). In this case, the compiler has the same number of registers
available as for other devices and uses the same number of registers. The
developer must ensure that the kernel is launched with the reduced work size
(128) on Cedar-class devices.

485 Summary of NDRange Optimizations

As shown above, execution range optimization is a complex topic with many
interacting variables and which frequently requires some experimentation to
determine the optimal values. Some general guidelines are:

e Select the work-group size to be a multiple of 64, so that the wavefronts are
fully populated.

e Always provide at least two wavefronts (128 work-items) per compute unit.
For a ATl Radeon™ HD 5870 GPU, this implies 40 wave-fronts or 2560 work-
items. If necessary, reduce the work-group size (but not below 64 work-
items) to provide work-groups for all compute units in the system.

e Latency hiding depends on both the number of wavefronts/compute unit, as
well as the execution time for each kernel. Generally, two to eight
wavefronts/compute unit is desirable, but this can vary significantly,
depending on the complexity of the kernel and the available memory
bandwidth. The Stream Profiler and associated performance counters can
help to select an optimal value.

4.9 Using Multiple OpenCL Devices

The AMD OpenCL runtime supports both CPU and GPU devices. This section
introduces techniques for appropriately partitioning the workload and balancing it
across the devices in the system.

491 CPU and GPU Devices

Table 4.10 lists some key performance characteristics of two exemplary CPU and
GPU devices: a quad-core AMD Phenom Il X4 processor running at 2.8 GHz,
and a mid-range ATl Radeon™ 5670 GPU running at 750 MHz. The “best” device
in each characteristic is highlighted, and the ratio of the best/other device is
shown in the final column.

4-38 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Table 4.10 CPU and GPU Performance Characteristics

CPU GPU Winner Ratio

Example Device AMD Phenom™ Il X4 | ATl Radeon™ HD 5670

Core Frequency 2800 MHz 750 MHz 4 X
Compute Units 4 5 13X
Approx. Power? 95 W 64 W 1.5 X
Approx. Power/Compute Unit 19w 13 W 15X
Eﬁl?é(nblgc?;an,:]r-eIDCé?rI\?nOps/Sec 90 R [
Approx GFLOPS/Watt 0.9 9.4 10 X
Max In-flight HW Threads 4 15872 3968 X
Simultaneous Executing Threads 4 80 20 X
Memory Bandwidth 26 GB/s 64 GB/s 25X
Int Add latency 0.4 ns 10.7 ns 30 X
FP Add Latency 1.4 ns 10.7 ns 7 X
Approx DRAM Latency 50 ns 300 ns 6 X
L2+L3 cache capacity 8192 KB 128 kB 64 X
Approx Kernel Launch Latency 25 us 225 ps 9 X

1. For the power specifications of the AMD Phenom™ Il x4, see http://www.amd.com/us/products/desk-
top/processors/phenom-ii/Pages/phenom-ii-model-number-comparison.aspx. For the power specifica-
tions of the ATI Radeon™ HD 5670, see http:/iww.amd.com/us/products/desktop/graphics/ati-radeon-

hd-5000/ati-radeon-hd-5670-overview/Pages/ati-radeon-hd-5670-specifications.aspx.

The GPU excels at high-throughput: the peak execution rate (measured in

FLOPS) is 7X higher than the CPU, and the memory bandwidth is 2.5X higher
than the CPU. The GPU also consumes approximately 65% the power of the
CPU; thus, for this comparison, the power efficiency in flops/watt is 10X higher.
While power efficiency can vary significantly with different devices, GPUs
generally provide greater power efficiency (flops/watt) than CPUs because they
optimize for throughput and eliminate hardware designed to hide latency.

Conversely, CPUs excel at latency-sensitive tasks. For example, an integer add
is 30X faster on the CPU than on the GPU. This is a product of both the CPUs
higher clock rate (2800 MHz vs 750 MHz for this comparison), as well as the
operation latency; the CPU is optimized to perform an integer add in just one
cycle, while the GPU requires eight cycles. The CPU also has a latency-
optimized path to DRAM, while the GPU optimizes for bandwidth and relies on
many in-flight threads to hide the latency. The ATI Radeon™ HD 5670 GPU, for
example, supports more than 15,000 in-flight threads and can switch to a new
thread in a single cycle. The CPU supports only four hardware threads, and
thread-switching requires saving and restoring the CPU registers from memory.
The GPU requires many active threads to both keep the execution resources
busy, as well as provide enough threads to hide the long latency of cache
misses.

Each GPU thread has its own register state, which enables the fast single-cycle
switching between threads. Also, GPUs can be very efficient at gather/scatter

4.9 Using Multiple OpenCL Devices 4-39

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

4-40

ATl STREAM COMPUTING

operations: each thread can load from any arbitrary address, and the registers
are completely decoupled from the other threads. This is substantially more
flexible and higher-performing than a classic SIMD-style architecture (such as
SSE on the CPU), which typically requires that data be accessed from
contiguous and aligned memory locations. SSE supports instructions that write
parts of a register (for example, MOVLPS and MOVHPS, which write the upper and
lower halves, respectively, of an SSE register), but these instructions generate
additional microarchitecture dependencies and frequently require additional pack
instructions to format the data correctly.

In contrast, each GPU thread shares the same program counter with 63 other
threads in a wavefront. Divergent control-flow on a GPU can be quite expensive
and can lead to significant under-utilization of the GPU device. When control flow
substantially narrows the number of valid work-items in a wave-front, it can be
faster to use the CPU device.

CPUs also tend to provide significantly more on-chip cache than GPUs. In this
example, the CPU device contains 512k L2 cache/core plus a 6 MB L3 cache
that is shared among all cores, for a total of 8 MB of cache. In contrast, the GPU
device contains only 128 k cache shared by the five compute units. The larger
CPU cache serves both to reduce the average memory latency and to reduce
memory bandwidth in cases where data can be re-used from the caches.

Finally, note the approximate 9X difference in kernel launch latency. The GPU
launch time includes both the latency through the software stack, as well as the
time to transfer the compiled kernel and associated arguments across the PCI-
express bus to the discrete GPU. Notably, the launch time does not include the
time to compile the kernel. The CPU can be the device-of-choice for small, quick-
running problems when the overhead to launch the work on the GPU outweighs
the potential speedup. Often, the work size is data-dependent, and the choice of
device can be data-dependent as well. For example, an image-processing
algorithm may run faster on the GPU if the images are large, but faster on the
CPU when the images are small.

The differences in performance characteristics present interesting optimization
opportunities. Workloads that are large and data parallel can run orders of
magnitude faster on the GPU, and at higher power efficiency. Serial or small
parallel workloads (too small to efficiently use the GPU resources) often run
significantly faster on the CPU devices. In some cases, the same algorithm can
exhibit both types of workload. A simple example is a reduction operation such
as a sum of all the elements in a large array. The beginning phases of the
operation can be performed in parallel and run much faster on the GPU. The end
of the operation requires summing together the partial sums that were computed
in parallel; eventually, the width becomes small enough so that the overhead to
parallelize outweighs the computation cost, and it makes sense to perform a
serial add. For these serial operations, the CPU can be significantly faster than
the GPU.

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

49.2 When to Use Multiple Devices

One of the features of GPU computing is that some algorithms can run
substantially faster and at better energy efficiency compared to a CPU device.
Also, once an algorithm has been coded in the data-parallel task style for
OpenCL, the same code typically can scale to run on GPUs with increasing
compute capability (that is more compute units) or even multiple GPUs (with a
little more work).

For some algorithms, the advantages of the GPU (high computation throughput,
latency hiding) are offset by the advantages of the CPU (low latency, caches, fast
launch time), so that the performance on either devices is similar. This case is
more common for mid-range GPUs and when running more mainstream
algorithms. If the CPU and the GPU deliver similar performance, the user can
get the benefit of either improved power efficiency (by running on the GPU) or
higher peak performance (use both devices).

4.9.3 Partitioning Work for Multiple Devices

By design, each OpenCL command queue can only schedule work on a single
OpenCL device. Thus, using multiple devices requires the developer to create a
separate queue for each device, then partition the work between the available

command queues.

A simple scheme for partitioning work between devices would be to statically
determine the relative performance of each device, partition the work so that
faster devices received more work, launch all the kernels, and then wait for them
to complete. In practice, however, this rarely yields optimal performance. The
relative performance of devices can be difficult to determine, in particular for
kernels whose performance depends on the data input. Further, the device
performance can be affected by dynamic frequency scaling, OS thread
scheduling decisions, or contention for shared resources, such as shared caches
and DRAM bandwidth. Simple static partitioning algorithms which “guess wrong”
at the beginning can result in significantly lower performance, since some
devices finish and become idle while the whole system waits for the single,
unexpectedly slow device.

For these reasons, a dynamic scheduling algorithm is recommended. In this
approach, the workload is partitioned into smaller parts that are periodically
scheduled onto the hardware. As each device completes a part of the workload,
it requests a new part to execute from the pool of remaining work. Faster devices,
or devices which work on easier parts of the workload, request new input faster,
resulting in a natural workload balancing across the system. The approach
creates some additional scheduling and kernel submission overhead, but
dynamic scheduling generally helps avoid the performance cliff from a single bad
initial scheduling decision, as well as higher performance in real-world system
environments (since it can adapt to system conditions as the algorithm runs).

Multi-core runtimes, such as Cilk, have already introduced dynamic scheduling
algorithms for multi-core CPUs, and it is natural to consider extending these

4.9 Using Multiple OpenCL Devices 4-41

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

4-42

ATl STREAM COMPUTING

scheduling algorithms to GPUs as well as CPUs. A GPU introduces several new
aspects to the scheduling process:

Heterogeneous Compute Devices

Most existing multi-core schedulers target only homogenous computing
devices. When scheduling across both CPU and GPU devices, the scheduler
must be aware that the devices can have very different performance
characteristics (10X or more) for some algorithms. To some extent, dynamic
scheduling is already designed to deal with heterogeneous workloads (based
on data input the same algorithm can have very different performance, even
when run on the same device), but a system with heterogeneous devices
makes these cases more common and more extreme. Here are some
suggestions for these situations.

— The scheduler should support sending different workload sizes to
different devices. GPUs typically prefer larger grain sizes, and higher-
performing GPUs prefer still larger grain sizes.

— The scheduler should be conservative about allocating work until after it
has examined how the work is being executed. In particular, it is
important to avoid the performance cliff that occurs when a slow device
is assigned an important long-running task. One technique is to use
small grain allocations at the beginning of the algorithm, then switch to
larger grain allocations when the device characteristics are well-known.

— As a special case of the above rule, when the devices are substantially
different in performance (perhaps 10X), load-balancing has only a small
potential performance upside, and the overhead of scheduling the load
probably eliminates the advantage. In the case where one device is far
faster than everything else in the system, use only the fast device.

— The scheduler must balance small-grain-size (which increase the
adaptiveness of the schedule and can efficiently use heterogeneous
devices) with larger grain sizes (which reduce scheduling overhead).
Note that the grain size must be large enough to efficiently use the GPU.

Asynchronous Launch

OpenCL devices are designed to be scheduled asynchronously from a
command-queue. The host application can enqueue multiple kernels, flush
the kernels so they begin executing on the device, then use the host core for
other work. The AMD OpenCL implementation uses a separate thread for
each command-queue, so work can be transparently scheduled to the GPU
in the background.

One situation that should be avoided is starving the high-performance GPU
devices. This can occur if the physical CPU core, which must re-fill the
device queue, is itself being used as a device. A simple approach to this
problem is to dedicate a physical CPU core for scheduling chores. The
device fission extension (see Section A.7, “cl_ext Extensions,” page A-4) can
be used to reserve a core for scheduling. For example, on a quad-core
device, device fission can be used to create an OpenCL device with only
three cores.

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Another approach is to schedule enough work to the device so that it can
tolerate latency in additional scheduling. Here, the scheduler maintains a
watermark of uncompleted work that has been sent to the device, and refills
the queue when it drops below the watermark. This effectively increase the
grain size, but can be very effective at reducing or eliminating device
starvation. Developers cannot directly query the list of commands in the
OpenCL command queues; however, it is possible to pass an event to each
clEnqueue call that can be queried, in order to determine the execution
status (in particular the command completion time); developers also can
maintain their own queue of outstanding requests.

For many algorithms, this technique can be effective enough at hiding latency
so that a core does not need to be reserved for scheduling. In particular,
algorithms where the work-load is largely known up-front often work well with
a deep queue and watermark. Algorithms in which work is dynamically
created may require a dedicated thread to provide low-latency scheduling.

e Data Location

Discrete GPUs use dedicated high-bandwidth memory that exists in a
separate address space. Moving data between the device address space and
the host requires time-consuming transfers over a relatively slow PCI-
Express bus. Schedulers should be aware of this cost and, for example,
attempt to schedule work that consumes the result on the same device
producing it.

CPU and GPU devices share the same memory bandwidth, which results in
additional interactions of kernel executions.

49.4 Synchronization Caveats

The OpenCL functions that enqueue work (clEnqueueNDRangeKernel) merely
enqueue the requested work in the command queue; they do not cause it to
begin executing. Execution begins when the user executes a synchronizing
command, such as clFlush or clWaitForEvents. Enqueuing several commands
before flushing can enable the host CPU to batch together the command
submission, which can reduce launch overhead.

Command-queues that are configured to execute in-order are guaranteed to
complete execution of each command before the next command begins. This
synchronization guarantee can often be leveraged to avoid explicit
clWaitForEvents() calls between command submissions. Using
clWaitForEvents() requires intervention by the host CPU and additional
synchronization cost between the host and the GPU; by leveraging the in-order
gueue property, back-to-back kernel executions can be efficiently handled directly
on the GPU hardware.

AMD Evergreen GPUs currently do not support the simultaneous execution of
multiple kernels. For efficient execution, design a single kernel to use all the
available execution resources on the GPU.

4.9 Using Multiple OpenCL Devices 4-43

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

The AMD OpenCL implementation spawns a new thread to manage each
command queue. Thus, the OpenCL host code is free to manage multiple
devices from a single host thread. Note that clFinish is a blocking operation;
the thread that calls clFinish blocks until all commands in the specified
command-queue have been processed and completed. If the host thread is
managing multiple devices, it is important to call clFlush for each command-
gueue before calling clFinish, so that the commands are flushed and execute in
parallel on the devices. Otherwise, the first call to clFinish blocks, the
commands on the other devices are not flushed, and the devices appear to
execute serially rather than in parallel.

495 GPU and CPU Kernels

While OpenCL provides functional portability so that the same kernel can run on
any device, peak performance for each device is typically obtained by tuning the
OpenCL kernel for the target device.

Code optimized for the Cypress device (the ATl Radeon™" HD 5870 GPU)
typically runs well across other members of the Evergreen family. There are
some differences in cache size and LDS bandwidth that might impact some
kernels (see Appendix D, “Device Parameters”). The Cedar ASIC has a smaller
wavefront width and fewer registers (see Section 4.8.4, “Optimizing for Cedar,”
page 4-37, for optimization information specific to this device).

As described in Section 4.11, “Clause Boundaries,” page 4-50, CPUs and GPUs
have very different performance characteristics, and some of these impact how
one writes an optimal kernel. Notable differences include:

e The SIMD floating point resources in a CPU (SSE) require the use of
vectorized types (float4) to enable packed SSE code generation and extract
good performance from the SIMD hardware. The GPU VLIW hardware is
more flexible and can efficiently use the floating-point hardware even without
the explicit use of float4. See Section 4.10.4, “VLIW and SSE Packing,”
page 4-48, for more information and examples; however, code that can use
float4 often generates hi-quality code for both the CPU and the AMD GPUSs.

e The AMD OpenCL CPU implementation runs work-items from the same
work-group back-to-back on the same physical CPU core. For optimally
coalesced memory patterns, a common access pattern for GPU-optimized
algorithms is for work-items in the same wavefront to access memory
locations from the same cache line. On a GPU, these work-items execute in
parallel and generate a coalesced access pattern. On a CPU, the first work-
item runs to completion (or until hitting a barrier) before switching to the next.
Generally, if the working set for the data used by a work-group fits in the CPU
caches, this access pattern can work efficiently: the first work-item brings a
line into the cache hierarchy, which the other work-items later hit. For large
working-sets that exceed the capacity of the cache hierarchy, this access
pattern does not work as efficiently; each work-item refetches cache lines
that were already brought in by earlier work-items but were evicted from the
cache hierarchy before being used. Note that AMD CPUs typically provide
512k to 2 MB of L2+L3 cache for each compute unit.

4-44 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

4.9.6

ATl STREAM COMPUTING

e CPUs do not contain any hardware resources specifically designed to
accelerate local memory accesses. On a CPU, local memory is mapped to
the same cacheable DRAM used for global memory, and there is no
performance benefit from using the ___local qualifier. The additional memory
operations to write to LDS, and the associated barrier operations can reduce
performance. One notable exception is when local memory is used to pack
values to avoid non-coalesced memory patterns.

e CPU devices only support a small number of hardware threads, typically two
to eight. Small numbers of active work-group sizes reduce the CPU switching
overhead, although for larger kernels this is a second-order effect.

For a balanced solution that runs reasonably well on both devices, developers
are encouraged to write the algorithm using float4 vectorization. The GPU is
more sensitive to algorithm tuning; it also has higher peak performance potential.
Thus, one strategy is to target optimizations to the GPU and aim for reasonable
performance on the CPU. For peak performance on all devices, developers can
choose to use conditional compilation for key code loops in the kernel, or in some
cases even provide two separate kernels. Even with device-specific kernel
optimizations, the surrounding host code for allocating memory, launching
kernels, and interfacing with the rest of the program generally only needs to be
written once.

Another approach is to leverage a CPU-targeted routine written in a standard
high-level language, such as C++. In some cases, this code path may already
exist for platforms that do not support an OpenCL device. The program uses
OpenCL for GPU devices, and the standard routine for CPU devices. Load-
balancing between devices can still leverage the techniques described in
Section 4.9.3, “Partitioning Work for Multiple Devices,” page 4-41.

Contexts and Devices

The AMD OpenCL program creates at least one context, and each context can
contain multiple devices. Thus, developers must choose whether to place all
devices in the same context or create a new context for each device. Generally,
it is easier to extend a context to support additional devices rather than
duplicating the context for each device: buffers are allocated at the context level
(and automatically across all devices), programs are associated with the context,
and kernel compilation (via clBuildProgram) can easily be done for all devices
in a context. However, with current OpenCL implementations, creating a separate
context for each device provides more flexibility, especially in that buffer
allocations can be targeted to occur on specific devices. Generally, placing the
devices in the same context is the preferred solution.

4.10 Instruction Selection Optimizations

4.10.1

Instruction Bandwidths

Table 4.11 lists the throughput of instructions for GPUs.

4.10 Instruction Selection Optimizations 4-45
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

4-46

ATl STREAM COMPUTING

Table 4.11 Instruction Throughput (Operations/Cycle for Each Stream
Processor)

Rate (Operations/Cycle) for each
Stream Processor

Instruction Juniper/ Redwood/ Cedar | Cypress
SPFP FMA 4
SPFP MAD
ADD

MUL

INV
RQSRT
LOG

FMA

MAD

Single Precision
FP Rates

Double Precision|ADD
FP Rates MUL

INV (approx.)
RQSRT (approx.)
MAD

ADD

Integer Inst Rates|MUL

Bit-shift

Bitwise XOR
Float-to-Int

Conversion

Int-to-Float
MAD
ADD
MUL

24-Bit Integer
Inst Rates

gl J| PRl |RP|IOIO[OC|O0O|0O|O0C|O0C|(O|(FR|FRP|FR|lOIlOI|lO0OI| O

gloajla| Rrlr|loalalr|lga|lkr|kr|Rr|[RP|N|R|R[RPR|R|R|lO|la|u

Note that single precision MAD operations have five times the throughput of the
double-precision rate, and that double-precision is only supported on the Cypress
devices. The use of single-precision calculation is encouraged, if that precision
is acceptable. Single-precision data is also half the size of double-precision,
which requires less chip bandwidth and is not as demanding on the cache
structures.

Generally, the throughput and latency for 32-bit integer operations is the same
as for single-precision floating point operations. 32-bit integer operations are
supported only on the ATl Radeon™ HD 5870 GPUs.

24-bit integer MULs and MADs have five times the throughput of 32-bit integer
multiplies. The use of OpenCL built-in functions for mul24 and mad24 is
encouraged. Note that mul24 can be useful for array indexing operations.

Packed 16-bit and 8-bit operations are not natively supported; however, in cases

where it is known that no overflow will occur, some algorithms may be able to

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

effectively pack 2 to 4 values into the 32-bit registers natively supported by the
hardware.

The MAD instruction is an IEEE-compliant multiply followed by an IEEE-
compliant add; it has the same accuracy as two separate MUL/ADD operations.
No special compiler flags are required for the compiler to convert separate
MUL/ADD operations to use the MAD instruction.

Table 4.11 shows the throughput for each stream processing core. To obtain the
peak throughput for the whole device, multiply the number of stream cores and
the engine clock (see Appendix D, “Device Parameters”). For example, according
to Table 4.11, a Cypress device can perform two double-precision ADD
operations/cycle in each stream core. From Appendix D, “Device Parameters,” a
ATl Radeon™ HD 5870 GPU has 320 Stream Cores and an engine clock of
850 MHz, so the entire GPU has a throughput rate of (2*320*850 MHz) = 544
GFlops for double-precision adds.

4.10.2 AMD Media Instructions

AMD provides a set of media instructions for accelerating media processing.
Notably, the sum-of-absolute differences (SAD) operation is widely used in
motion estimation algorithms. For a brief listing and description of the AMD media
operations, see the third bullet in Section A.8, “AMD Vendor-Specific Extensions,”
page A-4.

4.10.3 Math Libraries

OpenCL supports two types of math library operation: native_function() and
function(). Native_functions are generally supported in hardware and can run
substantially faster, although at somewhat lower accuracy. The accuracy for the
non-native functions is specified in Section 7.4 of the OpenCL Specification. The
accuracy for the native functions is implementation-defined. Developers are
encouraged to use the native functions when performance is more important than
precision. Table 4.12 lists the native speedup factor for certain functions.

Table 4.12 Native Speedup Factor

Function Native Speedup Factor
sin() 27.1x
cos() 34.2x
tan() 13.4x
exp() 4.0x
exp2() 3.4x
expl0() 5.2x
log() 12.3x
log2() 11.3x
10g10() 12.8x
sqrt() 1.8x
rsqrt() 6.4x
4.10 Instruction Selection Optimizations 4-47

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

powr() 28.7x
divide() 4.4x

4.10.4 VLIW and SSE Packing

4-48

Each stream core in the AMD GPU is programmed with a 5-wide VLIW
instruction. Efficient use of the GPU hardware requires that the kernel contain
enough parallelism to fill all five processing elements; serial dependency chains
are scheduled into separate instructions. A classic technique for exposing more
parallelism to the compiler is loop unrolling. To assist the compiler in
disambiguating memory addresses so that loads can be combined, developers
should cluster load and store operations. In particular, re-ordering the code to
place stores in adjacent code lines can improve performance. Figure 4.7 shows

an example of unrolling a loop and then clustering the stores.

__kernel void loopKernellA(int loopCount,
global float *output,
global const float * input)
{
uint gid = get_global_id(0);
for (int i=0; i<loopCount; i+=1) {
float VelmO = (input[i] * 6.0 + 17.0);
output[gid+i] = VelmO;
}
}

Figure 4.7 Unmodified Loop

Figure 4.8 is the same loop unrolled 4x.

__kernel void loopKernel2A(int loopCount,
global float * output,
uint gid = get_global_id(0);
for (int i=0; i<loopCount; i+=4) {
float VelmO = (input[i] * 6.0 + 17.0);
output[gid+i] = VelmO;

float Velml = (input[i+l] * 6.0 + 17.0);
output[gid+i+1] = Velml;

float Velm2 = (input[i+2] * 6.0 + 17.0);
output[gid+i+2] = Velm2;

float Velm3 = (input[i+3] * 6.0 + 17.0);
output[gid+i+3] = Velm3;

}

Figure 4.8 Kernel Unrolled 4X

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

global const float * input)

ATl STREAM COMPUTING

Figure 4.9 shows and example of an unrolled loop with clustered stores.

__kernel void loopKernel3A(int loopCount,
global float *output,
global const float * input)

uint gid = get_global_id(0);

for (int i=0; i<loopCount; i+=4) {
float VelmO (input[i] * 6.0 + 17.0);
float Velml (input[i+1l] * 6.0 + 17.0);
float Velm2 (input[i+2] * 6.0 + 17.0);
float Velm3 (input[i+3] * 6.0 + 17.0);

output[gid+i+0]
output[gid+i+1]
output[gid+i+2]
output[gid+i+3]

VelmO;
Velml;
Velm2;
Velm3;

}

Figure 4.9 Unrolled Loop with Stores Clustered

Unrolling the loop to expose the underlying parallelism typically allows the GPU
compiler to pack the instructions into the slots in the VLIW word. For best results,
unrolling by a factor of at least 5 (perhaps 8 to preserve power-of-two factors)
may deliver best performance. Unrolling increases the number of required
registers, so some experimentation may be required.

The CPU back-end requires the use of vector types (float4) to vectorize and
generate packed SSE instructions. To vectorize the loop above, use float4 for the
array arguments. Obviously, this transformation is only valid in the case where
the array elements accessed on each loop iteration are adjacent in memory. The
explicit use of float4 can also improve the GPU performance, since it clearly
identifies contiguous 16-byte memory operations that can be more efficiently
coalesced.

Figure 4.10 is an example of an unrolled kernel that uses float4 for vectorization.

__kernel void loopKernel4(int loopCount,
global float4 *output,
global const float4 * input)
{
uint gid = get_global_id(0);
for (int i=0; i<loopCount; i+=1) {
float4 Velm = input[i] * 6.0 + 17.0;
output[gid+i] = Velm;
}
}

Figure 4.10 Unrolled Kernel Using float4 for Vectorization

4.10 Instruction Selection Optimizations 4-49
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

4.11 Clause Boundaries

4-50

AMD GPUs groups instructions into clauses. These are broken at control-flow
boundaries when:

e the instruction type changes (for example, from FETCH to ALU), or

e if the clause contains the maximum amount of operations (the maximum size
for an ALU clause is 128 operations).

ALU and LDS access instructions are placed in the same clause. FETCH,
ALU/LDS, and STORE instructions are placed into separate clauses.

The GPU schedules a pair of wavefronts (referred to as the “even” and “odd”
wavefront). The even wavefront executes for four cycles (each cycle executes a
quarter-wavefront); then, the odd wavefront executes for four cycles. While the
odd wavefront is executing, the even wavefront accesses the register file and
prepares operands for execution. This fixed interleaving of two wavefronts allows
the hardware to efficiently hide the eight-cycle register-read latencies.

With the exception of the special treatment for even/odd wavefronts, the GPU
scheduler only switches wavefronts on clause boundaries. Latency within a
clause results in stalls on the hardware. For example, a wavefront that generates
an LDS bank conflict stalls on the compute unit until the LDS access completes;
the hardware does not try to hide this stall by switching to another available
wavefront.

ALU dependencies on memory operations are handled at the clause level.
Specifically, an ALU clause can be marked as dependent on a FETCH clause.
All FETCH operations in the clause must complete before the ALU clause begins
execution.

Switching to another clause in the same wavefront requires approximately 40
cycles. The hardware immediately schedules another wavefront if one is
available, so developers are encouraged to provide multiple wavefronts/compute
unit. The cost to switch clauses is far less than the memory latency; typically, if
the program is designed to hide memory latency, it hides the clause latency as
well.

The address calculations for FETCH and STORE instructions execute on the
same hardware in the compute unit as do the ALU clauses. The address
calculations for memory operations consumes the same executions resources
that are used for floating-point computations.

e The ISA dump shows the clause boundaries. See the example shown below.

For more information on clauses, see the AMD Evergreen-Family ISA Microcode
And Instructions (v1.0b) and the AMD R600/R700/Evergreen Assembly
Language Format documents.

The following is an example disassembly showing clauses. There are 13 clauses
in the kernel. The first clause is an ALU clause and has 6 instructions.

Chapter 4. OpenCL Performance and Optimization
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

00

01
02

03
04

05
06

07

08

09

10

11
12

ATl STREAM COMPUTING

ALU PUSH BEFORE: ADDR(32) CNT (13

0 x: MOV R3.x, Kco[0] .
y: MOV R2.y, KCOI[0]
z: MOV R2.z, Kco[o].
w: MOV R2.w, KCo[0].

1 x: MOV R4 .x, KCco[2].
y: MOV R2.y, KCOI[2].
z: MOV R2.z, KCo[2].
w: MOV R2.w, KCo [2]
t: SETGT_INT R5.x, PVO0.x,

2 t: MULLO _INT ____, Rl1.x,

3 y: ADD INT , RO.x,

4 x: ADD INT RO.x, PV3.y,

5 x: PREDNE INT __ , R5.x,

JUMP POP_CNT (1) ADDR(12)

ALU: ADDR(45) CNT(5) KCACHEO (CB1:0-15)

)

X
Y
b4

£

NN

W

KC1[1] .x

0

KCACHEO (CB1:0-15) KCACHE1 (CB0:0-15)

.0f

PS2

KC1l[6] .x

0.0f

UPDATE_EXEC_MASK UPDATE_PRED

(0x00000002, 2.802596929e-45f) .x

6 z: LSHL , RO.x,
7 y: ADD INT , KCoI[1].x,
8 x: LSHR R1.x, PV7.vy,

LOOP DX10 i0 FAIL_JUMP_ ADDR(11)
ALU: ADDR(50) CNT (4)

9 x: ADD_ INT R3.x, -1, R3.x

y: LSHR RO.y, R4.x,
t: ADD_INT R4.x, R4.x,
WAIT_ACK: Outstanding acks <= 0
TEX: ADDR(64) CNT (1)
10 VFETCH RO.x__ , RO.y, fcl56
FETCH TYPE (NO INDEX OFFSET)
ALU: ADDR(54) CNT (3)

11 x: MULADD e RO.x, RO.x, (0x40C00000, 6.0f).y, (0x41880000, 17.0f).x

t: SETE_INT R2.x, R3.x,
MEM RAT CACHELESS STORE RAW ACK:
ALU BREAK: ADDR(57) CNT (1)

12 x: PREDE INT _ , R2.x,
ENDLOOP 10 PASS JUMP_ ADDR (4)

POP (1) ADDR(12)

NOP NO_BARRIER

END OF PROGRAM

4.11 Clause Boundaries

PV6.z

(0x00000002, 2.802596929e-45f) .x

(0x00000002, 2.802596929e-45f) .x

(0x00000004, 5.605193857e-45f) .y

MEGA (4)

0.0f
RAT (1) [R1] .x , RO, ARRAY SIZE(4)
0.0f UPDATE_ EXEC_MASK UPDATE_PRED

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

MARK VPM

4-51

ATl STREAM COMPUTING

4.12 Additional Performance Guidance

This section is a collection of performance tips for GPU compute and AMD-
specific optimizations.

4.12.1 Memory Tiling

There are many possible physical memory layouts for images. ATl Stream
compute devices can access memory in a tiled or in a linear arrangement.

e Linear — A linear layout format arranges the data linearly in memory such
that element addresses are sequential. This is the layout that is familiar to
CPU programmers. This format must be used for OpenCL buffers; it can be
used for images.

e Tiled — A tiled layout format has a pre-defined sequence of element blocks
arranged in sequential memory addresses (see Figure 4.11 for a conceptual
illustration). A microtile consists of ABIJ; a macrotile consists of the top-left
16 squares for which the arrows are red. Only images can use this format.
Translating from user address space to the tiled arrangement is transparent
to the user. Tiled memory layouts provide an optimized memory access
pattern to make more efficient use of the RAM attached to the GPU compute
device. This can contribute to lower latency.

Logical

=

Physical

REIRE

N

\+

A A
/_

N
N TV N [

//_
X

Z7 T2

5 - /\/
V i

A7 4 | A

Figure 4.11 One Example of a Tiled Layout Format

Memory Access Pattern —

Memory access patterns in compute kernels are usually different from those in
the pixel shaders. Whereas the access pattern for pixel shaders is in a
hierarchical, space-filling curve pattern and is tuned for tiled memory
performance (generally for textures), the access pattern for a compute kernel is
linear across each row before moving to the next row in the global id space. This
has an effect on performance, since pixel shaders have implicit blocking, and

4-52 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

412.2

ATl STREAM COMPUTING

compute kernels do not. If accessing a tiled image, best performance is achieved
if the application tries to use workgroups as a simple blocking strategy.

General Tips

Avoid declaring global arrays on the kernel's stack frame as these typically
cannot be allocated in registers and require expensive global memory
operations.

Use predication rather than control-flow. The predication allows the GPU to
execute both paths of execution in parallel, which can be faster than
attempting to minimize the work through clever control-flow. The reason for
this is that if no memory operation exists in a ?:- operator (also called a
ternary operator), this operation is translated into a single cmov_logical
instruction, which is executed in a single cycle. An example of this is:

If (AB) {

C += D;
}else {

C -= D;
}

Replace this with:

int factor = (A>B) ? 1:-1;

C += factor*D;

In the first block of code, this translates into an IF/ELSE/ENDIF sequence of
CF clauses, each taking ~40 cycles. The math inside the control flow adds
two cycles if the control flow is divergent, and one cycle if it is not. This code
executes in ~120 cycles.

In the second block of code, the ?: operator executes in an ALU clause, so
no extra CF instructions are generated. Since the instructions are sequentially
dependent, this block of code executes in three cycles, for a ~40x speed
improvement. To see this, the first cycle is the (A>B) comparison, the result
of which is input to the second cycle, which is the cmov_logical factor, bool,
1, -1. The final cycle is a MAD instruction that: mad C, factor, D, C. If the ratio
between CF clauses and ALU instructions is low, this is a good pattern to
remove the control flow.

Loop Unrolling

— OpenCL kernels typically are high instruction-per-clock applications.
Thus, the overhead to evaluate control-flow and execute branch
instructions can consume a significant part of resource that otherwise
can be used for high-throughput compute operations.

— The ATI Stream OpenCL compiler performs simple loop unrolling
optimizations; however, for more complex loop unrolling, it may be
beneficial to do this manually.

If possible, create a reduced-size version of your data set for easier
debugging and faster turn-around on performance experimentation. GPUs do
not have automatic caching mechanisms and typically scale well as
resources are added. In many cases, performance optimization for the
reduced-size data implementation also benefits the full-size algorithm.

4.12 Additional Performance Guidance 4-53

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

When tuning an algorithm, it is often beneficial to code a simple but accurate
algorithm that is retained and used for functional comparison. GPU tuning
can be an iterative process, so success requires frequent experimentation,
verification, and performance measurement.

The profiler and analysis tools report statistics on a per-kernel granularity. To
narrow the problem further, it might be useful to remove or comment-out
sections of code, then re-run the timing and profiling tool.

4.12.3 Guidance for CUDA Programmers Using OpenCL

Porting from CUDA to OpenCL is relatively straightforward. Multiple vendors
have documents describing how to do this, including AMD:

http:/developer.amd.com/documentation/articles/pages/OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx#four

Some specific performance recommendations which differ from other GPU
architectures:

Use a workgroup size that is a multiple of 64. CUDA code can use a
workgroup size of 32; this uses only half the available compute resources
on an ATl Radeon™ HD 5870 GPU.

Vectorization can lead to substantially greater efficiency. The ALUPacking
counter provided by the Profiler can track how well the kernel code is
using the five-wide VLIW unit. Values below 70 percent may indicate that
dependencies are preventing the full use of the processor. For some
kernels, vectorization can be used to increase efficiency and improve
kernel performance.

Manually unroll code where pragma is specified. The pragma for unrolling
programs currently is not supported in OpenCL.

AMD GPUs have a very high single-precision flops capability (2.72
teraflops in a single ATI Radeon™ HD 5870 GPU). Algorithms that benefit
from such throughput can deliver excellent performance on ATI Stream
hardware.

4.12.4 Guidance for CPU Programmers Using OpenCL

OpenCL is the industry-standard toolchain for programming GPUs and parallel
devices from many vendors. It is expected that many programmers skilled in
CPU programming will program GPUs for the first time using OpenCL. This
section provides some guidance for experienced programmers who are
programming a GPU for the first time. It specifically highlights the key differences
in optimization strategy.

Study the local memory (LDS) optimizations. These greatly affect the GPU
performance. Note the difference in the organization of local memory on the
GPU as compared to the CPU cache. Local memory is shared by many
work-items (64 on Cypress). This contrasts with a CPU cache that normally
is dedicated to a single work-item. GPU kernels run well when they
collaboratively load the shared memory.

4-54 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

e GPUs have a large amount of raw compute horsepower, compared to
memory bandwidth and to “control flow” bandwidth. This leads to some high-
level differences in GPU programming strategy.

— A CPU-optimized algorithm may test branching conditions to minimize
the workload. On a GPU, it is frequently faster simply to execute the
workload.

— A CPU-optimized version can use memory to store and later load pre-
computed values. On a GPU, it frequently is faster to recompute values
rather than saving them in registers. Per-thread registers are a scarce
resource on the CPU; in contrast, GPUs have many available per-thread
register resources.

e Use Float4 and the OpenCL built-ins for vector types (vload, vstore, etc.).
These enable ATI Stream’s OpenCL implementation to generate efficient,
packed SSE instructions when running on the CPU. Vectorization is an
optimization that benefits both the AMD CPU and GPU.

4.12 Additional Performance Guidance 4-55

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

4-56 Chapter 4. OpenCL Performance and Optimization

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Appendix A
OpenCL Optional Extensions

The OpenCL extensions are associated with the devices and can be queried for
a specific device. Extensions can be queried for platforms also, but that means
that all devices in the platform support those extensions.

Table A.2, on page A-13, lists the supported extensions for the Evergreen-family
of devices, as well as for the RV770 and x86 CPUs.

A.1 Extension Name Convention

The name of extension is standardized and must contain the following elements
without spaces in the name (in lower case):

e cl_khr_<extension_name> - for extensions approved by Khronos Group.
For example: cl_khr_fp64.

e cl_ext <extension_name> - for extensions provided collectively by multiple
vendors. For example: cl_ext device Ffission.

e cl_<vendor_name> <extension_name> — for extension provided by a
specific vendor. For example: cl_amd media_ops.

The OpenCL Specification states that all API functions of the extension must
have names in the form of cl<FunctionName>KHR, cl<FunctionName>EXT, or
cl<FunctionName><VendorName>. All enumerated values must be in the form of
CL_<enum_name> KHR, CL_<enum_name>_EXT, or

CL_<enum_name> <VendorName>.

A.2 Querying Extensions for a Platform

To query supported extensions for the OpenCL platform, use the
clGetPlatformInfo() function, with the param_name parameter set to the
enumerated value CL_PLATFORM_EXTENSIONS. This returns the extensions as a
character string with extension names separated by spaces. To find out if a
specific extension is supported by this platform, search the returned string for the
required substring.

ATI Stream SDK - OpenCL Programming Guide A-1
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

A.3 Querying Extensions for a Device

To get the list of devices to be queried for supported extensions, use one of the
following:

e Query for available platforms using clGetPlatformIDs(). Select one, and
query for a list of available devices with clGetDevicelDs().

e For a specific device type, call clCreateContextFromType(), and query a
list of devices by calling clGetContextInfo() with the param_name
parameter set to the enumerated value CL_CONTEXT_DEVICES.

After the device list is retrieved, the extensions supported by each device can be
gueried with function call clGetDevicelnfo() with parameter param_name being
set to enumerated value CL_DEVICE_EXTENSIONS.

The extensions are returned in a char string, with extension names separated by
a space. To see if an extension is present, search the string for a specified
substring.

A.4 Using Extensions in Kernel Programs

A-2

There are special directives for the OpenCL compiler to enable or disable
available extensions supported by the OpenCL implementation, and, specifically,
by the OpenCL compiler. The directive is defined as follows.

#pragma OPENCL EXTENSION <extention _name> : <behavior>
#pragma OPENCL EXTENSION all : <behavior>

The <extension_name> is described in Section A.1, “Extension Name
Convention.”. The second form allows to address all extensions at once.

The <behavior> token can be either:
e enable - the extension is enabled if it is supported, or the error is reported
if the specified extension is not supported or token “all” is used.

e disable - the OpenCL implementation/compiler behaves as if the specified
extension does not exist.

o all - only core functionality of OpenCL is used and supported, all extensions
are ignored. If the specified extension is not supported then a warning is
issued by the compiler.

The order of directives in #pragma OPENCL EXTENSION is important: a later
directive with the same extension name overrides any previous one.

The initial state of the compiler is set to ignore all extensions as if it was explicitly
set with the following directive:

#pragma OPENCL EXTENSION all : disable

Appendix A: OpenCL Optional Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

This means that the extensions must be explicitly enabled to be used in kernel
programs.

Each extension that affects kernel code compilation must add a defined macro
with the name of the extension. This allows the kernel code to be compiled
differently, depending on whether the extension is supported and enabled, or not.
For example, for extension cl_khr_fp64 there should be a #define directive for
macro cl_khr_fp64, so that the following code can be preprocessed:

#ifdef cl_khr_fp64
// some code
#else
// some code
#endif

A5 Getting Extension Function Pointers

Use the following function to get an extension function pointer.

void* clGetExtensionFunctionAddress(const char* FunctionName).

This returns the address of the extension function specified by the FunctionName
string. The returned value must be appropriately cast to a function pointer type,
specified in the extension spec and header file.

A return value of NULL means that the specified function does not exist in the
CL implementation. A non-NULL return value does not guarantee that the
extension function actually exists — queries described in sec. 2 or 3 must be done
to make sure the extension is supported.

The clGetExtensionFunctionAddress() function cannot be used to get core
API function addresses.

A.6 List of Supported Extensions

Supported extensions approved by the Khronos Group are:
e cl_khr_global_int32 base atomics — basic atomic operations on 32-bit
integers in global memory.

e cl_khr_global_int32_extended atomics — extended atomic operations on
32-bit integers in global memory.

e cl_khr_local_int32_base atomics — basic atomic operations on 32-bit
integers in local memory.

e cl_khr_local_int32_extended atomics — extended atomic operations on
32-bit integers in local memory.

e cl_khr_int64 base atomics — basic atomic operations on 64-bit integers in
both global and local memory.

e cl_khr_int64 extended_atomics — extended atomic operations on 64-bit
integers in both global and local memory.

A.5 Getting Extension Function Pointers A-3
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

cl_khr_3d_image writes — supports kernel writes to 3D images.

cl_khr_byte addressable_store — this eliminates the restriction of not
allowing writes to a pointer (or array elements) of types less than 32-bit wide
in kernel program.

cl_khr_gl_sharing — allows association of OpenGL context or share group
with CL context for interoperability.

cl_khr_icd - the OpenCL Installable Client Driver (ICD) that lets developers
select from multiple OpenCL runtimes which may be installed on a system.
This extension is automatically enabled in the ATl Stream SDK v2.

cl_khr_d3d10_sharing - allows association of D3D10 context or share
group with CL context for interoperability.

A.7 cl_ext Extensions

cl_ext device_Tfission - Support for device fission in OpenCL™. For more
information about this extension, see:

http://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt

A.8 AMD Vendor-Specific Extensions

A-4

This section describes the following extension:

cl_amd_fp64
cl_amd_device_attribute_query
cl_amd_event_callback
cl_amd_media_ops
cl_amd_printf

cl_amd fp64 — Before using double data types, double-precision floating
point operators, and/or double-precision floating point routines in OpenCL™
C kernels, include the #pragma OPENCL EXTENSION cl_amd fp64 : enable
directive. See Table A.1 for a list of supported routines.

cl_amd device_attribute _query — This extension provides a means to
query AMD-specific device attributes. To enable this extension, include the
#pragma OPENCL EXTENSION cl_amd device attribute query : enable
directive. Once the extension is enabled, and the clGetDevicelnfo
parameter <param_name> is set to

cl_device profiling_timer_offset amd, the offset in nano-seconds
between an event timestamp and Epoch is returned.

cl_amd_event_callback — This extension provides the ability to register
event callbacks for states other than cl_complete. The full set of event
states are allowed: cl_queued, cl_submitted, and cl_running. This
extension is enabled automatically and does not need to be explicitly enabled
through #pragma when using the ATI Stream SDK v2.

Appendix A: OpenCL Optional Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

A8.1 cl_amd media ops

This extension adds the following built-in functions to the OpenCL language.
Note: For OpenCL scalar types, n = 1; for vector types, it is {2, 4, 8, or 16}.

Note: in the following, n denotes the size, which can be 1, 2, 4, 8, or 16;
[i] denotes the indexed element of a vector, designated 0 to n-1.

Built-in function: amd_pack
uint amd_pack(float4 src)

Return value
(((uint)src[0]) & OxFF) << 0) +
(((uint)src[1]) & OxFF) << 8) +

(((uint)src[2]) & OxFF) << 16) +
((((uint)src[3]) & OxFF) << 24)

Built-in function: amd_unpackO

floatn amd_unpackO (unitn src)

Return value for each vector component
(fFloat)(src[i] & OxFF)

Built-in function: amd_unpackl

floatn amd_unpackl (unitn src)

Return value for each vector component

(Float)((src[i] >> 8) & OxFF)

Built-in function: amd_unpack2

floatn amd_unpack2 (unitn src)

Return value for each vector component
(Float)((src[i] >> 16) & OxFF)

Built-in function: amd_unpack3

floatn amd_unpack3(uintn src)

Return value for each vector component
(Float)((src[i] >> 24) & OxFF)

Built-in function: amd_bitalign

uintn amd_bitalign (uintn srcO, uintn srcl, uintn src2)

Return value for each vector component

A.8 AMD Vendor-Specific Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

int) ((((ong)srcofi]) << 32) | (ong)srcl[i]) >> (src2[i] & 31))

Built-in function: amd_bytealign

uintn amd_bytealign (uintn srcO, uintn srcl, uintn src2)

Return value for each vector component
uint) ((((ong)srco[i]) << 32) | (long)srcl[i]) >> ((src2[i] & 3)*8))

Built-in function: amd_lerp

uintn amd_lerp (uintn srcO, uintn srcl, uintn src2)

Return value for each vector component

(((((srco[i] >> 0) & OxFF) + ((srcl[i] >> 0) & OxFF) + ((src2[i]>> 0) &1))>1)<< 0) +
(((((srcO[i] >> 8) & OXFF) + ((srcl[i] >> 8) & OxFF) + ((src2[i]>> 8)&1))>1)<< 8) +
(((((srcOo[i] >> 16) & OXFF) + ((srcl[i] >> 16) & OxFF) + ((src2[i] >> 16) & 1)) >> 1) << 16) +
(((((srco[Q] >> 24) & OXFF) + ((srcl[i] >> 24) & OxFF) + ((src2[i] >>24) & 1)) >> 1) << 24) ;

Built-in function: amd_sad

uintn amd_sad (uintn srcO, uintn srcl, uintn src2)

Return value for each vector component

src2[i] +

abs(E(grcO[i] >> 0) & OxFF) - ((srcl[i] >> 0) & OxFF)) +
abs(((srcO[i] >> 8) & OxFF) - ((srcl[i] >> 8) & OxFF)) +
abs(((srcO[i] >> 16) & OxFF) - ((srclli] >> 16) & OxFF)) +
abs(((srcO[i] >> 24) & OxFF) - ((srclli] >> 24) & OxFF));

Built-in function: amd_sadhi

uintn amd_sadhi (uintn srcO, uintn srcl, uintn src2)

Return value for each vector component

srcz[i] +

(absE(%srcO[i] >> 0) & OxFF) - ((srcl[i] >> 0) & OxFF)) << 16) +
@@bs(((srco[i] > 8) & OXFF) - ((srcl[i] >> 8) & OxFF)) << 16) +
(abs(((srcO[i] >> 16) & OxFF) - ((srclli] >> 16) & OxFF)) << 16) +
@@bs(((srco[i] >> 24) & OXFF) - ((srcl[i] >> 24) & OxFF)) << 16);

A82 cl_amd printf

The OpenCL™ Specification 1.1 adds support for the optional AMD extension
cl_amd _printf, which provides printf capabilities to OpenCL C programs. To use
this extension, an application first must include #pragma OPENCL EXTENSION
cl_amd printf : enable.

A-6 Appendix A: OpenCL Optional Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Built-in function:
printf(__constant char * restrict format, .);

This function writes output to the stdout stream associated with the
host application. The format string is a character sequence that:

— is null-terminated and composed of zero and more directives,

— ordinary characters (i.e. not %), which are copied directly to the output
stream unchanged, and

— conversion specifications, each of which can result in fetching zero or
more arguments, converting them, and then writing the final result to the
output stream.

The format string must be resolvable at compile time; thus, it cannot
be dynamically created by the executing program. (Note that the use of
variadic arguments in the built-in printf does not imply its use in other built-
ins; more importantly, it is not valid to use printf in user-defined functions
or kernels.)

The OpenCL C printf closely matches the definition found as part of the
C99 standard. Note that conversions introduced in the format string with

%

are supported with the following guidelines:

A 32-bit floating point argument is not converted to a 64-bit double,
unless the extension cl_khr_fp64 is supported and enabled, as
defined in section 9.3 of the OpenCL Specification 1.1. This includes
the double variants if cl_khr_fp64 is supported and defined in the
corresponding compilation unit.

64-bit integer types can be printed using %ld /7 %Ix / %lu.

%lld /7 %lIx / %llu are not supported and reserved for 128-bit integer
types (long long).

All OpenCL vector types (Section 6.1.2 of the OpenCL Specification
1.1) can be explicitly passed and printed using the modifier vn, where
n can be 2, 3, 4, 8, or 16. This modifier appears before the original
conversion specifier for the vector’s component type (for example, to
print a Tloat4 %v4f). Since vn is a conversion specifier, it is valid to
apply optional flags, such as field width and precision, just as it
is when printing the component types. Since a vector is an aggregate
type, the comma separator is used between the components:

0:1, .. , n-2:n-1.

A.8 AMD Vendor-Specific Extensions A-7

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

A9 Supported Functions for cl_amd fp64

A-8

Table A.1 lists the functions supported by cl_amd fp64 on three platforms.

Table A.1 Functions Supported by cl_amd fp64

X = Supported * = Beta

Evergreen

1

RV7702

x86 CPU

Query clGetDevicelnfo() with
CL_DEVICE_DOUBLE_FP_CONFIG

X

X

double conversions

type: double

type: double2

type: double3
Types yp

type: double4

type: double8

type: doublel6

+

*

/

Relational Functions
(<, <=, >, >, 1=, ==)

X XXX X]X| X[X[X]|X[X]X

X XXX X]X|X[|X[X[|X[|X]X

isequal()

isnotequal()

isgreater()

isgreaterequal()

Operators
and isless()

Relational islessequal()

Functions islessgreater()

isfinite()

isinf()

isnan()

isnormal()

isordered()

isunordered()

signbit()

bitselect()

select()

XIEXIXIXIX|IX|X|[X|X|X|X|X|X|X]|X]|X

NXUIX XXX XIX|X[X|X[X]|X[X]|X|X]|X

Appendix A: OpenCL Optional Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

X = Supported

* = Beta

Evergreen

1

RV7702

x86 CPU

Math
Functions

acos()

X

x

acosh()

acospi()

asin()

asinh()

asinpi()

atan()

atan2()

atanh()

atanpi()

atan2pi()

cbrt()

ceil()

copysign()

cos()

X X[X[X

cosh()

cospi()

erf()

exp()

exp2()

expl0()

expml()

fabs()

fdim()

floor()

fma()

fmax()

fmin()

XIX[X|[X[X|X|X]|X]|X]|X]|X]|X

fmod()

fract()

X

frexp()

hypot()

ilogb()

Idexp()

lgammay()

lgamma_r()

log()

log2()

X

log10()

log1p()

logb()

DX X X XX XX XX XX XXX XX XXX XXX XX XXX XXX X]|X[X|X[X|X|X]|X|X]|X

A.9 Supported Functions for cl_amd_fp64

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

A-10

ATl STREAM COMPUTING

X = Supported

* = Beta

Evergreen

1

RV7702

x86 CPU

Math
Functions
(cont'd)

mad()

X

x

maxmag()

minmag()

mad()

maxmag()

minmag()

modf()

nan()

nextafter()

pow()

pown()

powr()

XIEXPXIX|[X[X|[X|X|X|X]|X

remainder()

rint()

rootn()

round()

rsqrt()

sin()

sincos()

XXX X|X|X

sinh()

sinpi()

x

sqrt()

X

tan()

tanh()

tanpi()

trunc()

DX XXX XX XX XX XX XXX X[X|X[X]|X[X]|X|X]|X

Appendix A: OpenCL Optional Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

1

Macros

X = Supported * = Beta Evergreen! | RV770? | x86 CPU
HUGE_VAL X * X
FP_FAST_FMA *
DBL_DIG *

DBL_MANT _DIG

DBL_MAX_10_EXP

DBL_MAX_EXP

DBL_MIN_10_EXP

DBL_MIN_EXP

DBL_MAX

DBL_MIN

DBL_EPSILON

M_E

M_LOG2E

M_LOG10E

M_LN2

M_LN10

M_PI

M_PI 2

M_PI_4

M_1 PI

M_2_PI

M_2_SQRTPI

M_SQRT2

M_SQRT1 2

Common
Functions

clamp()

degrees()

max()

min()

mix()

radians()

step()

smoothstep()

sign()

Geometric
Functions

cross()

dot()

distance()

length()

normalize()

Vector Data
Load and

vlioadn()

vstoren()

XY XXX XXX XX XXX XXX XXX PXPXPXXX|XX|X|X|X]|X|X|X|X|X|X|X[X][X|X

DX XXX XX XX XX XXX X XXX XX XX XX XX XXX X[X]|X[X]X[X]|X|X]|X|X

A.9 Supported Functions for cl_amd_fp64

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

A-11

ATl STREAM COMPUTING

X = Supported * = Beta Evergreen! | RV7702 | x86 CPU
Async async_work_group_copy X * X
Copies and wait_group_events() X * X
Prefetch prefetch() X * X

1. ATI Radeon™ HD 5900 series GPUs, ATl Radeon™ HD 5800 series GPUs, ATI
FirePro™ V8800 series GPUs, ATI FirePro™ V7800 series GPUs and AMD
FireStream™ 9300 series GPU Compute Accelerators.

2. ATI Radeon™ HD 4800 series GPUs, ATl Mobility Radeon™ HD 4800 series GPUs,
ATI FirePro™ V8700 series GPUs and AMD FireStream™ 9200 series GPUs.

3. Denormals flushed to zero, too large/small produce NaN instead of inf.

A-12 Appendix A: OpenCL Optional Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

A.10 Extension Support by Device
Table A.2 lists the extension support for selected devices.

Table A.2 Extension Support

AMD GPU x86 CPU
RV730/ | with SSE2
Extension Cypress! Juniper? Redwood® Cedar* RV770° RV710%| or later
cl_khr_* atomics Yes Yes Yes Yes No No Yes
cl_khr_gl_sharing Yes Yes Yes Yes Yes Yes Yes
cl_khr_byte addressable_store Yes Yes Yes Yes No No Yes
cl_khr_icd Yes Yes Yes Yes Yes Yes Yes
cl_khr_d3d10_sharing Yes Yes Yes Yes Yes Yes Yes
cl_ext_device fission No No No No No No Yes
cl_amd_device_attribute_query Yes Yes Yes Yes Yes Yes Yes
cl_amd_fp64 Yes No No No Yes No Yes
cl_amd_media_ops Yes Yes Yes Yes No No No
cl_amd_printf Yes Yes Yes Yes No No Yes
Images Yes Yes Yes Yes No No No

1. ATI Radeon HD 5900 series and 5800 series, ATl FirePro" V8800 series and V8700 series.

2. ATl Radeon™ HD 5700 series, ATl Mobility Radeon™ HD 5800 series, ATl FirePro™ V5800 series, ATl
Mobility FirePro™ M7820.

3. ATl Radeon™ HD 5600 Series, ATI Radeon™ HD 5600 Series, ATI Radeon™ HD 5500 Series, ATI
Mobility Radeon™ HD 5700 Series, ATl Mobility Radeon™ HD 5600 Series, ATI FirePro™ V4800 Series,
ATI FirePro™ V3800 Series, ATl Mobility FirePro™ M5800

4. ATl Radeon™ HD 5400 Series, ATl Mobility Radeon™ HD 5400 Series

5. ATI Radeon™ HD 4800 Series, ATI Radeon™ HD 4700 Series, ATI Mobility Radeon™ HD 4800 Series,
ATI FirePro™ V8700 Series, ATl Mobility FirePro™ M7740, AMD FireStream™ 9200 Series Compute
Accelerator

6. ATl Radeon™ HD 4600 Series, ATI Radeon™ HD 4500 Series, ATI Radeon™ HD 4300 Series, ATI
Mobility Radeon™ HD 4600 Series, ATl Mobility Radeon™ HD 4500 Series, ATl Mobility Radeon™ HD
4300 Series, ATl FirePro™ V7700 Series, ATI FirePro™ V5700 Series, ATl FirePro™ V3700 Series, ATI
Radeon™ Embedded E4690 Discrete

A.10 Extension Support by Device A-13

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

A-14 Appendix A: OpenCL Optional Extensions

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Appendix B
The OpenCL Installable Client Driver
(ICD)

B.1 Overview

B.2 Using ICD

The OpenCL Installable Client Driver (ICD) is part of the ATl Stream SDK
software stack. Code written prior to ATl Stream SDK v2.0 must be changed to
comply with OpenCL ICD requirements.

The ICD allows multiple OpenCL implementations to co-exist; also, it allows
applications to select between these implementations at runtime.

In releases prior to SDK v2.0, functions such as clGetDevicelDs() and
clCreateContext() accepted a NULL value for the platform parameter.
Releases from SDK v2.0 no longer allow this; the platform must be a valid one,
obtained by using the platform API. The application now must select which of the
OpenCL platforms present on a system to use.

Use the clGetPlatformIDs() and clGetPlatformInfo() functions to see the

list of available OpenCL implementations, and select the one that is best for your
requirements. It is recommended that developers offer their users a choice on

first run of the program or whenever the list of available platforms changes.

A properly implemented ICD and OpenCL library is transparent to the end-user.

Sample code that is part of the SDK contains examples showing how to query
the platform API and call the functions that require a valid platform parameter.

This is a pre-ICD code snippet.

context = clCreateContextFromType(
0,
dType,
NULL,
NULL,
&status);

The ICD-compliant version of this code follows.

/*
* Have a look at the available platforms and pick either
* the AMD one if available or a reasonable default.
*/
ATI Stream SDK - OpenCL Programming Guide B-1

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

B-2

ATl STREAM COMPUTING

cl_uint numPlatforms;
cl_platform_id platform = NULL;
status = clGetPlatformIiDs(0, NULL, &numPlatforms);
if(1sampleCommon->checkVal (status,
CL_SUCCESS,
“clGetPlatformlDs failed.'))

return SDK_FAILURE;
}
if (0O < numPlatforms)
{

cl_platform_id* platforms = new cl_platform_id[numPlatforms];
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
if(!sampleCommon->checkVal (status,

CL_SUCCESS,

“clGetPlatformIDs failed.'))

return SDK_FAILURE;
for (unsigned i = 0; i < nunPlatforms; ++i)

char pbuf[100];

status = clGetPlatformIinfo(platforms[i],
CL_PLATFORM VENDOR,
sizeof(pbuf),
pbuf,
NULL) ;

i f(IsampleCommon->checkVal (status,
CL_SUCCESS,
“clGetPlatforminfo failed.'"))

return SDK_FAILURE;

platform = platforms[i];
if (Istrcemp(pbuf, ""Advanced Micro Devices, Inc.'))

break;

delete[] platforms;

/*
* If we could find our platform, use it. Otherwise pass a NULL and
get whatever the
* implementation thinks we should be using.
*/

cl_context _properties cps[3] =

CL_CONTEXT_PLATFORM,
(cl_context _properties)platform,
0]

3
/* Use NULL for backward compatibility */
cl_context _properties* cprops = (NULL == platform) ? NULL : cps;

context = clCreateContextFromType(
cprops,
dType,
NULL,
NULL,
&status);

Appendix B: The OpenCL Installable Client Driver (ICD)

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Another example of a pre-ICD code snippet follows.

status = clGetDevicelDs(NULL, CL DEVICE TYPE DEFAULT, O, NULL,
&numDevices);

The ICD-compliant version of the code snippet is:

status = clGetDevicelDs(platform, CL DEVICE TYPE DEFAULT, O, NULL,
&numDevices);

B.2 Using ICD B-3

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

B-4

ATl STREAM COMPUTING

Appendix B: The OpenCL Installable Client Driver (ICD)

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Appendix C
Compute Kernel

C.1 Differences from a Pixel Shader

C.2 Indexing

Differences between a pixel shader and a compute kernel include: location
indexing, amount of resources used on the GPU compute device, memory
access patterns, cache behavior, work-item spawn rate, creation of wavefronts
and groups, and newly exposed hardware features such as Local Data Store and
Shared Registers. Many of these changes are based on the spawn/dispatch
pattern of a compute kernel. This pattern is linear; for a pixel shader, it is a
hierarchical-Z pattern. The following sections discuss the effects of this change.
at the IL level.

A primary difference between a compute kernel and a pixel shader is the
indexing mode. In a pixel shader, indexing is done through the vWinCoord
register and is directly related to the output domain (frame buffer size and
geometry) specified by the user space program. This domain is usually in the
Euclidean space and specified by a pair of coordinates. In a compute kernel,
however, this changes: the indexing method is switched to a linear index between
one and three dimensions, as specified by the user. This gives the programmer
more flexibility when writing kernels.

Indexing is done through the vaTid register, which stands for absolute work-item
id. This value is linear: from O to N-1, where N is the number of work-items
requested by the user space program to be executed on the GPU compute
device. Two other indexing variables, vTid and vTgroupid, are derived from
settings in the kernel and vaTid.

In SDK 1.4 and later, new indexing variables are introduced for either 3D spawn
or 1D spawn. The 1D indexing variables are still valid, but replaced with
vAbsTidFlat, vThreadGrpldFlat, and vTidInGrpFlat, respectively. The 3D versions
are vAbsTid, vThreadGrpld, and vTidInGrp. The 3D versions have their
respective positions in each dimension in the X, y, and z components. The w
component is not used. If the group size for a dimension is not specified, it is an
implicit 1. The 1D version has the dimension replicated over all components.

ATI Stream SDK - OpenCL Programming Guide C-1
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

C.3 Performance Comparison

To show the performance differences between a compute kernel and a pixel
shader, the following subsection show a matrix transpose program written in
three ways:

1. A naive pixel shader of matrix transpose.

2. The compute kernel equivalent.

3. An optimized matrix transpose using LDS to further improve performance.

C.4 Pixel Shader

GB/s

The traditional naive matrix transpose reads in data points from the (j,i)th element
of input matrix in sampler and writes out at the current (i,j)th location, which is
implicit in the output write. The kernel is structured as follows:

ilps20
dcl_input_position_interp(linear_noperspective) WinCoord0.xy

dcl_output _generic o0

dcl_resource_id(0)_type(2d,unnorm)_fmtx(Float) fmty(float) fmtz(float)_ fmtw(Float)
sample_resource(0)_sampler(0) o0, WinCoord0.yx

end

Figure C.1 shows the performance results of using a pixel shader for this matrix

transpose.
12
10
8
6 PS
. /
2 /
B
SOOI LN G \QQ?’ \,L\Q’ \,bbP‘ ,\v@ ,\@0 \,\'13’ '\%@Q’ \q%“

Matrix Size

Figure C.1 Pixel Shader Matrix Transpose

Appendix C: Compute Kernel

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

C.5 Compute Kernel

For the compute kernel, the kernel is structured as follows:

il cs20

dcl_num_threads_per_group 64

dcl_cb cbho[1]

dcl_resource_id(0)_type(2d,unnorm)_fmtx(Float) fmty(float)_ fmtz(Float)_ fmtw(Float)
umod rO.x, VAbsTidFlat.x, cbO[0].-x

udiv rO.y, VAbsTidFlat.x, cbO[0].x

sample_resource(0)_sampler(0) rl, rO.yx

mov g[vAbsTidFlat.x], rl

end
Figure C.2 shows the performance results using a compute kernel for this matrix
transpose.
7
6
5
4
@
G //// cs

L/
1/
7

N

>

* N
EN

@ © ™ ‘bQ %‘b o WM ,\‘L N ,\fl,‘b bb &

Vv
N A N RN SR SR R
Matrix Size

Figure C.2 Compute Kernel Matrix Transpose

C.6 LDS Matrix Transpose

Figure C.3 shows the performance results using the LDS for this matrix
transpose.

C.5 Compute Kernel C-3

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

GB/s

100
90
80

70

60

50
40

30

20
10

0

oV
SR LEIOSING

ATl STREAM COMPUTING

] \

SN I V

|
|

\ —LDS
|

|

|

|

Q > ™

© v S @
S A TP N o N6
Matrix Size

Figure C.3 LDS Matrix Transpose

C.7 Results Comparison

c-4

Based on the graphs above, it can be seen that in most cases using the LDS to
do on-chip transpose outperforms the similar pixel shader and compute kernel

versions; however, a direct porting of the transpose algorithm from a pixel shader
to a compute kernel does not immediately increase performance. This is because
of the differences mentioned above between the pixel shader and the compute
kernel. Taking advantage of the compute kernel features such as LDS can lead
to a large performance gain in certain programs.

Appendix C: Compute Kernel

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Appendix D
Device Parameters

On the following pages, Table D.1 and Table D.2 provide device-specific
information for AMD Evergreen-series GPUs.

ATI Stream SDK - OpenCL Programming Guide
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

D-1

ATl STREAM COMPUTING
Table D.1 Parameters for 54xx, 55xx, 56xx, and 57xx Devices
Cedar Redwood Redwood Redwood Juniper Juniper
PRO2 PRO XT LE XT
Product Name (ATI Radeon™ HD) 5450 5550 5570 5670 5750 5770
Engine Speed (MHz) 650 550 650 775 700 850

Compute Resources

Peak GPU Bandwidths

Compute Units 2 4 5 5 9 10
Stream Cores 16 64 80 80 144 160
Processing Elements 80 320 400 400 720 800
Peak Gflops 104 352 520 620 1008 1360
of Vector Registers/CU 8192 16384 16384 16384 16384 16384
Size of Vector Registers/CU 128k 256k 256k 256k 256k 256k
LDS Size/ CU 32k 32k 32k 32k 32k 32k
LDS Banks / CU 16 16 16 16 32 32
Constant Cache / GPU a4k 16k 16k 16k 24k 24Kk
Max Constants / CU 4k 8k 8k 8k 8k 8k
L1 Cache Size / CU 8k 8k 8k 8k 8k 8k
L2 Cache Size /| GPU 64k 128k 128k 128k 256k 256k

Global Limits

Register Read (GB/s) 499 1690 2496 2976 4838 6528
LDS Read (GB/s) 83 141 208 248 806 1088
Constant Cache Read (GB/s) 166 563 832 992 1613 2176
L1 Read (GB/s) 83 141 208 248 403 544
L2 Read (GB/s) 83 141 166 198 179 218
Global Memory (GB/s) 13 26 29 64 74 77

Max Wavefronts / GPU 192 248 248 248 248 248
Max Wavefronts / CU (avg) 96.0 62.0 49.6 49.6 27.6 24.8
Max Work-ltems / GPU 6144 15872 15872 15872 15872 15872

Memory Channels 2 4 4 4 4 4

Memory Bus Width (bits) 64 128 128 128 128 128

Memory Type and DDR3 DDR3 DDR3 GDDR5 GDDR5 GDDR5

Speed (MHz) 800 800 900 1000 1150 1200

Frame Buffer 1GB/512|1GB/512|1GB/512|1 GB/512|1 GB /512 1GB
MB MB MB MB MB

¥
N

Appendix D: Device Parameters

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Table D.2

Parameters for 58xx, Eyfinity6, and 59xx Devices

Cypress LE CypressPRO Cypress XT Hemlock

Product Name (ATl Radeon™ HD)

5830

5850

5870

5970

Engine Speed (MHz)

Compute Resources

800

725

850

725

Cache and Register Sizes

Compute Units 14 18 20 40

Stream Cores 224 288 320 640
Processing Elements 1120 1440 1600 3200
Peak Gflops 1792 2088 2720 4640

Peak GPU Bandwidths

of Vector Registers/CU 16384 16384 16384 16384
Size of Vector Registers/CU 256k 256k 256k 256k
LDS Size/ CU 32k 32k 32k 32k
LDS Banks / CU 32 32 32 32
Constant Cache / GPU 32k 40k 48k 96k
Max Constants / CU 8k 8k 8k 8k
L1 Cache Size / CU 8k 8k 8k 8k
L2 Cache Size / GPU 512k 512k 512k 2 x 512k

Global Limits

Register Read (GB/s) 8602 10022 13056 22272
LDS Read (GB/s) 1434 1670 2176 3712
Constant Cache Read (GB/s) 2867 3341 4352 7424
L1 Read (GB/s) 717 835 1088 1856
L2 Read (GB/s) 410 371 435 742
Global Memory (GB/s) 128 128 154 256

Memory

Max Wavefronts / GPU 496 496 496 992
Max Wavefronts / CU (avg) 354 27.6 24.8 24.8
Max Work-ltems / GPU 31744 31744 31744 63488

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

Memory Channels 8 8 8 2x8
Memory Bus Width (bits) 256 256 256 2 x 256
Memory Type and GDDRS GDDR5 GDDR5 GDDR5
Speed (MHz) 1000 1000 1200 1000
Frame Buffer 1GB 1GB 1GB 2 GB
D-3

D-4

ATl STREAM COMPUTING

Appendix D: Device Parameters
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Glossary of Terms

Term Description

* Any number of alphanumeric characters in the name of a microcode format, microcode
parameter, or instruction.

<> Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{BUF, SWIz} One of the multiple options listed. In this case, the string BUF or the string SWIZ.

x|y} One of the multiple options listed. In this case, x ory.

0.0 A single-precision (32-bit) floating-point value.

Ox Indicates that the following is a hexadecimal humber.

1011b A binary value, in this example a 4-bit value.

29'b0 29 bits with the value 0.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

ABI Application Binary Interface.

absolute A displacement that references the base of a code segment, rather than an instruction
pointer. See relative.

active mask A 1-bit-per-pixel mask that controls which pixels in a “quad” are really running. Some

pixels might not be running if the current “primitive” does not cover the whole quad. A
mask can be updated with a PRED_SET* ALU instruction, but updates do not take effect
until the end of the ALU clause.

address stack

A stack that contains only addresses (no other state). Used for flow control. Popping
the address stack overrides the instruction address field of a flow control instruction.
The address stack is only modified if the flow control instruction decides to jump.

ACML AMD Core Math Library. Includes implementations of the full BLAS and LAPACK rou-
tines, FFT, Math transcendental and Random Number Generator routines, stream
processing backend for load balancing of computations between the CPU and GPU
compute device.

alL (also AL) Loop register. A three-component vector (x, y and z) used to count iterations of a loop.

allocate To reserve storage space for data in an output buffer (“scratch buffer,” “ring buffer,”

“stream buffer,” or “reduction buffer”) or for data in an input buffer (“scratch buffer” or
“ring buffer”) before exporting (writing) or importing (reading) data or addresses to, or
from that buffer. Space is allocated only for data, not for addresses. After allocating
space in a buffer, an “export” operation can be done.

Glossary-1
Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term

Description

ALU

Arithmetic Logic Unit. Responsible for arithmetic operations like addition, subtraction,
multiplication, division, and bit manipulation on integer and floating point values. In
stream computing, these are known as stream cores.

ALU.[X,Y,Z,W] - an ALU that can perform four vector operations in which the four oper-
ands (integers or single-precision floating point values) do not have to be
related. It performs “SIMD” operations. Thus, although the four operands need
not be related, all four operations execute the same instruction.

ALU.Trans - An ALU unit that can perform one ALU.Trans (transcendental, scalar) oper-
ation, or advanced integer operation, on one integer or single-precision floating-
point value, and replicate the result. A single instruction can co-issue four
ALU.Trans operations to an ALU.[X,Y,Z,W] unit and one (possibly complex)
operation to an ALU.Trans unit, which can then replicate its result across all four
component being operated on in the associated ALU.[X,Y,Z,W] unit.

AR

Address register.

ATl Stream™ SDK

A complete software development suite from ATI for developing applications for ATI
Stream compute devices. Currently, the ATl Stream SDK includes OpenCL and CAL.

aTid Absolute thread id. It is the ordinal count of all threads being executed (in a draw call).
b A bit, as in 1Mb for one megabit, or Isb for least-significant bit.

B A byte, as in 1MB for one megabyte, or LSB for least-significant byte.

BLAS Basic Linear Algebra Subroutines.

border color

Four 32-bit floating-point numbers (XYZW) specifying the border color.

branch granularity

The number of threads executed during a branch. For ATI, branch granularity is equal
to wavefront granularity.

burst mode The limited write combining ability. See write combining.

byte Eight bits.

cache A read-only or write-only on-chip or off-chip storage space.

CAL Compute Abstraction Layer. A device-driver library that provides a forward-compatible
interface to ATI Stream compute devices. This lower-level API gives users direct control
over the hardware: they can directly open devices, allocate memory resources, transfer
data and initiate kernel execution. CAL also provides a JIT compiler for ATI IL.

CF Control Flow.

cfile Constant file or constant register.

channel A component in a vector.

clamp To hold within a stated range.

clause A group of instructions that are of the same type (all stream core, all fetch, etc.) exe-
cuted as a group. A clause is part of a CAL program written using the compute device
ISA. Executed without pre-emption.

clause size The total number of slots required for an stream core clause.

clause temporaries

Temporary values stored at GPR that do not need to be preserved past the end of a
clause.

clear

To write a bit-value of 0. Compare “set”.

Glossary-2

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term

Description

command

A value written by the host processor directly to the GPU compute device. The com-
mands contain information that is not typically part of an application program, such as
setting configuration registers, specifying the data domain on which to operate, and ini-
tiating the start of data processing.

command processor

A logic block in the R700 (HD4000-family of devices) that receives host commands,
interprets them, and performs the operations they indicate.

component

(1) A 32-bit piece of data in a “vector”. (2) A 32-bit piece of data in an array. (3) One
of four data items in a 4-component register.

compute device

A parallel processor capable of executing multiple threads of a kernel in order to pro-
cess streams of data.

compute kernel

Similar to a pixel shader, but exposes data sharing and synchronization.

constant buffer

Off-chip memory that contains constants. A constant buffer can hold up to 1024 four-
component vectors. There are fifteen constant buffers, referenced as cbO to cb14. An
immediate constant buffer is similar to a constant buffer. However, an immediate con-
stant buffer is defined within a kernel using special instructions. There are fifteen
immediate constant buffers, referenced as icb0O to icb14.

constant cache

A constant cache is a hardware object (off-chip memory) used to hold data that remains
unchanged for the duration of a kernel (constants). “Constant cache” is a general term
used to describe constant registers, constant buffers or immediate constant buffers.

constant file

Same as constant register.

constant index
register

Same as “AR” register.

constant registers

On-chip registers that contain constants. The registers are organized as four 32-bit
component of a vector. There are 256 such registers, each one 128-bits wide.

constant waterfalling

Relative addressing of a constant file. See waterfalling.

context A representation of the state of a CAL device.

core clock See engine clock. The clock at which the GPU compute device stream core runs.

CPU Central Processing Unit. Also called host. Responsible for executing the operating sys-
tem and the main part of the application. The CPU provides data and instructions to
the GPU compute device.

CRs Constant registers. There are 512 CRs, each one 128 bits wide, organized as four 32-
bit values.

CSs Compute shader; commonly referred to as a compute kernel. A shader type, analogous
to VS/PS/GSIES.

CT™M Close-to-Metal.

A thin, HW/SW interface layer. This was the predecessor of the ATI CAL.

DC Data Copy Shader.

device A device is an entire ATl Stream compute device.

DMA Direct-memory access. Also called DMA engine. Responsible for independently trans-
ferring data to, and from, the GPU compute device’s local memory. This allows other
computations to occur in parallel, increasing overall system performance.

double word Dword. Two words, or four bytes, or 32 bits.

Glossary-3

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term

Description

double quad word

Eight words, or 16 bytes, or 128 bits. Also called “octword.”

domain of execution

A specified rectangular region of the output buffer to which threads are mapped.

DPP Data-Parallel Processor.

dst.X The X “slot” of an destination operand.

dword Double word. Two words, or four bytes, or 32 bits.

element A component in a vector.

engine clock The clock driving the stream core and memory fetch units on the GPU compute device.

enum(7) A seven-hit field that specifies an enumerated set of decimal values (in this case, a set
of up to 27 values). The valid values can begin at a value greater than, or equal to,
zero; and the number of valid values can be less than, or equal to, the maximum sup-
ported by the field.

event A token sent through a pipeline that can be used to enforce synchronization, flush
caches, and report status back to the host application.

export To write data from GPRs to an output buffer (scratch, ring, stream, frame or global
buffer, or to a register), or to read data from an input buffer (a “scratch buffer” or “ring
buffer”) to GPRs. The term “export” is a partial misnomer because it performs both input
and output functions. Prior to exporting, an allocation operation must be performed to
reserve space in the associated buffer.

FC Flow control.

FFT Fast Fourier Transform.

flag A bit that is modified by a CF or stream core operation and that can affect subsequent
operations.

FLOP Floating Point Operation.

flush To writeback and invalidate cache data.

FMA Fused multiply add.

frame A single two-dimensional screenful of data, or the storage space required for it.

frame buffer

Off-chip memory that stores a frame. Sometimes refers to the all of the GPU memory
(excluding local memory and caches).

FS

Fetch subroutine. A global program for fetching vertex data. It can be called by a “vertex
shader” (VS), and it runs in the same thread context as the vertex program, and thus
is treated for execution purposes as part of the vertex program. The FS provides driver
independence between the process of fetching data required by a VS, and the VS itself.
This includes having a semantic connection between the outputs of the fetch process
and the inputs of the VS.

function

A subprogram called by the main program or another function within an ATI IL stream.
Functions are delineated by FUNC and ENDFUNC.

gather

Reading from arbitrary memory locations by a thread.

gather stream

Input streams are treated as a memory array, and data elements are
addressed directly.

Glossary-4

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term

Description

global buffer

GPU memory space containing the arbitrary address locations to which uncached ker-
nel outputs are written. Can be read either cached or uncached. When read in
uncached mode, it is known as mem-import. Allows applications the flexibility to read
from and write to arbitrary locations in input buffers and output buffers, respectively.

global memory

Memory for reads/writes between threads. On HD Radeon 5XXX series devices and
later, atomic operations can be used to synchronize memory operations.

GPGPU

General-purpose compute device. A GPU compute device that performs general-pur-
pose calculations.

GPR

General-purpose register. GPRs hold vectors of either four 32-bit IEEE floating-point,
or four 8-, 16-, or 32-bit signed or unsigned integer or two 64-bit IEEE double precision
data components (values). These registers can be indexed, and consist of an on-chip
part and an off-chip part, called the “scratch buffer,” in memory.

GPU

Graphics Processing Unit. An integrated circuit that renders and displays graphical
images on a monitor. Also called Graphics Hardware, Compute Device, and Data Par-
allel Processor.

GPU engine clock
frequency

Also called 3D engine speed.

GPU compute device

A parallel processor capable of executing multiple threads of a kernel in order to pro-
cess streams of data.

GS Geometry Shader.

HAL Hardware Abstraction Layer.

host Also called CPU.

iff If and only if.

IL Intermediate Language. In this manual, the ATI version: ATI IL. A pseudo-assembly lan-
guage that can be used to describe kernels for GPU compute devices. ATI IL is
designed for efficient generalization of GPU compute device instructions so that pro-
grams can run on a variety of platforms without having to be rewritten for each platform.

in flight A thread currently being processed.

instruction A computing function specified by the code field of an IL_OpCode token. Compare

”ow

“opcode”, “operation”, and “instruction packet”.

instruction packet

A group of tokens starting with an IL_OpCode token that represent a single ATI IL
instruction.

int(2) A 2-bit field that specifies an integer value.

ISA Instruction Set Architecture. The complete specification of the interface between com-
puter programs and the underlying computer hardware.

kcache A memory area containing “waterfall” (off-chip) constants. The cache lines of these con-
stants can be locked. The “constant registers” are the 256 on-chip constants.

kernel A user-developed program that is run repeatedly on a stream of data. A parallel function
that operates on every element of input streams. A device program is one type of ker-
nel. Unless otherwise specified, an ATl Stream compute device program is a kernel
composed of a main program and zero or more functions. Also called Shader Program.
This is not to be confused with an OS kernel, which controls hardware.

LAPACK Linear Algebra Package.

Glossary-5

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term Description

LDS Local Data Share. Part of local memory. These are read/write registers that support
sharing between all threads in a group. Synchronization is required.

LERP Linear Interpolation.

local memory fetch
units

Dedicated hardware that a) processes fetch instructions, b) requests data from the
memory controller, and c) loads registers with data returned from the cache. They are
run at stream core or engine clock speeds. Formerly called texture units.

LOD Level Of Detail.

loop index iA register initialized by software and incremented by hardware on each iteration of a
oop.

Isb Least-significant bit.

LSB Least-significant byte.

MAD Multiply-Add. A fused instruction that both multiplies and adds.

mask (1) To prevent from being seen or acted upon. (2) A field of bits used for a control
purpose.

MBZ Must be zero.

mem-export An ATI IL term random writes to the global buffer.

mem-import Uncached reads from the global buffer.

memory clock

The clock driving the memory chips on the GPU compute device.

microcode format

An encoding format whose fields specify instructions and associated parameters. Micro-
code formats are used in sets of two or four. For example, the two mnemonics,
CF_DWORD[0,1] indicate a microcode-format pair, CF_DWORDO and CF_DWORDL1.

MIMD Multiple Instruction Multiple Data.
— Multiple SIMD units operating in parallel (Multi-Processor System)
— Distributed or shared memory

MRT Multiple Render Target. One of multiple areas of local GPU compute device memory,
such as a “frame buffer”, to which a graphics pipeline writes data.

MSAA Multi-Sample Anti-Aliasing.

msb Most-significant bit.

MSB Most-significant byte.

neighborhood A group of four threads in the same wavefront that have consecutive thread IDs (Tid).
The first Tid must be a multiple of four. For example, threads with Tid = 0, 1, 2, and 3
form a neighborhood, as do threads with Tid = 12, 13, 14, and 15.

normalized A numeric value in the range [a, b] that has been converted to a range of 0.0 to 1.0
using the formula: normalized value = value/ (b—a+ 1)

oct word Eight words, or 16 bytes, or 128 bits. Same as “double quad word”. Also referred to as
word.

opcode The numeric value of the code field of an “instruction”. For example, the opcode for the

CMOV instruction is decimal 16 (0x10).

opcode token

A 32-bit value that describes the operation of an instruction.

Glossary-6

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term Description

operation The function performed by an “instruction”.

PaC Parameter Cache.

PCI Express A high-speed computer expansion card interface used by modern graphics cards, GPU
compute devices and other peripherals needing high data transfer rates. Unlike previ-
ous expansion interfaces, PCI Express is structured around point-to-point links. Also
called PCle.

PoC Position Cache.

pop Write “stack” entries to their associated hardware-maintained control-flow state. The
POP_COUNT field of the CF_DWORD1 microcode format specifies the number of stack
entries to pop for instructions that pop the stack. Compare “push.”

pre-emption The act of temporarily interrupting a task being carried out on a computer system, with-
out requiring its cooperation, with the intention of resuming the task at a later time.

processor Unless otherwise stated, the ATl Stream compute device.

program Unless otherwise specified, a program is a set of instructions that can run on the ATI
Stream compute device. A device program is a type of kernel.

PS Pixel Shader, aka pixel kernel.

push Read hardware-maintained control-flow state and write their contents onto the stack.
Compare pop.

PV Previous vector register. It contains the previous four-component vector result from a
ALU.[X,Y,Z,W] unit within a given clause.

quad For a compute kernel, this consists of four consecutive work-items. For pixel and other
shaders, this is a group of 2x2 threads in the NDRange. Always processed together.

rasterization The process of mapping threads from the domain of execution to the SIMD engine. This

term is a carryover from graphics, where it refers to the process of turning geometry,
such as triangles, into pixels.

rasterization order

The order of the thread mapping generated by rasterization.

RAT Random Access Target. Same as UAV. Allows, on DX11 hardware, writes to, and reads
from, any arbitrary location in a buffer.

RB Ring Buffer.

register For a GPU, this is a 128-bit address mapped memory space consisting of four 32-bit
components.

relative Referencing with a displacement (also called offset) from an index register or the loop

index, rather than from the base address of a program (the first control flow [CF]
instruction).

render backend unit

The hardware units in a processing element responsible for writing the results of a ker-
nel to output streams by writing the results to an output cache and transferring the
cache data to memory.

resource A block of memory used for input to, or output from, a kernel.
ring buffer An on-chip buffer that indexes itself automatically in a circle.
Rsvd Reserved.

Glossary-7

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term Description

sampler A structure that contains information necessary to access data in a resource. Also
called Fetch Unit.

SC Shader Compiler.

scalar A single data component, unlike a vector which contains a set of two or more data
elements.

scatter Writes (by uncached memory) to arbitrary locations.

scatter write

Kernel outputs to arbitrary address locations. Must be uncached. Must be made to a
memory space known as the global buffer.

scratch buffer

A variable-sized space in off-chip-memory that stores some of the “GPRs".

set

To write a bit-value of 1. Compare “clear”.

shader processor

Pre-OpenCL term that is now deprecated. Also called thread processor.

shader program

User developed program. Also called kernel.

SIMD Pre-OpenCL term that is now deprecated. Single instruction multiple data unit.
— Each SIMD receives independent stream core instructions.
— Each SIMD applies the instructions to multiple data elements.

SIMD Engine Pre-OpenCL term that is now deprecated. A collection of thread processors, each of
which executes the same instruction each cycle.

SIMD pipeline Pre-OpenCL term that is now deprecated. A hardware block consisting of five stream

cores, one stream core instruction decoder and issuer, one stream core constant
fetcher, and support logic. All parts of a SIMD pipeline receive the same instruction and
operate on different data elements. Also known as “slice.”

Simultaneous
Instruction Issue

Input, output, fetch, stream core, and control flow per SIMD engine.

SKA

Stream KernelAnalyzer. A performance profiling tool for developing, debugging, and
profiling stream kernels using high-level stream computing languages.

slot

A position, in an “instruction group,” for an “instruction” or an associated literal constant.
An ALU instruction group consists of one to seven slots, each 64 bits wide. All ALU
instructions occupy one slot, except double-precision floating-point instructions, which
occupy either two or four slots. The size of an ALU clause is the total number of slots
required for the clause.

SPU

Shader processing unit.

SR

Globally shared registers. These are read/write registers that support sharing between
all wavefronts in a SIMD (not a thread group). The sharing is column sharing, so
threads with the same thread ID within the wavefront can share data. All operations on
SR are atomic.

srcO, srcl, etc.

In floating-point operation syntax, a 32-bit source operand. SrcO_64 is a 64-bit source
operand.

stage

A sampler and resource pair.

stream

A collection of data elements of the same type that can be operated on in parallel.

stream buffer

A variable-sized space in off-chip memory that stores an instruction stream. It is an out-
put-only buffer, configured by the host processor. It does not store inputs from off-chip
memory to the processor.

Glossary-8

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term

Description

stream core

The fundamental, programmable computational units, responsible for performing inte-
ger, single, precision floating point, double precision floating point, and transcendental
operations. They execute VLIW instructions for a particular thread. Each processing
element handles a single instruction within the VLIW instruction.

stream operator

A node that can restructure data.

swizzling To copy or move any component in a source vector to any element-position in a desti-
nation vector. Accessing elements in any combination.
thread Pre-OpenCL term that is now deprecated. One invocation of a kernel corresponding to

a single element in the domain of execution. An instance of execution of a shader pro-
gram on an ALU. Each thread has its own data; multiple threads can share a single
program counter.

thread group

Pre-OpenCL term that is now deprecated. It contains one or more thread blocks.
Threads in the same thread-group but different thread-blocks might communicate to
each through global per-SIMD shared memory. This is a concept mainly for global data
share (GDS). A thread group can contain one or more wavefronts, the last of which can
be a partial wavefront. All wavefronts in a thread group can run on only one SIMD
engine; however, multiple thread groups can share a SIMD engine, if there are enough
resources.

thread processor

Pre-OpenCL term that is now deprecated. The hardware units in a SIMD engine
responsible for executing the threads of a kernel. It executes the same instruction per
cycle. Each thread processor contains multiple stream cores. Also called shader
processor.

thread-block

Pre-OpenCL term that is now deprecated. A group of threads which might communicate
to each other through local per SIMD shared memory. It can contain one or more wave-
fronts (the last wavefront can be a partial wavefront). A thread-block (all its wavefronts)
can only run on one SIMD engine. However, multiple thread blocks can share a SIMD
engine, if there are enough resources to fit them in.

Tid Thread id within a thread block. An integer number from 0 to Num_threads_per_block-1
token A 32-bit value that represents an independent part of a stream or instruction.
UAV Unordered Access View. Same as random access target (RAT). They allow compute

shaders to store results in (or write results to) a buffer at any arbitrary location. On DX11
hardware, UAVs can be created from buffers and textures. On DX10 hardware, UAVs
cannot be created from typed resources (textures).

uncached read/write
unit

The hardware units in a GPU compute device responsible for handling uncached read
or write requests from local memory on the GPU compute device.

vector

(1) A set of up to four related values of the same data type, each of which is an ele-
ment. For example, a vector with four elements is known as a “4-vector” and a vector
with three elements is known as a “3-vector”. (2) See “AR". (3) See ALU.[X,Y,Z,W].

VLIW design

Very Long Instruction Word.

— Co-issued up to 6 operations (5 stream cores + 1 FC); where FC = flow control.
— 1.25 Machine Scalar operation per clock for each of 64 data elements

— Independent scalar source and destination addressing

vTid

Thread ID within a thread group.

Glossary-9

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

ATl STREAM COMPUTING

Term Description

waterfall To use the address register (AR) for indexing the GPRs. Waterfall behavior is deter-
mined by a “configuration registers.”

wavefront Group of threads executed together on a single SIMD engine. Composed of quads. A
full wavefront contains 64 threads; a wavefront with fewer than 64 threads is called a
partial wavefront. Wavefronts that have fewer than a full set of threads are called partial
wavefronts. For the HD4000-family of devices, there are 64. 32, 16 threads in a full
wavefront. Threads within a wavefront execute in lockstep.

write combining Combining several smaller writes to memory into a single larger write to minimize any
overhead associated with write commands.

Glossary-10

Copyright © 2010 Advanced Micro Devices, Inc. All rights reserved.

	ATI Stream Computing OpenCL‰
	Preface
	About This Document
	Audience
	Organization
	Conventions
	Related Documents
	Contact Information

	Contents
	Chapter 1 OpenCL Architecture and the ATI Stream Computing System
	1.1 Software Overview
	1.1.1 Data-Parallel Programming Model
	1.1.2 Task-Parallel Programming Model
	1.1.3 Synchronization

	1.2 Hardware Overview
	Figure 1.1 Generalized GPU Compute Device Structure
	Figure 1.2 Simplified Block Diagram of the GPU Compute Device

	1.3 The ATI Stream Computing Implementation of OpenCL
	Figure 1.3 ATI Stream Software Ecosystem
	Figure 1.4 Simplified Mapping of OpenCL onto ATI Stream Computing
	Figure 1.5 Work-Item Grouping Into Work-Groups and Wavefronts
	1.3.1 Work-Item Processing
	1.3.2 Flow Control
	1.3.3 Work-Item Creation
	1.3.4 ATI Compute Abstraction Layer (CAL)
	Figure 1.6 CAL Functionality

	1.4 Memory Architecture and Access
	Figure 1.7 Interrelationship of Memory Domains
	Figure 1.8 Dataflow between Host and GPU
	1.4.1 Memory Access
	1.4.2 Global Buffer
	1.4.3 Image Read/Write
	1.4.4 Memory Load/Store

	1.5 Communication Between Host and GPU in a Compute Device
	1.5.1 PCI Express Bus
	1.5.2 Processing API Calls: The Command Processor
	1.5.3 DMA Transfers

	1.6 GPU Compute Device Scheduling
	Figure 1.9 Simplified Execution Of Work-Items On A Single Stream Core
	Figure 1.10 Stream Core Stall Due to Data Dependency

	1.7 Terminology
	1.7.1 Compute Kernel
	1.7.1.1 Work-Item Spawn Order

	1.7.2 Wavefronts and Workgroups
	1.7.3 Local Data Store (LDS)

	1.8 Programming Model
	Figure 1.11 OpenCL Programming Model

	1.9 Example Programs
	1.9.1 First Example: Simple Buffer Write
	1.9.2 Second Example: SAXPY Function
	1.9.3 Third Example: Parallel Min() Function

	Chapter 2 Building and Running OpenCL Programs
	Figure 2.1 OpenCL Compiler Toolchain
	2.1 Compiling the Program
	2.1.1 Compiling on Windows
	2.1.2 Compiling on Linux
	2.1.3 OpenCL Compiler Options

	2.2 Running the Program
	2.2.1 Running Code on Windows
	Figure 2.2 Runtime Processing Structure

	2.2.2 Running Code on Linux

	2.3 Calling Conventions
	2.4 Predefined Macros

	Chapter 3 Debugging OpenCL
	3.1 Setting the Environment
	3.2 Setting the Breakpoint in an OpenCL Kernel
	3.3 Sample GDB Session
	3.4 Notes

	Chapter 4 OpenCL Performance and Optimization
	4.1 ATI Stream Profiler
	Table 4.1 Performance Counter Descriptions

	4.2 Analyzing Stream Processor Kernels
	4.2.1 Intermediate Language and GPU Disassembly
	4.2.2 Generating IL and ISA Code

	4.3 Estimating Performance
	4.3.1 Measuring Execution Time
	4.3.2 Using the OpenCL timer with Other System Timers
	4.3.3 Estimating Memory Bandwidth

	4.4 Global Memory Optimization
	Figure 4.1 Memory System
	4.4.1 Two Memory Paths
	4.4.1.1 Performance Impact of FastPath and CompletePath
	Figure 4.2 FastPath (blue) vs CompletePath (red) Using float1
	Table 4.2 Bandwidths for 1D Copies

	4.4.1.2 Determining The Used Path

	4.4.2 Channel Conflicts
	Table 4.3 Bandwidths for Different Launch Dimensions
	4.4.2.1 Staggered Offsets
	Figure 4.3 Transformation to Staggered Offsets

	4.4.2.2 Reads Of The Same Address

	4.4.3 Float4 Or Float1
	Figure 4.4 Two Kernels: One Using float4 (blue), the Other float1 (red)
	Table 4.4 Bandwidths Including float1 and float4

	4.4.4 Coalesced Writes
	Figure 4.5 Effect of Varying Degrees of Coalescing - Coal (blue), NoCoal (red), Split (green)
	Table 4.5 Bandwidths Including Coalesced Writes

	4.4.5 Alignment
	Figure 4.6 Unaligned Access Using float1
	Table 4.6 Bandwidths Including Unaligned Access

	4.4.6 Summary of Copy Performance
	4.4.7 Hardware Variations

	4.5 Local Memory (LDS) Optimization
	4.6 Constant Memory Optimization
	4.7 OpenCL Memory Resources: Capacity and Performance
	Table 4.7 Hardware Performance Parameters

	4.8 NDRange and Execution Range Optimization
	4.8.1 Hiding ALU and Memory Latency
	4.8.2 Resource Limits on Active Wavefronts
	4.8.2.1 GPU Registers
	Table 4.8 Impact of Register Type on Wavefronts/CU

	4.8.2.2 Specifying the Default Work-Group Size at Compile-Time
	4.8.2.3 Local Memory (LDS) Size
	Table 4.9 Effect of LDS Usage on Wavefronts/CU1

	4.8.3 Partitioning the Work
	4.8.3.1 Global Work Size
	4.8.3.2 Local Work Size (#Work-Items per Work-Group)
	4.8.3.3 Moving Work to the Kernel
	4.8.3.4 Work-Group Dimensions vs Size

	4.8.4 Optimizing for Cedar
	4.8.5 Summary of NDRange Optimizations

	4.9 Using Multiple OpenCL Devices
	4.9.1 CPU and GPU Devices
	Table 4.10 CPU and GPU Performance Characteristics

	4.9.2 When to Use Multiple Devices
	4.9.3 Partitioning Work for Multiple Devices
	4.9.4 Synchronization Caveats
	4.9.5 GPU and CPU Kernels
	4.9.6 Contexts and Devices

	4.10 Instruction Selection Optimizations
	4.10.1 Instruction Bandwidths
	Table 4.11 Instruction Throughput (Operations/Cycle for Each Stream Processor)

	4.10.2 AMD Media Instructions
	4.10.3 Math Libraries
	Table 4.12 Native Speedup Factor

	4.10.4 VLIW and SSE Packing
	Figure 4.7 Unmodified Loop
	Figure 4.8 Kernel Unrolled 4X
	Figure 4.9 Unrolled Loop with Stores Clustered
	Figure 4.10 Unrolled Kernel Using float4 for Vectorization

	4.11 Clause Boundaries
	4.12 Additional Performance Guidance
	4.12.1 Memory Tiling
	Figure 4.11 One Example of a Tiled Layout Format

	4.12.2 General Tips
	4.12.3 Guidance for CUDA Programmers Using OpenCL
	4.12.4 Guidance for CPU Programmers Using OpenCL

	Appendix A OpenCL Optional Extensions
	A.1 Extension Name Convention
	A.2 Querying Extensions for a Platform
	A.3 Querying Extensions for a Device
	A.4 Using Extensions in Kernel Programs
	A.5 Getting Extension Function Pointers
	A.6 List of Supported Extensions
	A.7 cl_ext Extensions
	A.8 AMD Vendor-Specific Extensions
	A.8.1 cl_amd_media_ops
	A.8.2 cl_amd_printf

	A.9 Supported Functions for cl_amd_fp64
	Table A.1 Functions Supported by cl_amd_fp64

	A.10 Extension Support by Device
	Table A.2 Extension Support

	Appendix B The OpenCL Installable Client Driver (ICD)
	B.1 Overview
	B.2 Using ICD

	Appendix C Compute Kernel
	C.1 Differences from a Pixel Shader
	C.2 Indexing
	C.3 Performance Comparison
	C.4 Pixel Shader
	Figure C.1 Pixel Shader Matrix Transpose

	C.5 Compute Kernel
	Figure C.2 Compute Kernel Matrix Transpose

	C.6 LDS Matrix Transpose
	Figure C.3 LDS Matrix Transpose

	C.7 Results Comparison

	Appendix D Device Parameters
	Table D.1 Parameters for 54xx, 55xx, 56xx, and 57xx Devices
	Table D.2 Parameters for 58xx, Eyfinity6, and 59xx Devices

	Glossary of Terms

