GTK+ fajfr

KT ARWILREFE |

A GTKHFEFFWIRBRER A T 51370 5 R BUR Wl 8 F GTK+. ARERERT H g FEiE
K CiEE . I IR L C LA Linux FNRE N ABRLE T GTK+1#) 2434 2%
AKTHIFER B2

GTK+

rb

‘ GTK+ st —Fh ek BUZ & FIRHE Bl B A B IR . 34 s B RS2 B C 1
FORGE M. GTK+RE M thify GIMP T HAL. K, —JFh GTK+ZT K41 5 “GIMP”
—IXAE A AR . WIBLLUE, GTK+HtZE#i A T Linux and BSDUNixX 52 ¥l
M TFEBERZBS W (GUD Bl T HAZ —, IEAH, KZH0 Linux R GUI #4 (B
JEAZH D) #OZ H GTK+EGH QT K4S 1. GTK-+&— i [%) 5 XK
API(applicationprogramming interface). Glib & GTK~+[{3EAl, iy Fe i i 6 % 2457
IEEH“Glib™ K2k, GObject Wit /XM m X LRI T LY GTK+EBE R 2 Fit Kk
S . HE{EERTE SH: C++, Python, Perl, Java, C#, PHP, %5 H Al =208 5 .

GTK+ MILLF“BR B f 5 OO &

e Glib

e Pango

e ATK

e GDK

o GdkPixbuf

e Cairo

Glib & —Flal s EUE . MR TP REIRE S e, Bt B FEURREL, PR
B, HBE A, RS . Pango & Fl e K%, TR SCLEBrAL A AL I D g, ATK
RSN TR RS, ah R AL TR FEBE AR 55 D B AT S R R AR e 4t T

Ao GDK JE—Fea8u%, A GTK+EEE RS- T L8R)2 1 BB SEHL A i 1 5k

B 78 #E Linux H GDK 27 1 X R4S 25 F1 GTK+B B 2 [0). (ERIE) GTK+RATHR
A, HOREZ I RETERR S, #AC4 T Cairo BMEF R, GdkPixbuf p&% % & —Ff
K T HAL T T I RS A e S 224711 (pixel buffer) . Cairo f&—7F ek 5%] 1l
Ve 4il% . M GTK+2.8 iiALLR, Cairo fiiEX A GTK+RGH R T .

Gnome and XFce SIS RGHET GTK+H KL, SWT and wxWidgets 2 FH1E
E AW FEAELE W] GTKA R FESEINN o He A 1 GTK+AF AR IE Firefox CRIRM
Way) A Inkscape.

Sk GTK+ NAEFE

H—AMHEH T E R T H--"pkg-config", n] LL#E B FeA 19 ¢ GTK+1 N HFET . pgk-config 1]
DAL & Blese 3 s B (Bl GDK,Pango %5) N7 E o a7 8 s Uk, gt A FRATT Gt AR FH 55 og
%, Pkg-config mias M IRA AT E K lib 5 include SCEHIALE .. pkg-config /&M —
BB H LA pe i R SCAT R, AR T AR B .

gce —o simple simple.c pkg—config —1libs ——cflags gtk+-2.0
g R A, R R R B AT AT 25 G 3 B YR S F——"simple.c”,

$ pkg—config ——cflags gtk+2.0

~I/usr/include/gtk-2.0 —I/usr/lib/gtk—2.0/include
~I/usr/include/atk-1. 0

~I/usr/include/cairo —I1/usr/include/pango—1.0 —I/usr/include/glib-2.0

~I/usr/1ib/glib-2.0/include —I/usr/include/freetype2
~-I/usr/include/1ibpngl?2

Fm#i T pkg-config SR B ShER A K2 1P 5 2K include SCAFIAE S

$ pkg-config ——1libs gtk+-2.0

—lgtk—x11-2.0 -1gdk—x11-2.0 —-latk-1.0 —-l1gdk pixbuf-2.0 —1Im
—lpangocairo—1.0

—1fontconfig —1Xext —1Xrender —1Xinerama —1Xi —1Xrandr
—1Xcursor —1Xfixes —lpango—1.0 —lcairo —1X11 —-1lgobject—2.0

—lgmodule-2.0 —-1dl -1glib-2.0

Fm#i T pkg-config R B S ER A2 1 Fr T 2K lib SCAERAE S

Sources

e gtk.org
e gtkforums.com

e GTK+ / Gnome application development

E—A GTK+EF

FEIX B, AT ITR% S 54> GTK+FF.

B2 fR] L) 1] 1

A TE IS — BRI AN GTK+FEF . MR — AN ANE .

#include <gtk/gtk.h>
int main(int argc, char *argv[]) {
GtkWidget *window;
gtk init (&argc, &argv);
window = gtk window new (GTK_WINDOW TOPLEVEL) ;
gtk widget show (window) ;
gtk main() ;

return 0O;

AT N BATVE AR T — D E AR E .

gcc —o simple simple.c pkg-config ——1libs ——cflags gtk+-2.0

XL TRATHR R PR IX A T 2o N T ERAT TR IR A5 5 R PP A T PR 40 1k
gtk init (&arge, &argv);
KHEEVIAGIEA GTKHFRT, & —A GTKHRTF B AT D4

window = gtk window new (GTK _WINDOW TOPLEVEL) ;
XERATE AR T — M —— GtkWindow. XANE DR RIS &

GTK_WINDOW_TOPLEVEL. . Toplevel % L3l — bR RTLME . AbATT & b 11
ST B

gtk widget show(window) ;

FEBAVERR T — Ao DRIELUR, AR, Bl 7 E X A AR s i it

gtk main() ;

KAJRIGTE PR TG EIX— AL, GTKHFRFH 2 SR Jik (event) f & 4,
LS A ATV PR S I o

Figure: Simple

R —ANE D

U SR BRATIAN 22 HE B I R TBOE E PR , S0 d A B 2 D FRAT A XA B e — DR A B A
B, BATREIE A 117,

#include <gtk/gtk.h>
int main(int argc, char *argv[]) {
GtkWidget *window;
gtk init (&argc, &argv);
window = gtk window new (GTK _WINDOW TOPLEVEL) ;

gtk window set title(GTK WINDOW(window), “Center”):;

gtk window set default size(GTK WINDOW(window), 230, 150);

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk widget show(window) ;

g signal connect swapped (G OBJECT (window), “destroy”,
G_CALLBACK (gtk main quit), NULL):

gtk main() ;

return O;

LEIRAT XA, FAFRN TR & D (window widget) , & LR FF BB bR U
KA

gtk window set title (GTK WINDOW (window), ”“Center”);

gtk_window_set_title() XA T LA window B8 — MR, QR EATA HXAS
BRSNS, GTKAI FUE SO 46 KA D B 1 A R

gtk window set default size(GTK WINDOW (window), 230, 150);

XA By window WCE T 230x150 BE RN EHAFERMZ, ALK LR
KNI DR/ A ELFE B 1 2 SR AR B U sl 2 e (1350 4

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

X B & 1 BOE AR W as K

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

TEZ AT Frh, FRATRAA B DM, M3d% M A BT TATTLLES], e
T AAT 1) T AARABAT W FEF (1005, BRI O T & DR T A SRR NI SR RO (24
R, BOFTIIE DV EERS, B XA1 &Aoo AT AUE A XA R IER: B —A
KHMIME* (the destroy signal) , #iit gtk_main_quit() X%

IO H R P B s) 14

FE NI] 5 A BT BEAT L FE 7 BRR IR IR o K22 B0 i 1 B 1S U P B 8 B A Al
FAR e EJTAUE SR b

#include <gtk/gtk.h>
GdkPixbuf *create pixbuf(const gchar * filename) {
GdkPixbuf *pixbuf;
GError *error = NULL;
pixbuf = gdk pixbuf new from file(filename, &error);
if (Ipixbuf) {
fprintf (stderr, “%s\n”, error—>message) ;

g error free(error);

return pixbuf;

int main(int argec, char *argv[]) {
GtkWidget *window;
gtk init (&arge, &argv);
window = gtk window new (GTK WINDOW TOPLEVEL) ;
gtk window set title(GTK WINDOW(window), “icon”);
gtk window set default size(GTK WINDOW(window), 230, 150);
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set icon(GTK WINDOW (window), create pixbuf (“web.png”)):;

gtk widget show(window) ;

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

gtk main() ;

return 0O;

R R S — AN RN B AR R T

gtk window set icon(GTK WINDOW (window), create pixbuf (“web.png”)):;

PR gtk_window_set_icon() /&N & N EEFH K. K% create_pixbuf() 1EH 2
M=~ png BZ A GdkPixbuf 288 % .

pixbuf = gdk pixbuf new from file(filename, &error);

AR B 7 AAHISCRY B, B % gdk_pixbuf_new from_file() —ANCiEdim#k & 551
5, MIER—AH1 pixbuf, T3PS ESMM, EH RS A . iz
PR OR [P S NULL [R5, FPates Ml it

& icon _:ii_[Iffi

Figure: Icon

w1 D

N FRA TN R B, ORGSR T “CTKHFRE P Bt WIBAE" IS —Br B, 72X HLIRATH]
BT =AM PAMLHLRT A hR%E s IXABRZRG IR AT AR PN 20 B AT gk X
L

#include <{gtk/gtk.h>

gint count = 0;

char buf[5];

void increase (GtkWidget *widget, gpointer label) {
counttt;
sprintf (buf, “%d”, count);

gtk label set text(label, buf);

void decrease (GtkWidget *widget, gpointer label) {
count—;
sprintf (buf, “%d”, count);

gtk label set text(label, buf);

int main(int argc, charx* argv) {
GtkWidget *label;
GtkWidget *window;
GtkWidget *frame;
GtkWidget #*plus;
GtkWidget *minus;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 250, 180);

gtk window set title(GTK WINDOW (window), “+-7);:

frame = gtk fixed new();

gtk container add(GTK CONTAINER (window), frame);

plus = gtk button new with label ("+7);

gtk widget set size request(plus, 80, 35):

gtk fixed put (GTK FIXED(frame), plus, 50, 20);

minus = gtk button new with label ("-7);

gtk widget set size request(minus, 80, 35);

gtk fixed put (GTK FIXED (frame), minus, 50, 80);

label = gtk label new(”0”);

gtk fixed put (GTK FIXED(frame), label, 190, 58);

gtk widget show all (window) ;

g signal connect (window, “destroy”, G CALLBACK (gtk main quit),
NULL) ;

g signal connect(plus, “clicked”, G CALLBACK (increase), label);

g signal connect(minus, “clicked”, G CALLBACK (decrease), label);

gtk main() ;

return O;

ARG SE R DI RERL . B IMAE % % GtkLabel fI{H -

g signal connect (plus, “clicked”, G CALLBACK (increase), label);

AR 2L increase QAT T 35 45 . AT (EAAF B LA label 1E 4 911
RS 5. XFERE T LAZETE R 4L increase)T label HEAT 402 .

count++;
sprintf (buf, “%d”, count);

gtk label set text(label, buf);

label w107 it 2 B2 .

Figure: Increase - Decrease

“SEE” (menubar) f1* THF” (toolbars)

FERA) GTKHREF Bt BRErh, JATM s S e THA,

“¥H” (. menubar) & GUI BTN WIKER 02— SR REI 2RI Th e AR] LA
PLSERR SRS, IRMNTSI M/ 235 (console) w1 N FHFL RS I s, S0/ R 2
R ARBEL , EARZEITPIRAE X — DDA A R o] DL HAE . SR T 2 AL R bR e IR 4
1, B LR URIE L 10T A AE BT AR 9% () R 8 6 (R RORS

R LR SR B B

AT — AT, AT R — NS A SO RS AR . SO ok o — NS4
(menu item) . WS HXA SRR FRKIE L .

#include <gtk/gtk.h>
int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *vbox;
GtkWidget *menubar:;
GtkWidget *filemenu;

GtkWidget *file;

GtkWidget *quit;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW (window), 250, 200) ;

gtk window set title(GTK WINDOW(window), “menu”);

vbox = gtk vbox new(FALSE, 0):

gtk container add(GTK CONTAINER (window), vbox);

menubar = gtk menu bar new() ;

filemenu = gtk menu new() ;

file = gtk menu item new with label ("File”);

quit = gtk menu item new with label ("Quit”);

gtk menu item set submenu(GTK MENU ITEM(file), filemenu);

gtk menu shell append(GTK MENU SHELL (filemenu), quit);

gtk menu shell append(GTK MENU SHELL (menubar), file);

gtk box pack start (GTK BOX (vbox), menubar, FALSE, FALSE, 3);

g signal connect swapped (G _OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

g signal connect (G OBJECT (quit),
“activate”, G CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return O;

AR AN SE R e N SRR AT A I AN SRR — AN SR YR g T R —A
KRR, s ssbst (menu shell) o SEHETT (menu items) &P A8
TR o ABATTIE B SR SBT3 B

menubar = gtk menu bar new() ;

filemenu = gtk menu new() ;

76 _ET AR R BATER T — A2 (menubar) Fl—/N 2 (menu).

gtk menu item set submenu(GTK MENU ITEM(file), filemenu);
T AR B 2 A AN 4 R SO RS A X A USSR B A AN S AR R AR
XL SR SR — A SR AP 58 X A AT A BRATHE SO SRR R SR sl 2 — A T 4b

To

gtk menu shell append(GTK MENU SHELL (filemenu), quit);

gtk menu shell append(GTK MENU SHELL (menubar), file):
ST B3 gtk_menu_shell_append() fSEHl. RGeS0 328010 500k 0

AT . ERRATHIX AN F e, “quit” = ik IS Nt “file” 32kt HL, AR5 AU
Afile” R IR I I N A (menubar)

g signal connect (G OBJECT (quit), “activate”, G CALLBACK (gtk main quit),
NULL) ;

MR quit e AL, Rl il .

Cluit

Figure: Simple menu

K% sZH . mnemonics &accelerators

FEBE FORIEAMIE b, Bl A 10 B R, 1 GTK+ R G Bl T LUS I 1 2 A
Accelerators fEHHEEEMIRIL, Ik (0T REAL FIO4LA BTG — 5 ik

5. Mnemonics & b T T GUI LR, AT EL RSB bt 1 F s 5
o G DUTURORTE R, WT, FLARRYBE B AT 2 I 1 1 FL P ARAS S L Bt R
FUFAORED

#include <gtk/gtk.h>

#include <gdk/gdkkeysyms. h>

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *vbox;

GtkWidget *menubar:;
GtkWidget *filemenu;

GtkWidget *file;

GtkWidget *new;

GtkWidget *open;

GtkWidget *quit;

GtkWidget *sep;

GtkAccelGroup *accel group = NULL;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 250, 200) :;
gtk window set title(GTK WINDOW (window), “menu”);

vbox = gtk vbox new (FALSE, 0);

gtk container add(GTK CONTAINER (window), vbox)

menubar = gtk menu bar new() ;

filemenu = gtk menu new() ;

accel group = gtk accel group new() ;

gtk window add accel group (GTK WINDOW (window), accel group);
file = gtk menu item new with mnemonic(” File”);

new = gtk image menu item new from stock (GTK STOCK NEW, NULL);

open = gtk image menu item new from stock (GTK STOCK OPEN, NULL);

sep = gtk separator menu item new() ;

quit = gtk image menu item new from stock (GTK STOCK QUIT,
accel group);

gtk widget add accelerator(quit, “activate”, accel group, GDK q,
GDK_CONTROL MASK, GTK ACCEL VISIBLE) :

gtk menu item set submenu(GTK MENU ITEM(file), filemenu);
gtk menu shell append(GTK MENU SHELL (filemenu), new);

gtk menu shell append(GTK MENU SHELL (filemenu), open);

gtk menu shell append(GTK MENU SHELL (filemenu), sep):

gtk menu shell append(GTK MENU SHELL (filemenu), quit);

gtk menu shell append(GTK MENU SHELL (menubar), file):

gtk box pack start(GTK BOX(vbox), menubar, FALSE, FALSE, 3);

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

g signal connect (G OBJECT (quit),
“activate”, G CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return O;

fF B R HEEAMRSRE R, KK IR T 2 W] [— AN SE IR Ih I — AN E 4 8. 4R E
% T Al fd 1] accelerator UL mnemonics .

accel group = gtk accel group new() ;

gtk window add accel group (GTK WINDOW (window), accel group);

quit = gtk image menu item new from stock (GTK STOCK QUIT,
accel group);

gtk widget add accelerator(quit, “activate”, accel group, GDK g,
GDK CONTROL MASK, GTK ACCEL VISIBLE) ;

—> accelerator A 4FZ 1 accelerators fR#EH . XHEATAEL T —“Ctrl + q”
accelerators PJef .

file = gtk menu item new with mnemonic(” File”);

BATFEH K gtk_menu_item_new_with_mnemonic() k4AH—1
mnemonic PR4EHE . fRn] UL NS B Alt + FPglin] BUE 2. mnemonic PREERE R .

new = gtk image menu item new from stock (GTK STOCK NEW, NULL) ;

open = gtk image menu item new from stock (GTK STOCK OPEN, NULL) ;

A5 L AR R BT A 1T P AN A B RS I A T 1 e B 2 A S8, Al
B NULL, IXARIEZIR R R AT E)L T accelerators PRAEHE . FAIT A i ik 107 i)
Rt T RS S3CT

sep = gtk separator menu item new() ;

S IETRRE S ACT I 73 T2 B T o IXAF IR B ATTHE AT LANIZ i B30 LU IR TS5 X 7 I
Ko

(m T meny EEX]
Eile |
Elﬂew
=

@ Quir Ctrl+ 01

Figure: Menu example

EFE (Check) FHIEIT (menu item)

GtkCheckMenultem i & —AN] LLAR By A3 18 B 1 S FR 2R T

#include <gtk/gtk.h>
void toggle statusbar (GtkWidget *widget, gpointer statusbar) {
if (gtk check menu item get active (GTK CHECK MENU ITEM(widget))) {
gtk widget show(statusbar) ;

} else { gtk widget hide(statusbar); }

int main(int arge, char *argv[]) {
GtkWidget *window;
GtkWidget *vbox;
GtkWidget *menubar;
GtkWidget *viewmenu;
GtkWidget *view;
GtkWidget *tog stat;
GtkWidget *statusbar;
gtk init (&argc, &argv);
window = gtk window new(GTK WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 250, 200);

gtk window set title(GTK WINDOW(window), “view statusbar”);

vbox = gtk vbox new (FALSE, 0);

gtk container add(GTK CONTAINER (window), vbox)

menubar = gtk menu bar new() ;

viewmenu = gtk menu new() ;

view = gtk menu item new with label ("View”);

tog stat = gtk check menu item new with label ("View Statusbar”) ;

gtk check menu item set active (GTK CHECK MENU ITEM(tog stat), TRUE) ;

gtk menu item set submenu(GTK MENU ITEM(view), viewmenu) ;

gtk menu shell append(GTK MENU SHELL (viewmenu), tog stat);

gtk menu shell append(GTK MENU SHELL (menubar), view);

gtk box pack start(GTK BOX (vbox), menubar, FALSE, FALSE, 3):;

statusbar = gtk statusbar new() ;

gtk box pack end(GTK BOX (vbox), statusbar, FALSE, TRUE, 1);

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

g signal connect (G OBJECT (tog stat), “activate”,
G CALLBACK (toggle statusbar), statusbar):

gtk widget show all (window) ;

gtk main() ;

return O;

FEBATACE =B, BA VTS T U] K3 — AT IR PR (S e . AR D RE2: Wik
e PEREA L U RS E Bon ok, A iR .

tog stat = gtk check menu item new with label ("View Statusbar”) ;

M3 gtk_check _menu_item_new_with_label() o LA —AN B A A 2 EHE 1I5E
FAIET

if (gtk check menu item get active (GTK CHECK MENU ITEM(widget))) {
gtk widget show(statusbar) ;

} else {gtk widget hide(statusbar); }

DR SR FEHERE T U RESE 2 Bos ik, R WA BoR.

view statusbar

v \iew Statusbar

Figure: Check menu item

TEF (A toolbar)

SR BATIGRFE IS SEELAE R Sh Re S it T 05 A0 S AREE o AEd ORI TN R, BA TR N R s —Fol
FERFE RS OL T W] LA HE 0 1) ik ——tilig — A T AA,

#include <gtk/gtk.h>

int main(int argc, char *argv[]) {

GtkWidget *window;

GtkWidget *vbox;

GtkWidget *toolbar;

GtkToolItem *new;

GtkToolItem *open;

GtkToolItem *save:

GtkToolItem *sep;

GtkToolItem *exit;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 250, 200);

gtk window set title(GTK WINDOW (window), “toolbar”);

vbox = gtk vbox new (FALSE, 0);

gtk container add(GTK CONTAINER (window), vbox);

toolbar = gtk toolbar new();

gtk toolbar set style(GTK TOOLBAR (toolbar), GTK TOOLBAR ICONS) ;

gtk container set border width (GTK CONTAINER (toolbar), 2);

new = gtk tool button new from stock (GTK STOCK NEW) ;

gtk toolbar insert (GTK TOOLBAR (toolbar), new, —1);

open = gtk tool button new from stock (GTK STOCK OPEN) ;

gtk toolbar insert(GTK TOOLBAR (toolbar), open, -1);

save = gtk tool button new from stock (GTK STOCK SAVE) ;

gtk toolbar insert (GTK TOOLBAR(toolbar), save, -1);

sep = gtk separator tool item new() ;

gtk toolbar insert (GTK TOOLBAR(toolbar), sep, —1);

exit = gtk tool button new from stock (GTK STOCK QUIT) ;

gtk toolbar insert (GTK TOOLBAR(toolbar), exit, —1);

gtk box pack start (GTK BOX(vbox), toolbar, FALSE, FALSE, 5);

g signal connect (G OBJECT (exit), “clicked”,
G _CALLBACK (gtk main quit), NULL);

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return 0O;

DL FARRE , FRATTHIE T — AN B T B A S
toolbar = gtk toolbar new();

gtk toolbar set style(GTK TOOLBAR (toolbar), GTK TOOLBAR ICONS)

MBI PAT A AR A AT LAE R, JRATAERCT — A8 i TR D o IRATIER ALl
MI#SH A R B, B RS 3CT

new = gtk tool button new from stock (GTK STOCK NEW) :

gtk toolbar insert (GTK TOOLBAR (toolbar), new, —1);

M stock FEATAER T —/ N T EAF . B T B A AR A2 THAA T, R B
FHE K% gtk _toolbar_insert() it LR E

sep = gtk separator tool item new() ;

gtk toolbar insert(GTK TOOLBAR (toolbar), sep, —1);

RS, BATER T AL TR TT GULIEHR B AFH 2D .

toolbar

L& &«

Figure: Toolbar

ek (Undo redo)

FERE TORIG 7, BA TR s — A S A8 RSP — ML RER AL LAl AL A
) o IXAE GUI Bt NS . 8T AT SR R AT, IR
AP AR, R IIRERAL T o RN IR: IR IIfEC AT 1, AT
PATIRAFINRE T

#include <gtk/gtk.h>
#include <string.h>
void undo redo(GtkWidget *widget, gpointer item) {

static int count

Il
\)

const char *name = gtk widget get name (widget);

if (strcmp(name, “undo”)) { count++;} else { count—;}

if (count < 0) {
gtk widget set sensitive(widget, FALSE);

gtk widget set sensitive(item, TRUE);

if (count > 5) {
gtk widget set sensitive(widget, FALSE);

gtk widget set sensitive(item, TRUE);

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *vbox;
GtkWidget *toolbar;
GtkToolItem *undo;
GtkToolItem *redo;
GtkToolItem *sep;
GtkToolltem *exit;
gtk init (&argc, &argv);
window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 250, 200);

gtk window set title(GTK WINDOW (window), “undoredo”):

vbox = gtk vbox new(FALSE, 0):

gtk container add(GTK CONTAINER (window), vbox);

toolbar = gtk toolbar new();

gtk toolbar set style(GTK TOOLBAR (toolbar), GTK TOOLBAR ICONS) ;

gtk container set border width (GTK CONTAINER (toolbar), 2);

undo = gtk tool button new from stock (GTK STOCK UNDO) ;

gtk widget set name (GTK WIDGET (undo), “undo”);

gtk toolbar insert (GTK TOOLBAR (toolbar), undo, -1);

redo = gtk tool button new from stock (GTK STOCK REDO) ;

gtk toolbar insert (GTK TOOLBAR (toolbar), redo, -1);

sep = gtk separator tool item new();

gtk toolbar insert (GTK TOOLBAR (toolbar), sep, —1);

exit = gtk tool button new from stock (GTK STOCK QUIT) ;

gtk toolbar insert (GTK TOOLBAR (toolbar), exit, —1);

gtk box pack start(GTK BOX (vbox), toolbar, FALSE, FALSE, 5);

g signal connect (G OBJECT (undo), “clicked”, G CALLBACK (undo redo),
redo) ;

g signal connect (G OBJECT (redo), “clicked”, G CALLBACK (undo redo),
undo) ;

g signal connect (G OBJECT (exit), “clicked”,
G_CALLBACK (gtk main quit), NULL):

g signal connect swapped(G_OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return O;

TR T GTK+ stock SKSEHUE “IIREA IR IRERR . MR LT %4
Jei s ARANEHLE AL B AR, AR Bt N D REAT R AR R T D RE R

if (count < 0) {
gtk widget set sensitive(widget, FALSE);

gtk widget set sensitive(item, TRUE);

if (count > 5) {
gtk widget set sensitive(widget, FALSE);
gtk widget set sensitive(item, TRUE);

}

gtk_widget_set_sensitive() 2K & VRS BTG A THAAR .

Figure: Undo redo

GTK+ fiAEH

FEAT R, A PR TFIR U PRE R AT B A B 5 A

M FRATLE T N R R (1) B ST I, FRATT 1 56 B ()& LA e v FH WA) 7 3 87 FH
PP X skt . S T O R ERERAT I A A, AR GTK-HIE 5 A ol WL AR 1E layout
containers. . fEAEN T, AR B

—— GtkAlignment, GtkFixed, GtkVBox f1 GtkTable.

GtkFixed

ot GtkFixed A B RIAFAE— AN E A B ANBOE [E KRN e XM EIFAN L 8
THENNA AR RS S, RNV R Z BN IR, BIFAMEN GtkFixed; 17
SN T2l R 3 o 000, Bk, & A S KIDIREM & I, ISR SR S A
FIRAT CEATRT R R REIER D) BUROIEE N R 0 iR kAt

#include <gtk/gtk.h>

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *fixed;
GtkWidget *buttonl;

GtkWidget *button2;

GtkWidget *button3;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;

gtk window set title(GTK WINDOW(window), “GtkFixed”);

gtk window set default size(GTK WINDOW(window), 290, 200);
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
fixed = gtk fixed new();

gtk container add(GTK CONTAINER (window), fixed);

buttonl = gtk button new with label ("Button”);

gtk fixed put (GTK FIXED(fixed), buttonl, 150, 50);

gtk widget set size request(buttonl, 80, 35);

button2 = gtk button new with label ("Button”);

gtk fixed put (GTK FIXED(fixed), button2, 15, 15);

gtk widget set size request(button2, 80, 35);

button3 = gtk button new with label ("Button”) ;

gtk fixed put (GTK FIXED(fixed), button3, 100, 100);

gtk widget set size request(button3, 80, 35);

g signal connect swapped (G OBJECT (window), “destroy”,
G _CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;

gtk main() ;

return O;

FER T I, BRSBTS I AR5 FEARATT AT R A 2 R AR R F o 24 3AT)
D RGP 2 R T KR N R IR, A LA 2 DR A AT TR KN PR AR

fixed = gtk fixed new();
T AR T LA T A GtkFixed 28 #I1t
gtk fixed put (GTK FIXED(fixed), buttonl, 150, 50);

5Nl gtk_fixed_putQEECKIH TR, bR x=150, y=50.

GitlkFixed

Button

Button

Button

Figure: GtkFixed container

GtkVBox

GtkVBox & Ff I T3 AT R K A a5 A AF o AT BCE AR Al) 3 R PR B AR — S Bk R 51
o KUK GtkHBOX WAMBLIILhfE, AL Al FACH A&, ARK-7 R 2
BAE AT .

#include <gtk/gtk.h>

int main(int argc, char *argv[]) {

GtkWidget *window;

GtkWidget *vbox;

GtkWidget *settings;

GtkWidget *accounts;

GtkWidget *loans;

GtkWidget *cash;

GtkWidget *debts;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 230, 250);

gtk window set title(GTK WINDOW (window), “GtkVBox”);

gtk container set border width(GTK CONTAINER (window), 5);

vbox = gtk vbox new(TRUE, 1);

gtk container add (GTK CONTAINER (window), vbox);

settings = gtk button new with label (“Settings”):

gtk button new with label (“Accounts”) ;

accounts

loans = gtk button new with label (“Loans”) ;

cash = gtk button new with label (“Cash”);

debts = gtk button new with label ("Debts”) ;
gtk box pack start (GTK BOX(vbox), settings, TRUE, TRUE, 0);
gtk box pack start (GTK BOX(vbox), accounts, TRUE, TRUE, 0);

gtk box pack start (GTK BOX(vbox), loans, TRUE, TRUE, 0):

gtk box pack start (GTK BOX(vbox), cash, TRUE, TRUE, O0);

gtk box pack start(GTK BOX(vbox), debts, TRUE, TRUE, O0);

g signal connect swapped (G OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;
gtk main() ;

return 0O;

TR R R T GtkVBox HIFEHT . MBS AL HL# A JRAE [— 41 Lo I RAR SRR
FEad LN, e i a4 (%4l button) 238 K.

vbox = gtk vbox new(TRUE, 1);

LR PAERT GtkVBox. FAHEH PR NS HE N TRUE. KElEWKE, Bh
T AL N R RER RN o 2 THL L2 TRV B DB 1" 5 %

gtk box pack start (GTK BOX (vbox), settings, TRUE, TRUE, 0);

76 BT R 7 R AT “settings “F&HIAT R 7E vbox M. BT HRECESHIRHRAS
B, o AR A IR AT SRR (1) A . B R ORI = AN S5 2 B g expand, fill fil
padding. B UIR fill 55N S50 FALSE, WHZHLER A 2 783 vbox f41F. Eb
RS, B2 BT7E gtk_vbox_new(TRUE, 1); D& W B A H %5 5 1, Bl
expand XIS EL, RS AABRAERCRMN . (FEE: b Eil fill expand #ih TRUE, 2T
FLARDK BRI ST e gm R I I sZ)

GitkWVBox

Settings

Accounts

Loans

Cash

Lebts

Figure: GtkVBox container

GtkTable

GtkTable A ek {1 RIVAy LU ATt T DL ISR A = b) 544 1F

#include <gtk/gtk.h>

int main(int argce, char *argv[]) {
GtkWidget *window;
GtkWidget *table;
GtkWidget *button;

Char *Values [16] — { I/7I/’ //8//’ //9//, ///I/’ //4//, //5//, /I6//, //*//’ //1//, I/2//’
”a” ”” ”n” ”” ”_” ” 7
3 b - O b b =) + } 0

gtk init (&arge, &argv);
window = gtk window new (GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 250, 180);

gtk window set title(GTK WINDOW (window), “GtkTable”):

gtk container set border width (GTK CONTAINER (window), 5);
table = gtk table new(4, 4, TRUE);

gtk table set row spacings (GTK TABLE (table), 2);

gtk table set col spacings(GTK TABLE (table), 2);

int 1 = 0;
int j = 0;
int pos = 0;

for (i=0; i < 4; i++) {
for (j=0; j < 4; j++) {
button = gtk button new with label (values[pos]);

gtk table attach defaults(GTK TABLE (table), button, j, j+1, i,
itl);

post+;

gtk container add (GTK CONTAINER (window), table);

g signal connect swapped (G _OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;

gtk main() ;

return 0O;

FEVAE)7, BATTRE 07 BTS2 an S — R YL AL

table = gtk table new(4, 4, TRUE);

ERBAIER T —AHi GtkTable fJatft, BN 4175 4 71,
gtk table set row spacings (GTK TABLE (table), 2);
gtk table set col spacings (GTK TABLE(table), 2);
AT RCE T REAT BRI ER .
for(i=0; i < 4; i++) {
for (j=0; j < 4; j++) {
button = gtk button new with label (values[pos]);

gtk table attach defaults(GTK TABLE(table), button, j, j+1, i,
i+l);

post+t;

}

PAEARHD R 2R 16 MZHLUIF AR AT R fE GtkTable 7 fff .

4 5 B *
1 =2 3
0 = +

Figure: GtkTable container

GtkAlignment

GtkAlignment M PFFH] T 1) R PE I 55 75 205 RN

#include <gtk/gtk.h>
int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *ok:
GtkWidget *close;
GtkWidget *vbox;
GtkWidget *hbox:
GtkWidget *halign:
GtkWidget *valign:
gtk init (&argc, &argv);
window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 350, 200);

gtk window set title(GTK WINDOW (window), “GtkAlignment”);

gtk container set border width (GTK CONTAINER (window), 10);

vbox = gtk vbox new(FALSE, 5);

valign = gtk alignment new(0, 1, 0, 0);

gtk container add(GTK CONTAINER (vbox), valign);

gtk container add(GTK CONTAINER (window), vbox)

hbox = gtk hbox new(TRUE, 3);

ok = gtk button new with label ("OK”);

gtk widget set size request(ok, 70, 30);

gtk container add(GTK CONTAINER (hbox), ok);

close = gtk button new with label (“Close”);

gtk container add(GTK CONTAINER (hbox), close);

halign = gtk alignment new(l, 0, 0, 0);

gtk container add(GTK CONTAINER(halign), hbox) ;

gtk box pack start (GTK BOX (vbox), halign, FALSE, FALSE, 0);

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;

gtk main() ;

return 0O;

L LT 1o, FAHEPIAN A /AR T — DN LA T e A T SEREA R, FATH—A
KT HIAE horizontal box —AMEH G M vertical box FIR AN 5525 s Fa 1
(alignment containers) .

valign = gtk alignment new(0, 1, 0, 0);

T AR R B AT AR B T A X TR AR A
gtk container add(GTK CONTAINER(vbox), valign);

SRJE FATHEXS F A BT R 7E AR b (vbox)
hbox = gtk hbox new(TRUE, 3);
ok = gtk button new with label ("OK”);
gtk widget set size request(ok, 70, 30);
gtk container add(GTK CONTAINER (hbox), ok);
close = gtk button new with label (“Close”);

gtk container add(GTK CONTAINER (hbox), close);

AR, AR T KA C horizontal box) AR SR AN A i AE .
halign = gtk alignment new(l, 0, 0, 0);
gtk container add(GTK CONTAINER(halign), hbox);

gtk box pack start (GTK BOX (vbox), halign, FALSE, FALSE, 0);

TR ARG R A2 B AN X 55 ZE A A SR S5 AT R it () A AT SR A A 10 BATHE KT 3T
(horizontal box) ¥R HNEGF AR LR, SR JE XA F 224 LA I 21188 B &1
(vertical box) . &, RERMEIE—TF,) WFESMWI (alignment container)
o OBETBCE — A TR IR AT A BATEL I B84 2 G 7R BB AA S A8 L T

L GrtkAlIlgnment = || X

Ok Close

Figure: GtkAlignment container

Windows

PRI s — A s g i . R R —ANE L AR A BIAE JDeveloper
IDE (—Ff java MEBIF R HRBUIXAM 1 K15 5

& Windows »

Windows:

E AffineTransform java
@ Craph.java

@ Marmal java

@ MormalCraphData.java
@] PdiPlct ava

Activate

Close

Hep

Figure: Windows dialog in JDeveloper

The dialog shows all opened windows, or more precisely tabs in JDeveloper
application.

#include <gtk/gtk.h>

int main(int arge, char *argv[]) {

GtkWidget *window;

GtkWidget *table;

GtkWidget *title;

GtkWidget *activate;

GtkWidget *halign;

GtkWidget *halign2;

GtkWidget *valign;

GtkWidget *close;

GtkWidget *wins;

GtkWidget *help;

GtkWidget sok;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk widget set size request (window, 300, 250);

gtk window set resizable (GTK WINDOW (window), FALSE) ;

gtk window set title(GTK WINDOW (window), “Windows”);

gtk container set border width (GTK CONTAINER (window), 15);
table = gtk table new(8, 4, FALSE);

gtk table set col spacings (GTK TABLE(table), 3);

title = gtk label new("Windows”) ;

halign = gtk alignment new(0, 0, 0, 0);

gtk container add(GTK CONTAINER (halign), title);

gtk table attach(GTK TABLE (table), halign, 0, 1, 0, 1, GTK FILL,
GTK FILL, 0, 0);

wins = gtk text view new();
gtk text view set editable (GTK TEXT VIEW(wins), FALSE);
gtk text view set cursor visible(GTK TEXT VIEW(wins), FALSE);

gtk table attach(GTK TABLE(table), wins, 0, 2, 1, 3, GTK FILL |
GTK EXPAND, GTK FILL | GTK EXPAND, 1, 1);

activate = gtk button new with label ("Activate”);
gtk widget set size request(activate, 50, 30);

gtk table attach(GTK TABLE (table), activate, 3, 4, 1, 2,
GTK FILL, GTK SHRINK, 1, 1):

valign = gtk alignment new(0, 0, 0, 0);

close = gtk button new with label (“Close”);

gtk widget set size request(close, 70, 30);

gtk container add(GTK CONTAINER(valign), close);
gtk table set row spacing(GTK TABLE (table), 1, 3);

gtk table attach(GTK TABLE (table), valign, 3, 4, 2, 3,
GTK FILL, GTK FILL | GTK EXPAND, 1, 1):

halign2 = gtk alignment new(0, 1, 0, 0);

help = gtk button new with label ("Help”) ;

gtk container add(GTK CONTAINER(halign2), help);

gtk widget set size request(help, 70, 30);

gtk table set row spacing (GTK TABLE(table), 3, 6);

gtk table attach(GTK TABLE (table), halign2, 0, 1, 4, 5,
GTK FILL, GTK FILL, 0, 0);

ok = gtk button new with label ("OK”);
gtk widget set size request(ok, 70, 30);

gtk table attach(GTK TABLE (table), ok, 3, 4, 4, 5, GTK FILL, GTK FILL,
0, 0);

gtk container add (GTK CONTAINER (window), table);

g signal connect swapped (G _OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;
gtk main() ;

return 0O;

DA EACHE R 2Bl BRL[K) GTRK+Td 1

table = gtk table new(8, 4, FALSE);

FAIEE table Fefs A as M T RIEAT A -

title = gtk label new("Windows”) ;

halign = gtk alignment new(0, 0, 0, 0);
gtk container add(GTK CONTAINER (halign), title);

gtk table attach(GTK TABLE (table), halign, 0, 1, 0, 1, GTK FILL,
GTK FILL, 0, 0);

IRTARRS A T —AMRASE, WA A . RAMRER A SR 7E GtkTable M2 15— 41,
wins = gtk text view new();

gtk text view set editable (GTK TEXT VIEW(wins), FALSE);

gtk text view set cursor visible (GTK TEXT VIEW(wins), FALSE);

gtk table attach(GTK TABLE(table), wins, 0, 2, 1, 3, GTK FILL |
GTK_EXPAND, GTK FILL | GTK EXPAND, 1, 1):

A BRI HE T AT RIS o FRATTAEZSCAR G AE (1 B PR 13 BN editable FYGAR B

(hide the cursor) .

valign = gtk alignment new(0, 0, 0, 0):

close = gtk button new with label (“Close”);

gtk widget set size request(close, 70, 30);

gtk container add(GTK CONTAINER (valign), close);
gtk table set row spacing(GTK TABLE (table), 1, 3);

gtk table attach(GTK TABLE (table), valign, 3, 4, 2, 3, GTK FILL,
GTK FILL ‘ GTK EXPAND, 1, 1);

FATHE A FEAE S IS AT JRAE SO G AR A 10 22 ol A2 R DUAT CRATTZ M O T ARic £,
BAHEIZ AL AT JRAE X SR E (alignment widget) 1, IXFEFRA gk il LU A 45 R 7
TR T

Windows
Activate
Close
Help 0K

Figure: Windows

GTK+ FHIZHEH: (events) {55 (signals)

FERATBALAEX —ADFA R, TATSR R GTK+R BT HEET), “F RS .

GTK+ R L HE LT “F R Prar) GUI NITFEFIo— IS T JifF 3K 5)
(Ko AT FrE Rk, W R A A A S £ GTK+—AFHIEHUZ N X & 1R
S ORI — MR AR AN, Mt kg — D E S RE b e 2t T
SN o FIHT GTKAIE AT LA A5 59058 L [T [ok Ko Ol A i [o 25 U0 A 2 1) 55
A R RAT o

#include <gtk/gtk.h>
void button clicked(GtkWidget *widget, gpointer data) {

g print (“clicked\n”) ;

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *fixed;

GtkWidget *button;

gtk init (&argec, &argv);

window = gtk window new (GTK _WINDOW TOPLEVEL) ;

gtk window set title(GTK WINDOW(window), “GtkButton”);

gtk window set default size(GTK WINDOW(window), 230, 150);

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
fixed = gtk fixed new();

gtk container add(GTK CONTAINER (window), fixed);

button = gtk button new with label ("Click”);

gtk fixed put (GTK FIXED(fixed), button, 50, 50);

gtk widget set size request(button, 80, 35);

g signal connect (G OBJECT (button), “clicked”,
G CALLBACK (button clicked), NULL);

g signal connect (G OBJECT (window), “destroy”,
G _CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return 0O;

AT B XA RIS R, AT E 5. —MEfES clicked, it & Hdi; 5
SMUE(E S destroy.

g signal connect (G OBJECT (button),
“clicked”, G CALLBACK (button clicked), NULL);

TATHE% g_signal_connect() £“&#"f5 5 “clicked”f[bi{ & button_clicked() .

void button clicked(GtkWidget *widget, gpointer data)
{ g print("clicked\n”); }

TXAN AT eR BCRAT 1 D e 2) st “clicked” F 4 B o XA BB S — AT S50 A RS
SR % . AEFRATIX AT Fh sz 2 E R f“Click button”. 25 M7 S8 nf Ik A 1.
BATTAT AR XA S50 m) (2] o8 B AL b Ry 2 8 . AEFRA TG 79, JFEA LB T S5
FrLABA R AE g_signal_connect() i H [s S s e R FH R 28 AN s i b T
“NULL”,

g signal connect (G_OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), NULL);

WERBAT S A EARXaE % At + F4, —A> destroy g2 7. RE0E, &
ATAIEAME 5 P e MRl 2L gtk _main_quitQ FHAT, A DiReE 2 k384 T .

#3E 0 (Moving window)

FER =T, BATRE RS W3R sl B 173X A FAFAL S BB 1 o

#include <gtk/gtk.h>
void frame callback (GtkWindow *window, GdkEvent *event, gpointer data) {

int x, vy;
char buf[10];

event—>configure. x;

>
Il

= event—>configure. y;

<
|

sprintf (buf, “%d, %d”, x, y):

gtk window set title(window, buf);

int main(int argc, char *argv[]) {
GtkWidget *window;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 230, 150);

gtk window set title(GTK WINDOW (window), ”“Simple”);

gtk widget add events(GTK WIDGET (window), GDK CONFIGURE) ;

g signal connect swapped (G OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

g signal connect (G OBJECT (window),
“configure—event”, G_CALLBACK (frame callback), NULL);

gtk widget show (window) ;
gtk main() ;

return 0O;

FEIXAMG TR, BRATIBEI JE R R T AT 20 A bR R (A 2
gtk widget add events(GTK WIDGET (window), GDK CONFIGURE) ;

AT B T, BN AR R B A, TR R A R B . — S
TSR A E A T, AN — SRS AE] — AN

gtk_widget_add_events() i@, #1342 % GDK_CONFIGURE Hn#ix 4
B . FHESE GDK_CONFIGURE W5 THIA IR/ AL E R T4 0O AR 45
o

g signal connect (G OBJECT (window),
“configure—event”, G CALLBACK (frame callback), NULL);

M ETRTBLE Y, /55 configure-event“#5 1T , WIPTIREMAIEIID . AL B 5 KPS
AR T

void frame callback (GtkWindow *window, GdkEvent *event, gpointer data) {
int x, y;
char buf[10];

event—>configure. x;

>
Il

= event—>configure. y;

<
|

sprintf (buf, “%d, %d”, x, y):
gtk window set title(window, buf);

}

RAPIHREAT =TS hlE: RAME S HME, GdkEvent MAIEF TS, FAIIk
BT A EAARR (X,y) > JHEMTBAE T hrdih L.

327, 453

Figure: Move event

RirHEAES (The enter signal)

FERE TORIIEEAT T, TR s U T BRARBIREA 5 5 RN o 4 TRATTH SRS S 2 FRAT 1 BT
GRE B KA bl o et B HEAAF 57

#include <gtk/gtk.h>

void enter button(GtkWidget *widget, gpointer data) {
GdkColor color;
color.red = 27000;

color. green = 30325;

color. blue = 34181;

gtk widget modify bg(widget, GTK STATE PRELIGHT, &color);

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *fixed;
GtkWidget *button;
gtk init (&argc, &argv);
window = gtk window new(GTK WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 230, 150);
gtk window set title(GTK WINDOW (window), “enter signal”);
fixed = gtk fixed new();
gtk container add(GTK CONTAINER (window), fixed);

button = gtk button new with label ("Button”);

gtk widget set size request(button, 80, 35);

gtk fixed put (GTK FIXED(fixed), button, 50, 50);

g signal connect (G OBJECT (button),
“enter”, G CALLBACK (enter button), NULL);

g signal connect swapped (G OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;

gtk main() ;

return 0O;

A TRATT I BRUBR 0L 42 B AR A AR IS, AT TR PP A QA m B e

T R AR S B R IR — AN Th
AR IR I T S
g signal connect (G OBJECT (button), “enter”, G CALLBACK (enter button),

NULL) ;
Mg enter” KR, WAISHAKE enter_button()

GdkColor color;
color. red = 27000;
color. green = 30325;

color.blue = 34181;
gtk widget modify bg(widget, GTK STATE PRELIGHT, &color);

FEXE N Rl e K, BATTIEL I H e 2 gtk _widget_modify_bg ()RR LAl M .

B R SRR 48 2 (Disconnecting a callback)

BEAR AT LK — M 5408 — NI R BT Rt m] DU ER — N0 o R8T RIS RE7R
Bl U FE I — A7

#include <gtk/gtk.h>

int handler id;

void button clicked (GtkWidget *widget, gpointer data)
{ g print("clicked\n”) ;}

void toogle signal (GtkWidget *widget, gpointer window) {

if (gtk toggle button get active (GTK TOGGLE BUTTON (widget))) {

handler id = g signal connect (G_OBJECT (window),
“clicked”, G_CALLBACK (button clicked), NULL);

} else { g signal handler disconnect(window, handler id);}

int main(int argc, char *argv[]) {

GtkWidget *window;

GtkWidget *fixed;

GtkWidget *button;

GtkWidget *check;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 250, 150);

gtk window set title(GTK WINDOW (window), “Disconnect”);

fixed = gtk fixed new();

gtk container add(GTK CONTAINER (window), fixed);

button = gtk button new with label (“Click”);

gtk widget set size request(button, 80, 30);

gtk fixed put (GTK FIXED(fixed), button, 30, 50);

check = gtk check button new with label (“Connect”);

gtk toggle button set active (GTK TOGGLE BUTTON (check), TRUE) ;

gtk fixed put (GTK FIXED(fixed), check, 130, 50);

handler id = g signal connect (G _OBJECT (button),
“clicked”, G_CALLBACK (button clicked), NULL);

g signal connect (G OBJECT (check),
“clicked”, G_CALLBACK (toogle signal), (gpointer) button) ;

g signal connect swapped (G OBJECT (window),
“destroy”, G CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;

gtk main() ;

return O;

FEGIT o, JATTE R T — AN — D IEHEHE . AL LEAE) T BE (L IR 5E B R E — N[l
PR 5155 “clicked” Z AIIFI K &

handler id = g signal connect (G _OBJECT (button),
“clicked”, G CALLBACK (button clicked), NULL);

g_signal_connect() BREHAT G &R Fl—/Nid " EdiE . Xt ST 0] eR BRI E— bR .
if (gtk toggle button get active (GTK TOGGLE BUTTON (widget))) {

handler id = g signal connect (G _OBJECT (window),
“clicked”, G CALLBACK (button clicked), NULL);

} else { g signal handler disconnect (window, handler id); }

RBAUE GE TIEFAHERPIRES, WREH T, w0 15 W il ER I8 E -

Disconnect

Click v Connect

Figure: Disconnect

(M5 EI=%) Drag and Drop example

FEAE T — Aol Bl TR s — AT B AR JRATPRE A e — ST TR B 1, SR 34T T
VEHI T A REHE B AT BB RE A — AN 1

#include <gtk/gtk.h>

ghoolean on button press (GtkWidget* widget, GdkEventButton * event,
GdkWindowEdge edge) {

if (event—>type == GDK BUTTON PRESS) {

if (event—>button == 1)
{ gtk window begin move drag(GTK WINDOW(gtk widget get toplevel (widge
t)), event—>button, event—>x root, event—>y root, event—>time); }

return FALSE;

int main(int argc, char *argv[]) {
GtkWidget *window;
gtk init (&arge, &argv);
window = gtk window new (GTK _WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 230, 150);

gtk window set title(GTK WINDOW(window), “Drag & drop”);
gtk window set decorated (GTK WINDOW (window), FALSE);
gtk widget add events(window, GDK BUTTON PRESS MASK) ;

g signal connect (G OBJECT (window),
"button—press—event”, G_CALLBACK (on button press), NULL);

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show (window) ;
gtk main() :

return 0O;

T AR AR P 1) BA T 7 T] A e AR S T LAE AN T A JCIUME K B 1 R o

gtk window set decorated (GTK WINDOW (window), FALSE)

FATLER T & D P — S PE RS 2y o AU BB AT AN & 1 B IO HE R bR A

g signal connect (G OBJECT (window),
“"button—press—event”, G CALLBACK (on button press), NULL);

AL S button-press-event F6E 4w

ghoolean on button press (GtkWidget* widget, GdkEventButton* event,
GdkWindowEdge edge) {

if (event—>type == GDK BUTTON PRESS) {

if (event—>button == 1)
{ gtk window begin move drag(GTK WINDOW(gtk widget get toplevel (widge
t)), event—>button, event—>x root, event—>y root, event—>time); }

return FALSE;

}

ERH % on_button_pressOH, ATECE TSI AECERACD . AT 7 AR B
sy (i) o RIEFAHIRHAT R gtk _window _begin_move drag() TR
k.

(—ERE) A timer example

FERE T ORI BATTRE 17 VR s W] 25 2B Bl 3 I 8 o 2 IR 8l 5 1 P 3 2 AT T At — 24 o
HTARNS G BB, —NMERCI A IS A AL B8N .

#include <cairo.h>
#include <gtk/gtk.h>
#include <time. h>
static char buffer[256];
static gboolean

on_expose event (GtkWidget *widget, GdkEventExpose *event, gpointer
data) {

cairo t *kcr;

cr = gdk cairo create(widget—>window) ;

cairo move to(cr, 30, 30);

cairo_show text(cr, buffer);

cairo destroy(cr);

return FALSE;

static gboolean

time handler (GtkWidget *widget) {

if (widget—>window == NULL) return FALSE;

time t curtime;

struct tm *loctime;

curtime = time (NULL) ;

localtime (&curtime) ;

loctime

strftime (buffer, 256, “%T”, loctime);

gtk widget queue draw(widget);

return TRUE;

int main (int argc, char *argv[]) {

GtkWidget *window;

GtkWidget *darea;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;
darea = gtk drawing area new() ;

gtk container add(GTK CONTAINER (window), darea);

g signal connect (darea, “expose—event”, G CALLBACK (on_expose event),
NULL) ;

g signal connect (window, “destroy”, G CALLBACK (gtk main quit), NULL);

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;

gtk window set default size (GTK WINDOW(window), 170, 100) ;

gtk window set title(GTK WINDOW (window), “timer”);

g timeout add (1000, (GSourceFunc) time handler, (gpointer) window) ;
gtk widget show all (window) ;

time handler (window) ;

gtk main() ;

return 0O;

AP B L, i\ — N BRI T s SROR . TR TR, §USAEIRAT— i 442
F)id 1Y Cairo % T2,

g signal connect (darea,
“expose—event”, G CALLBACK (on expose event), NULL) ;

A TEICAE R K on_expose _event() i I A] (R . 3X AN 8 3 15 Sk

1T T98E expose-event . WERIXAME SRS E T, A Lt B IA TR B 224k 1)
— LRI

g timeout add (1000, (GSourceFunc) time handler, (gpointer) window) ;

LA SRR T A GTK+ RGN e 2y CEHZRIIATT LT o &

time_handler() wia i EIERATILE e 50 (1) 6 B AE BEE IR [R] AN (132 4T ZE61 7,
FeATB e TIXA Dy L Fp, —HiX/N % g_timeout_add()iR[H] FALSE, & #% e

¥ time_handlerQmt&isiT.

time handler (window) ;

AT ROAE R AL R e 2, SIS, RSES] LA IER.,
cairo t *kcr;
cr = gdk cairo create(widget—>window) ;
cairo move to(cr, 30, 30);
cairo_show text(cr, buffer);

cairo destroy(cr);

DL A RS T kA 2 i 1 g R s TR AR RS . i SRR AR T iR SR Z 2% T Cairo BREUER)—
Selb I iE VT) b E T ZetCode. . .

if (widget—>window == NULL) return FALSE;

FEBA TR & AT, AR BARESE o 1, SRR, B BREBER Qs T, A
T I, GERN SRR, KRRAIAEER T, Prelas Z0m BRI, BLikAE B2k
OFAKE e e FRAEL N

time t curtime;

struct tm *loctime;

curtime = time (NULL) ;

loctime = localtime (&curtime) ;

strftime (buffer, 256, “%T”, loctime);

T AR BRI T ARG I I T

gtk widget queue draw(widget) ;

KB ASEME D, RIS expose-event FiaBiiG RS 25 ATaBgR e (1]
Hogh AT

GTK+RZ T HINEE (GTK+ dialogs)

FERE DRIV EATHBATR A E 4 GTK+ RGP IR THE,

XTHER FUZARZ GUI N FIRE 3 AN i e (1R 8 73 o 0 i HE LS R AR 22 NIEAT A5 S AT KRR 2t o
FEVFSRUA, R UEHE 20 43I AT AN TR e EAT S 0 K TR o e A vy LU SR Ay A Kl »
o, B R N TR P IR EAS o RS — D AN B E T B

HEXiEHE (Message dialogs)

T RN UEHE RT LUS (I AEAR (S PR A, Bk R s — A AR o AR m] AR 35 30 7 i
K%.

#include <gtk/gtk.h>
void show info(GtkWidget *widget, gpointer window) {
GtkWidget *dialog;
dialog = gtk message dialog new(window,
GTK_DIALOG_DESTROY WITH PARENT,
GTK_MESSAGE_INFO,
GTK_BUTTONS_OK,
“"Download Completed”, “title”);

gtk window set title(GTK WINDOW(dialog), ”Information”);

gtk dialog run(GTK DIALOG(dialog)) ;

gtk widget destroy(dialog);

void show error (GtkWidget *widget, gpointer window) {

GtkWidget *dialog;

dialog = gtk message dialog new(window,

GTK_DIALOG_DESTROY_WITH_PARENT,

GTK MESSAGE_ERROR,

GTK_BUTTONS OK,

“Error loading file”):;

gtk window set title(GTK WINDOW(dialog), “Error”);

gtk dialog run(GTK DIALOG(dialog)) ;

gtk widget destroy(dialog);

void show question(GtkWidget *widget, gpointer window) {

GtkWidget *dialog;

dialog = gtk message dialog new(window,

GTK_DIALOG_DESTROY WITH PARENT,

GTK_MESSAGE_QUESTION,

GTK_BUTTONS_YES_NO,

“Are you sure to quit?”);

gtk window set title(GTK WINDOW(dialog), “Question”):;

gtk dialog run(GTK DIALOG (dialog)) ;

gtk widget destroy(dialog);

void show warning(GtkWidget *widget, gpointer window) {

GtkWidget *dialog;

dialog = gtk message dialog new(window,

GTK _DIALOG DESTROY WITH PARENT,

GTK_MESSAGE_WARNING,

GTK_BUTTONS OK,

“Unallowed operation”) ;

gtk window set title(GTK WINDOW(dialog), “Warning”);

gtk dialog run(GTK DIALOG(dialog)) ;

gtk widget destroy(dialog);

int main(int argc, char *argv[]) {

GtkWidget *window;

GtkWidget *table;

GtkWidget *info;

GtkWidget *warn;

GtkWidget *que;

GtkWidget *err;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 220, 150);
gtk window set title(GTK WINDOW(window), “Message dialogs”);
table = gtk table new(2, 2, TRUE);

gtk table set row spacings (GTK TABLE (table), 2);

gtk table set col spacings (GTK TABLE(table), 2);

gtk button new with label (“Info”);

info

warn = gtk button new with label ("Warning”) ;

que = gtk button new with label ("Question”) ;

gtk button new with label ("Error”) ;

err

gtk table attach(GTK TABLE (table), info, 0, 1, 0, 1,
GTK FILL, GTK FILL, 3, 3):

gtk table attach(GTK TABLE (table), warn, 1, 2, 0, 1, GTK FILL,
GTK FILL, 3, 3);

gtk table attach(GTK TABLE (table), que, 0, 1, 1, 2, GTK FILL,
GTK FILL, 3, 3);

gtk table attach(GTK TABLE (table), err, 1, 2, 1, 2, GTK FILL,
GTK FILL, 3, 3);:

gtk container add (GTK CONTAINER (window), table);
gtk container set border width (GTK CONTAINER (window), 15);

g signal connect (G OBJECT (info), “clicked”, G CALLBACK (show info),
(gpointer) window) ;

g signal connect (G OBJECT (warn), “clicked”,
G CALLBACK (show warning), (gpointer) window) ;

g signal connect (G OBJECT (que), “clicked”,
G_CALLBACK (show_question), (gpointer) window) ;

g signal connect (G_OBJECT (err), “clicked”, G_CALLBACK (show error),
(gpointer) window) ;

g signal connect swapped (G OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;

gtk main() ;

return 0O;

76 BT R, BeAT T R T PURIE B X EEHE . Information, Warning, Question #1 Error 14
HATTEAE

GtkWidget *dialog:

dialog = gtk message dialog new(window,
GTK_DIALOG DESTROY WITH PARENT,
GTK_MESSAGE QUESTION,
GTK_BUTTONS_YES NO,

“Are you sure to quit?”);

7% show _question() A, FRATLHEBEE T AXFUEHE. 21 EOGHEHE L F o8 %
gtk_message_dialog_new() . £ T RET IS E0R B R E R BRI 1)
SAEHE. RGEH B GTK_MESSAGE_QUESTION 754t W AT L i — > question X}
WHE. REHE GTK_BUTTONS_ YES NO ¥4k yes“A"no “BMutl. s — N33
e AT ELLE N HE P 7R IR 30

gtk window set title(GTK WINDOW(dialog), “Warning”);
gtk dialog run(GTK DIALOG (dialog)) ;

gtk widget destroy(dialog);

RXHL, AT BA TR S K B RS REBCE bl IR IS8T IXASRAE, e BEE T IX A
X UEAHE LI T-Z KA o

|'-- Information 1| Viarning

ﬁ Download Completed c Unallowed operation

" Pox " Dok

|'-I Question | ¢ Error x

@ A~E yoU EuUre to guit? ° Error loading file

" @uo @ Yes " Pox

GTK MHERFE EXIEHE (GtkAboutDialog)

GTK N FHFE PR AEHE R A A R I TR P KA S B i SR R o GRS 7 X 1 HE R LA Gk
RN IRERFI logo » AR, A, FRAL, PSS s DEZ RIE R R W T LIS, 45
FRfER, SCRIEEE, Bk LIRS,

#include <gtk/gtk.h>

void show about (GtkWidget *widget, gpointer data) {

GdkPixbuf *pixbuf = gdk pixbuf new from file(“battery.png”, NULL);
GtkWidget *dialog = gtk about dialog new() ;
gtk about dialog set name (GTK ABOUT DIALOG(dialog), “Battery”);

gtk about dialog set version(GTK ABOUT DIALOG(dialog), 70.97):

gtk about dialog set copyright (GTK ABOUT DIALOG(dialog), ”(c) Jan
Bodnar”) ;

gtk about dialog set comments(GTK ABOUT DIALOG(dialog), “Battery is
a simple tool for battery checking.”);

gtk about dialog set website (GTK _ABOUT DIALOG(dialog),
“http://www. batteryhg. net”) ;

gtk about dialog set logo(GTK ABOUT DIALOG(dialog), pixbuf);
g object unref (pixbuf), pixbuf = NULL;
gtk dialog run(GTK DIALOG (dialog));

gtk widget destroy(dialog);

int main(int arge, char *argv[]) {

GtkWidget *window;

GtkWidget *about;

GdkPixbuf *battery;

gtk init (&arge, &argv);

window = gtk window new (GTK _WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 220, 150);
gtk window set title(GTK WINDOW(window), “Battery”):

gtk container set border width (GTK CONTAINER (window), 15);
gtk widget add events(window, GDK BUTTON PRESS MASK) ;
battery = gtk image get pixbuf (GTK IMAGE (

gtk image new from file(“battery.png”)));

g signal connect (G OBJECT (window),
"button—press—event”, G CALLBACK (show about), (gpointer) window) ;

g signal connect swapped (G OBJECT (window), “destroy”,
G CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;
gtk main() ;

return 0O;

T AR R AT T A1 GtkAboutDialog LA K AZ PRI —SEkptk o FRATT B N T AR
S 1, 1% GTK M AR BEXHGEg Bk k. = —)

GtkWidget *dialog = gtk about dialog new() ;

BATEA R —/NFT) GtkAboutDialog 41
gtk about dialog set name(GTK ABOUT DIALOG(dialog), “Battery”);
gtk about dialog set version(GTK ABOUT DIALOG(dialog), 70.97);

gtk about dialog set copyright (GTK ABOUT DIALOG(dialog), ”“(c) Jan
Bodnar”) ;

RABRBOE IR BCE T AR LSRR -

GdkPixbuf *pixbuf = gdk pixbuf new from file(“battery.png”, NULL);

gtk about dialog set logo(GTK ABOUT DIALOG(dialog), pixbuf);

g object unref (pixbuf), pixbuf = NULL;

KBS A BT X HEBCE T4 logo Kbx.

About Batteny
T
Battery 0.9

Battery is a simple tool for battery checking.

[cl Jan Bodnar

http: fvww. batteryhg. net

£ x Close

Figure: GtkAboutDialog

GTK F A FEN T HE
(GtkFontSelectionDialog)

GTK FHARIEFA AT HE R HIR LR TS AR o IXAE —2e N TR P AR AR, JEHE
ST AL B B SRR R A o

&

#include <gtk/gtk.h>
void select font(GtkWidget *widget, gpointer label) {
GtkResponseType result;
GtkWidget *dialog = gtk font selection dialog new(”Select Font”);
result = gtk dialog run(GTK DIALOG(dialog));
if (result == GTK RESPONSE OK || result == GTK RESPONSE APPLY) ({
PangoFontDescription *font desc;
gchar *fontname = gtk font selection dialog get font name(
GTK_FONT SELECTION DIALOG (dialog)):

font desc = pango font description from string(fontname) ;

gtk widget modify font (GTK WIDGET (label), font desc);

g free(fontname) ;

gtk widget destroy(dialog);

int main(int argc, char *argv[]) {

GtkWidget *window;

GtkWidget *label;

GtkWidget *vbox;

GtkWidget *toolbar;

GtkToolItem *font;

gtk init (&arge, &argv);

window = gtk window new (GTK _WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 280, 200);

gtk window set title(GTK WINDOW(window), “Font Selection Dialog”);
vbox = gtk vbox new (FALSE, 0);

gtk container add(GTK CONTAINER (window), vbox) ;

toolbar = gtk toolbar new();

gtk toolbar set style(GTK TOOLBAR(toolbar), GTK TOOLBAR ICONS) ;

gtk container set border width (GTK CONTAINER (toolbar), 2);

font = gtk tool button new from stock (GTK STOCK SELECT FONT) ;
gtk toolbar insert(GTK TOOLBAR (toolbar), font, -1);

gtk box pack start(GTK BOX(vbox), toolbar, FALSE, FALSE, 5);

label = gtk label new(”ZetCode”) ;

gtk label set justify(GTK LABEL (label), GTK JUSTIFY CENTER) ;

gtk box pack start(GTK BOX(vbox), label, TRUE, FALSE, 5);

g signal connect (G OBJECT (font), “clicked”, G CALLBACK (select font),
label) ;

g signal connect swapped(G_OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return O;

e L AR 7S B, JRAT AR 1 R SRR T AR AR RS R R i TR L, AT
LR IEHE L 2 B ik

GtkWidget *dialog = gtk font selection dialog new(”Select Font”);

result = gtk dialog run(GTK DIALOG(dialog)) ;

BAVERT — A EIEER 1R GtkFontSelectionDialog.
if (result == GTK RESPONSE OK || result == GTK RESPONSE APPLY)
{ PangoFontDescription *font desc;
gchar *fontname = gtk font selection dialog get font name (
GTK_FONT_SELECTION_DIALOG (dialog)) ;
font desc = pango font description from string (fontname) ;
gtk widget modify font (GTK WIDGET (label), font desc);

g free(fontname); }

R R OK fell e JRATTD AR 2 T AR IIAORAR B, JF FAT i B SR T A= ey
PR

- Select Font x

Family: Style: i
URW Chancery L Book Onoligue g 2

URW Gothic L Demi ‘g

URW Palladio L g Dem Onigue .

[m—— o T Ta = 11

o4 rer ¥ - -
Preview:

abcdefghijk ABCDEFGHIK

[4
X Cancel @ Ok

Figure: GtkFontSelectionDialog

GTK R TR
(GtkColorSelectionDialog)

A4 S S0 GTK (R FEXTHERL R — N T L PR 1 HE .

#include <gtk/gtk. h>

void select font (GtkWidget *widget, gpointer label) {
GtkResponseType result;

GtkColorSelection *colorsel;
GtkWidget *dialog = gtk color selection dialog new(“Font Color”);
result = gtk dialog run(GTK DIALOG(dialog)) ;

if (result == GTK_RESPONSE OK) {

GdkColor color;
colorsel = GTK_COLOR SELECTION (
GTK COLOR SELECTION DIALOG(dialog)->colorsel);
gtk color selection get current color(colorsel, &color);
gtk widget modify fg(GTK WIDGET (label), GTK STATE NORMAL, &color) ;}

gtk widget destroy(dialog);

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *widget:
GtkWidget *label;
GtkWidget *vbox;
GtkWidget *toolbar;
GtkToolItem *font;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW (window), 280, 200);

gtk window set title(GTK WINDOW (window), “Color Selection Dialog”);

vbox = gtk vbox new (FALSE, 0);

gtk container add(GTK CONTAINER (window), vbox);

toolbar = gtk toolbar new();

gtk toolbar set style(GTK TOOLBAR (toolbar), GTK TOOLBAR ICONS) ;
gtk container set border width (GTK CONTAINER (toolbar), 2);
font = gtk tool button new from stock (GTK STOCK SELECT COLOR) ;
gtk toolbar insert (GTK TOOLBAR(toolbar), font, -1);

gtk box pack start (GTK BOX(vbox), toolbar, FALSE, FALSE, 5);
label = gtk label new(”ZetCode”) ;

gtk label set justify(GTK LABEL (label), GTK JUSTIFY CENTER);
gtk box pack start (GTK BOX(vbox), label, TRUE, FALSE, 5);

g signal connect (G OBJECT (font), “clicked”, G CALLBACK (select font),
label) ;

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;

gtk main() ;

return 0O;

ARG L 7T AR RS TERE R B A2 o AN T B FRAT T 58 B AR A 55 2 AR B B8 S A
.

GtkWidget *dialog = gtk color selection dialog new(”Font Color”);

result = gtk dialog run(GTK DIALOG(dialog)) ;

PSR AL A —) GtkColorSelectionDialog #ft:.
if (result == GTK RESPONSE OK) {
GdkColor color;

colorsel =
GTK_COLOR SELECTION (GTK COLOR SELECTION DIALOG(dialog)->colorsel) ;

gtk color selection get current color(colorsel, &color) ;

gtk widget modify fg(GTK WIDGET (label), GTK STATE NORMAL, &color);

}

AT OK 5, BA TR 2] TASCIE A BB AR R, FFRATHEIXA BB SR AR 2 371
Bt .

- Font Color x

, Hue: 216 : Red: 18 :
Saturation; 85 : Green. 58 :
Value: 48 Blue: 118

\

Color mame: #123476

N -

F
& Cancel @ Ok

Figure: GtkColorSelectionDialog

GTK+H 4 (GTK+ Widgets)

FEAF] GTKHREF BRI ARE T, A PR AN K L R DI LA GTK+RIPHIRE T -

ETCHEI], RN GUI N TRRFP I dEAT . TEAR Z AR SRR, —SORp g (A (5
WS T RZH G T RS (toolkits) AL P4 RS M A IbAE 7o B, %24, &
FHESH R MFEI A . BT R GTKHIXFEMGFE T RE, —ITHAMb Bt N 274
BEog: OREFMIAFRECREAE — DA B N . BRI TR — R, BOBE 1L IR, Badhgh
R, BERE AL

GtkButton

GtkButton s —FiR] .5 IR 1F, T H BT Tk — s,

#include <gtk/gtk.h>

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *fixed;
GtkWidget *button;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set title(GTK WINDOW (window), “GtkButton”);

gtk window set default size(GTK WINDOW(window), 230, 150);

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
fixed = gtk fixed new();

gtk container add (GTK CONTAINER (window), fixed);

button = gtk button new with label ("Quit”);

gtk fixed put (GTK FIXED(fixed), button, 50, 50);

gtk widget set size request(button, 80, 35);

g signal connect (G OBJECT (button), “clicked”,
G CALLBACK (gtk main quit), G OBJECT (window)) ;

g signal connect swapped(G OBJECT (window), “destroy”,
G _CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return O;

RN AR B 1) KSR TR — LRI PR AR fixed AP M 0R$% B
MNMEHE, Rk

button = gtk button new with label ("Quit”);

FHBXBACUHE AR T AT RRZE N GtkButton FfF.

g signal connect (G OBJECT (button), “clicked”,
G _CALLBACK (gtk main quit), G_OBJECT (window)) ;

WG FATHES 5 clicked HIXAMEHIBATINE . EME 551K K% gtk_main_quit()
I SAT, XA R EIN D) REIE S SRR P 28 EIR

GtkButton

Cluit

Figure: GtkButton

GtkCheckButton

GtkCheckButton [FIFfE—MafE, APRRES. “TF AR, TR — Nl IR EiRd.

#include <gtk/gtk.h>
void toggle title(GtkWidget *widget, gpointer window) {
if (gtk toggle button get active(GTK TOGGLE BUTTON (widget))) {
gtk window set title(window, “GtkCheckButton”);

} else { gtk window set title(window, ”7);:}

int main(int argc, char** argv) f{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *check;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 230, 150);

gtk window set title(GTK WINDOW (window), “GtkCheckButton”);
frame = gtk fixed new();

gtk container add(GTK CONTAINER (window), frame);

check = gtk check button new with label (“Show title”);

gtk toggle button set active (GTK TOGGLE BUTTON (check), TRUE) ;

GTK_WIDGET UNSET FLAGS (check, GTK CAN FOCUS) ;
gtk fixed put (GTK FIXED(frame), check, 50, 50);

g signal connect swapped (window,
“destroy”, G_CALLBACK (gtk main quit), NULL);

g signal connect(check, “clicked”, G CALLBACK (toggle title),
(gpointer) window) ;

gtk widget show all (window) ;
gtk main() ;

return 0O;

PATK BRI T AR B RESHRIE R GtkCheckButton FERAZZ I AE 1L .
check = gtk check button new with label (“Show title”);

gtk toggle button set active (GTK TOGGLE BUTTON (check), TRUE);

—> GtkCheckButton Mg ER T IF HERVON e CGIRENIT) . BUARANTAR—IT 4
Iy NI TN R

GTK_WIDGET_UNSET_FLAGS (check, GTK_CAN_FOCUS) ;

RRATAE RO T3 AR BN IS, X St AR fay 5, 2 IR BAN KB A AL ME 13
R b ANHE”, A NARIFEA R+)

if (gtk toggle button get active(GTK TOGGLE BUTTON (widget))) {
gtk window set title(window, “GtkCheckButton”);

} else {gtk window set title(window, ””);}

KR, DHREMSE T ARl (R B RS IR IE 1 GtkCheckButton FPRASZALTTAZ L .

'm GtkCheckButton = O X|

¥ Shiow LiLle

Figure: GtkCheckButton

GtkFrame

GtkFrame J&— Rt IAELE, B n] DU AR —MR%E CTaRTE) .

#include <gtk/gtk.h>

int main(int argec, char *argvl[]) {
GtkWidget *window;
GtkWidget *table;
GtkWidget *framel;

GtkWidget *frame?2;

GtkWidget *frame3;

GtkWidget *frame4;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 250, 250);

gtk window set title(GTK WINDOW (window), “GtkFrame”);

gtk container set border width (GTK CONTAINER (window), 10);

table = gtk table new(2, 2, TRUE);

gtk table set row spacings(GTK TABLE (table), 10);

gtk table set col spacings(GTK TABLE (table), 10);

gtk container add(GTK CONTAINER (window), table);

framel = gtk frame new(”Shadow In”);

gtk frame set shadow type(GTK FRAME (framel), GTK SHADOW IN);

frame2 = gtk frame new(”Shadow Out”);

gtk frame set shadow type(GTK FRAME (frame2), GTK SHADOW OUT) ;

frame3 = gtk frame new(”Shadow Etched In”);

gtk frame set shadow type(GTK FRAME (frame3), GTK SHADOW ETCHED IN) ;

frame4 = gtk frame new(”Shadow Etched Out”);

gtk frame set shadow type (GTK FRAME (frame4),
GTK_SHADOW ETCHED OUT) :

gtk table attach defaults(GTK TABLE (table), framel, 0, 1, 0, 1);

gtk table attach defaults(GTK TABLE (table), frame2, 0, 1, 1, 2);

gtk table attach defaults(GTK TABLE (table), frame3, 1, 2, 0, 1);

gtk table attach defaults(GTK TABLE (table), frame4, 1, 2, 1, 2);

g signal connect swapped (G OBJECT (window),
"destroy”, G CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;
gtk main() ;

return O;

AT) FAT TS T DURPAN] KU (1) frame HESE o S SUHE AL 2 R s A S i 264 T 410 Jmd
.

framel = gtk frame new(”Shadow In”);

gtk frame set shadow type(GTK FRAME (framel), GTK SHADOW IN);

TAVER T —A GtkFrame #ff, Jf Hit 4 E 7K (shadow type) .

GtlkFrame
Shadow In Shadow Etched In
Shadow Out Shadow Etched Out

Figure: GtkFrame

GtkLabel

GtkLabel IZIREIRWISE,, 2 Aok R 3071,

#include <gtk/gtk. h>

int main(int argec, char *argv[]) {
GtkWidget *window;
GtkWidget *label;
gtk init (&arge, &argv);
window = gtk window new (GTK _WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set title(GTK WINDOW(window), “Nymphetamine”);
gtk window set default size(GTK WINDOW(window), 350, 400) :;

label = gtk label new(”Cold was my soul\n\Untold was the pain\n\I faced
when you left me\n\A rose in the rain....\n\So I swore to the razor\n\That
never, enchained\n\Would your dark nails of faith\n\Be pushed through my
veins again\n\\n\Bared on your tomb\n\I'm a prayer for your
loneliness\n\And would you ever soon\n\Come above onto me?\n\For once
upon a time\n\On the binds of your lowliness\n\I could always find the
slot for your sacred key ”);

gtk label set justify(GTK LABEL (label), GTK JUSTIFY CENTER) ;
gtk container add(GTK CONTAINER (window), label);

g signal connect swapped(window, “destroy”, G CALLBACK
(gtk main quit), NULL);

gtk widget show all (window) ;

gtk main() ;

return 0O;

AR BA TS T H ARk .

label = gtk label new(”Cold was my soul\n\Untold was the pain\n\...

FATZHAER T —A> GtkLabel ¥ft. TATHH] T HATFR AT Bon AR .

gtk _label set justify(GTK_LABEL (label), GTK_ JUSTIFY_ CENTER) ;

WS~ ~ AT HE R AE R, KT B

Nymphetamine

Cold was my soul
Urtold was the pain
| faced when you [eft me
A rose in the rain...
So | swore to the razor
That never, enchained
Would your dark rmails of faich

Be pushed through my veins again

Oared on your tomb
I'm a prayer for your loneliness
And would you ever soon
Come above onto me?
For once upon a time
On the binds of your lowliness

| could always find the slot for your sacred key

Figure: GtkLabel

7t GtkLabel #JfEh It fets i HEE markup o Gt kA e ke iEYE) R
(R AN 78] 5t 2 FE s FRAT T2 AT 5 J X AN AR 1

#include <gtk/gtk. h>

int main(int argec, char *argvl[]) {

GtkWidget *window;

GtkWidget *label;

gtk init (&argec, &argv);

window = gtk window new (GTK _WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;

gtk window set title(GTK WINDOW (window), “markup label”);

char *str = “ZetCode, Knowledge only matters”;

label = gtk label new(NULL) ;

gtk label set markup(GTK LABEL (label), str);

gtk label set justify(GTK LABEL (label), GTK JUSTIFY CENTER) ;

gtk container add(GTK CONTAINER (window), label);

gtk widget show(label);

gtk window set default size(GTK WINDOW(window), 300, 100);

g signal connect (window, “destroy”, G CALLBACK (gtk main quit),
NULL) ;

gtk widget show (window) ;

gtk main() ;

return 0O;

AT, FRATTLE B4 ST S R R
char *str = “ZetCode, Knowledge only matters”;
XA BN ST N2

label = gtk label new(NULL) ;

gtk label set markup(GTK LABEL (label), str);

PR T IR, RRIEHERN ST (markup text) BSIEIFRRERPER . K
Dt et —_—!

markup label

ZetCode, Knowledge only matters

Figure: markup labe
GTK+7 1444 1I(Widgets)
TEARF) GTKHREF B, FAT ISR BEGRSE 0] K G AR JE IS % Fh 25 FE R R

GtkComboBox

GtkComboBox HFAF FIE LEFE I AR AN R PR R SR AR 22 8 TP HEAT LB 6

#include <{gtk/gtk.h>

void combo selected (GtkWidget *widget, gpointer window) {
gchar *text = gtk combo box get active text (GTK COMBO BOX (widget)) ;
gtk label set text(GTK LABEL (window), text);

g free(text);

int main(int argec, char *argvl[]) {

GtkWidget *window;

GtkWidget *fixed;

GtkWidget *combo;

GtkWidget *label;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;

gtk window set title(GTK WINDOW(window), “GtkCombo”) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 230, 150);

fixed = gtk fixed new();

combo = gtk combo box new text();

gtk combo box append text (GTK COMBO BOX(combo), “Ubuntu”);

gtk combo box append text (GTK COMBO BOX(combo), “Mandriva”);

gtk combo box append text (GTK COMBO BOX(combo), “Fedora”);

gtk combo box append text (GTK COMBO BOX(combo), “Mint”);

gtk combo box append text (GTK COMBO BOX(combo), “Gentoo”);

gtk combo box append text (GTK COMBO BOX(combo), “Debian”);

gtk fixed put (GTK FIXED(fixed), combo, 50, 50);

gtk container add (GTK CONTAINER (window), fixed);

label = gtk label new(”-");

gtk fixed put (GTK FIXED(fixed), label, 50, 110);

g signal connect swapped (G OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

g signal connect (G OBJECT (combo),
”changed”, G_CALLBACK (combo_selected), (gpointer) label);

gtk widget show all (window) ;

gtk main() ;

return O;

TR IEANMG) T BRI AN N RLEFHE (combo box) FI—MRAE (label) o EIXH
NRLEFEHEAT NI AATTIR AL R Linux #84E RGN R RATRCA . A28 b () N 282
AT LRI LI A Ao

combo = gtk combo box new text();

gtk combo box append text (GTK COMBO BOX(combo), “Ubuntu”);

gtk combo box append text (GTK COMBO BOX(combo), “Mandriva”);

gtk combo box append text (GTK COMBO BOX(combo), “Fedora”);

gtk combo box append text (GTK COMBO BOX(combo), “Mint”);

gtk combo box append text (GTK COMBO BOX(combo), “Gentoo”);

gtk combo box append text (GTK COMBO BOX(combo), “Debian”);

fE BT, FATER T 4 GtkComboBox #ff; #RJ5 X Linux KA AR A% 530) b
%

label = gtk label new(”-");

AR AT AL T — M FRaER

gchar *text = gtk combo box get active text (GTK COMBO BOX (widget)) ;

gtk label set text(GTK LABEL (window), text);

g free(text);

TR R B, AT R IR A T SCAR N A, IR AR RS T AR . 7R
J7 A GTK+4RfE e A Bor: i gtk _combo_box_get_active text() iR [H{E
S T BRI RTINS Y 2% o XA U, FRAT AT A BB O N 1) P A7 T

- GtkComboBox

Ubutu | =

Ut

Figure: GtkComboBox

GtkHSeparator

GtkHSeparator it —4K P Hld. XW)E T Mt fh. X— KRR AL T3
BT AR . b S 2 Mt /2 B EL 7 B4t fF GtkVSeparator .

#include <gtk/gtk.h>
int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *labell:
GtkWidget *label2:
GtkWidget *hseparator;

GtkWidget *vbox;
gtk init (&arge, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set title(GTK WINDOW(window), “GtkHSeparator”);

gtk window set resizable (GTK WINDOW(window), FALSE) ;

gtk container set border width (GTK CONTAINER (window), 20);

labell = gtk label new(”Zinc is a moderately reactive, blue gray metal
\that tarnishes in moist air and burns in air with a bright bluish—green
flame, \giving off fumes of zinc oxide. It reacts with acids, alkalis and
other non—metals. \If not completely pure, zinc reacts with dilute acids
to release hydrogen.”);

gtk label set line wrap(GTK LABEL (labell), TRUE);

label2 = gtk label new(”Copper is an essential trace nutrient to all
high \plants and animals. In animals, including humans, it is found
primarily in \the bloodstream, as a co—factor in various enzymes, and in
copper—-based pigments. \However, in sufficient amounts, copper can be
poisonous and even fatal to organisms.”):;

gtk label set line wrap(GTK LABEL (label2), TRUE);

vbox = gtk vbox new (FALSE, 10);

gtk container add (GTK CONTAINER (window), vbox) ;

hseparator = gtk hseparator new() ;

gtk box pack start(GTK BOX(vbox), labell, FALSE, TRUE, 0);

gtk box pack start(GTK BOX(vbox), hseparator, FALSE, TRUE, 10);

gtk box pack start(GTK BOX (vbox), label2, FALSE, TRUE, 0);

g signal connect swapped (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;
gtk main() ;

return O;

DL ARAS IE S AE M ERATTRE R T WA label #1F, WA TP RL A0 R I8 @ X B W IX
AN K S —> Ak horizontal 1) GtkHSeparator #2573 #1TT K T o XAEG K, AT
JPA SR Z L AN AT 2)

labell = gtk label new(”Zinc is a moderately reactive, blue gray metal
\that tarnishes in moist air and burns in air with a bright bluish—green
flame, \giving off fumes of zinc oxide. It reacts with acids, alkalis and
other non—metals. \If not completely pure, zinc reacts with dilute acids
to release hydrogen.”);

BATE A T A label #F, WZRERTE o
gtk label set line wrap(GTK LABEL (label2), TRUE);
RPFA AT BT R 48 SR AT AT
hseparator = gtk hseparator new() ;
SRJGBAT T LA T — AN K ##% . (horizontal separator)
gtk box pack start (GTK BOX(vbox), labell, FALSE, TRUE, 0);

gtk box pack start(GTK BOX (vbox), hseparator, FALSE, TRUE, 10);

gtk box pack start(GTK BOX(vbox), label2, FALSE, TRUE, 0);

B B T 20 F 28 TBCE AL P AR ZE 1]

GtkH5eparator

Zinc i 8 moderately reactive, bluz gray metal that
tarnishes in moist air and burns in air with a bright bluish-
greer flame, giving off fumes of zinc ocide. It ~eacts with
acids, alkalis and other non-rretals.|f 1ot comaletely pure,

Znc reacts with dilute acids to release hydrogen.

Copper is an essentizl trace nutrient to all hgh plarts and
animas. In animals. ircludng humans. it is found arimarily
in the bloodstream, as a co-facto~ in various enzymes, and
in copper-based pgmerts. However, in sUficient amourts,

coppe” can be poisonous and even fatal to organisms.

Figure: GtkHSeparator

GtkEntry

GtkEntry #fF2 a7 MALSE — AT AT SCR R AME R R o It 32 20 TR EAT 5
ATSCA AN o

#include <gtk/gtk.h>
int main(int argc, char *argvl]) {
GtkWidget *window;
GtkWidget *table;
GtkWidget *labell;
GtkWidget *label2;
GtkWidget *label3;
GtkWidget *entryl;

GtkWidget *entry2;:

GtkWidget *entry3;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set title(GTK WINDOW(window), “GtkEntry”);

gtk container set border width (GTK CONTAINER (window), 10);

table = gtk table new(3, 2, FALSE);

gtk container add(GTK CONTAINER (window), table);

labell = gtk label new(”"Name”);

label2 = gtk label new(“Age”);

label3 = gtk label new(”Occupation”);

gtk table attach(GTK TABLE (table), labell, 0, 1, 0, 1,
GTK FILL | GTK SHRINK, GTK FILL | GTK SHRINK, 5, 5):

gtk table attach(GTK TABLE (table), label2, 0, 1, 1, 2,
GTK FILL | GTK SHRINK, GTK FILL | GTK SHRINK, 5, 5):

gtk table attach(GTK TABLE (table), label3, 0, 1, 2, 3,

GTK_FILL | GTK_SHRINK, GTK FILL | GTK SHRINK, 5, 5);

entryl = gtk entry new() ;
entry2 = gtk entry new() ;

entry3 = gtk entry new() ;

gtk table attach(GTK TABLE (table), entryl, 1, 2, 0, 1,
GTK_FILL | GTK SHRINK, GTK FILL | GTK SHRINK, 5, 5);:

gtk table attach(GTK TABLE (table), entry2, 1, 2, 1, 2,
GTK_FILL | GTK SHRINK, GTK FILL | GTK SHRINK, 5, 5);:

gtk table attach(GTK TABLE (table), entry3, 1, 2, 2, 3,
GTK_FILL | GTK SHRINK, GTK FILL | GTK SHRINK, 5, 5);:

gtk widget show(table) ;

gtk widget show(labell)

gtk widget show(label2):;

gtk widget show(label3);

gtk widget show(entryl);

gtk widget show(entry2);

gtk widget show(entry3);

gtk widget show(window) ;

g signal connect (window, “destroy”, G CALLBACK (gtk main quit), NULL) :

gtk main() ;

return 0O;

FEARTT IRV F P BATT 1) 5K R 7R 1 A — A SCAR S AHE RN 23 1055 I [— A%

table = gtk table new(3, 2, FALSE);

gtk container add(GTK CONTAINER (window), table);

N T ITAEEAVE B, BAVEN T table A&t

gtk entry new() ;

entryl

entry2 = gtk entry new() ;

entry3 = gtk entry new() ;

AR AN SO NAE

gtk table attach(GTK TABLE (table), entryl, 1, 2, 0, 1,
GTK FILL | GTK SHRINK, GTK FILL | GTK SHRINK, 5, 5);

gtk table attach(GTK TABLE (table), entry2, 1, 2, 1, 2,
GTK FILL | GTK SHRINK, GTK FILL | GTK SHRINK, 5, 5);

gtk table attach(GTK TABLE(table), entry3, 1, 2, 2, 3,

GTK_FILL | GTK_SHRINK, GTK FILL | GTK SHRINK, 5, 5);

FEAFIBCE 2 table 4 fF

GtkEntry

MName

Age

Oeccupation

Figure: GtkEntry

Gtklmage

GtkImage DI g2 KBRS 1.

#include <gtk/gtk. h>

int main(int argec, char *argv[]) {
GtkWidget *window;
GtkWidget *image;
gtk init (&arge, &argv);
window = gtk window new (GTK _WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 230, 150);
gtk window set title(GTK WINDOW(window), “Red Rock”);
gtk window set resizable (GTK WINDOW (window), FALSE) ;
gtk container set border width (GTK CONTAINER (window), 2);
image = gtk image new from file(“redrock.png”);
gtk container add(GTK CONTAINER (window), image) ;

g signal connect swapped (G OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;
gtk main() ;

return 0O;

FEBATAATFIZAE 7 rp . BATR KT R, BADZWAHE MR S GTK+ Rk
(K. XA i Red Rock A7 - W AR se IO i o W RARE IR 1] LN 80X A& . here.

gtk container set border width(GTK CONTAINER (window), 2);

BAVE XA B REE T 2px FEAHEKR N,
image = gtk image new from file (“redrock.png”);

gtk container add(GTK CONTAINER (window), image) ;

AN AEZSCE R T - %, IFHEAR A Rk

] Red Rock

I* .

. '.I. 1ijﬁ§ ‘ring:ihhlri.

Figure: Gtklmage

GtkStatusbar

¥tk GtkStatusbar J& S EE L F R Btk A5 SR 10« Aol 5 % B s CE T N R
AR

#include <gtk/gtk.h>
void button pressed(GtkWidget *widget, gpointer window) {
gchar *str;

str = g strdup printf(“Button %s
clicked”, gtk button get label (GTK BUTTON (widget))) ;

gtk statusbar push(GTK STATUSBAR (window), gtk statusbar get context id
(GTK STATUSBAR (window), str), str);

g free(str);

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *fixed;
GtkWidget *buttonl;
GtkWidget *button2;
GtkWidget *statusbar;
GtkWidget *vbox;
gtk init (&argc, &argv);
window = gtk window new(GTK WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 280, 150);
gtk window set title(GTK WINDOW (window), “GtkStatusbar”);
vbox = gtk vbox new (FALSE, 2);
fixed = gtk fixed new();
gtk container add(GTK CONTAINER (window), vbox);

gtk box pack start (GTK BOX (vbox), fixed, TRUE, TRUE, 1);

buttonl = gtk button new with label ("OK”);

gtk widget set size request(buttonl, 80, 30);

button2 = gtk button new with label (“Apply”) ;

gtk widget set size request(button2, 80, 30);

gtk fixed put (GTK FIXED(fixed), buttonl, 50, 50);

gtk fixed put (GTK FIXED(fixed), button2, 150, 50);

statusbar = gtk statusbar new() ;

gtk box pack start(GTK BOX(vbox), statusbar, FALSE, TRUE, 1);

g signal connect (G OBJECT (buttonl),
“clicked”, G_CALLBACK (button pressed), G OBJECT (statusbar));

g signal connect (G OBJECT (button2),
“clicked”, G_CALLBACK (button pressed), G OBJECT (statusbar));

g signal connect swapped (G _OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;
gtk main() ;

return 0O;

FEBA LA FX BACE = B mh . BA TS T AMLHLAT—ASRESR . R BAT %, — 545
SMEARPEEF P Bosdike WA, RSP TSI EA L T 1.

gchar *str;

str = g strdup printf(“Button %s clicked”,
gtk button get label (GTK BUTTON (widget))) ;

RHEBAER T %M.

gtk statusbar push (GTK STATUSBAR (window), gtk statusbar get context id
(GTK STATUSBAR (window), str), str);

AR5 FATHEIZ 4 SR AR S

GtkStatusbar

Ok Apply

Bucton Apply clicked

Figure: GtkStatusbar

GtklconView

tfF GtklconView (L BEAE HRAE— IS s — R A E br

#include <gtk/gtk.h>
#include <assert.h>
enum{ COL DISPLAY NAME, COL PIXBUF, NUM COLS};
GtkTreeModel * init model (void) {
GtkListStore *list store;
GdkPixbuf *pl, *p2, *p3, *p4;
GtkTreelter iter;
GError *err = NULL;

pl = gdk pixbuf new from file(“ubuntu.png”, &err);

p2 = gdk pixbuf new from file(“gnumeric.png”, &err);
p3 = gdk pixbuf new from file(”“blender.png”, &err);
p4 = gdk pixbuf new from file(“inkscape.png”, &err):;

assert (err==NULL) ;

list _store = gtk list store new(NUM COLS, G TYPE STRING,
GDK_TYPE PIXBUF) ;

int 1 = 0;

for (i; i < 50; i++) {

gtk list store append(list store, &iter);

gtk list store set(list store, &iter, COL DISPLAY NAME, “ubuntu”,
COL_PIXBUF, pl, -1);

gtk list store append(list store, &iter);

gtk list store set(list store, &iter, COL DISPLAY NAME,
“gnumeric”, COL PIXBUF, p2, -1);

gtk list store append(list store, &iter);

gtk list store set(list store, &iter, COL DISPLAY NAME, “blender”,
COL PIXBUF, p3, -1);

gtk list store append(list store, &iter);

gtk list store set(list store, &iter, COL DISPLAY NAME,
”inkscape”, COL PIXBUF, p4, -1);

return GTK TREE MODEL (list_ store) ;

int main (int argec, char *argv[]) {

GtkWidget *window;

GtkWidget *icon view;

GtkWidget *sw;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set title(GTK WINDOW (window), “Icon View”);

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk container set border width (GTK CONTAINER (window), 10);

gtk widget set size request(window, 350, 330);

sw = gtk scrolled window new(NULL, NULL);

gtk container add(GTK CONTAINER (window), sw);

gtk scrolled window set policy(GTK SCROLLED WINDOW (sw),
GTK POLICY AUTOMATIC, GTK POLICY AUTOMATIC) ;

gtk scrolled window set shadow type (GTK SCROLLED WINDOW (sw),
GTK _SHADOW IN) ;
icon view = gtk icon view new with model (init model());

gtk container add (GTK CONTAINER (sw), icon view);

gtk icon view set text column(GTK ICON VIEW(icon view),
COL_DISPLAY NAME) ;

gtk icon view set pixbuf column(GTK ICON VIEW(icon view), COL PIXBUF) ;

gtk icon view set selection mode (GTK ICON VIEW(icon view), GTK SELECTI
ON MULTIPLE) ;

g signal connect (window, “destroy”, G CALLBACK(gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return 0O;

FEAT AR B, BATE R T 200 AN/NEDR. AATIZ 3 YA 25 48 T H 1 B

gdk pixbuf new from file(“ubuntu.png”, &err);

pl

p2 = gdk pixbuf new from file(“gnumeric.png”, &err);

p3 = gdk pixbuf new from file(“blender.png”, &err);

p4 = gdk pixbuf new from file(“inkscape.png”, &err);

FAMTIHAE SCAF BN T DU b

list store =
gtk list store new(NUM COLS, G _TYPE STRING, GDK TYPE PIXBUF) ;

BATEALAE SCARRE R RIX (pixbuf) (1%
gtk list store append(list store, &iter);

gtk list store set(list store, &iter, COL DISPLAY NAME, “ubuntu”,
COL _PIXBUF, pl, -1);

X BACH, IR B AR BN SIHE % R AT X .

icon view = gtk icon view new with model (init model());

gtk container add(GTK CONTAINER(sw), icon view);

gtk icon view set text column(GTK ICON VIEW(icon view),

COL_DISPLAY NAME) ;

gtk icon view set pixbuf column(GTK ICON VIEW(icon view), COL PIXBUF) ;

e, BADERT 4> GtklconView R RICEIRS M EbR U Sl GFAE:
T SRR R R A HE S 1, 12 SR MVC IR B A R AR 2, A A OGS D)

Icon View

‘ :‘; ﬂ ;{Ex

Lburtu gnumeric blender inkscape

38 P

ubunty gnumeric blender inkscape

38 D

-
-

ubuntu gnumeric blender inkscape

Figure: Icon View

GTK+H RIRRIR 1 R M1 (Gtk TreeView)

TEARFE] GTK+FEF R ARE Y, BT KK A AR5 A s = AR
——GtkTreeView .

GtkTreeView & —ANm BRI, FFABAREE AT LA H 2 1) 350 471 2% 5 2 IR 1)
G o XA E AT LA — B E 24T LIRS ? 1E 2R T K4 S MVC (Model
View Controller) %eilHESE . it & Bt fl 2 om oy KOS 8T 7 —Fh 2 B 44

ZHTIRAA B AGX AN, TR AR GtktreeView R4 HR i S A 2 2ot JLAN I ST [0] 5 45

¥4 (objects) . It GtkCellRenderer jtihE T 1t GtkTreeViewColumn. 5

GG U R HEAT s 2L . GtkListStore 1 GtkTreeStore (KT #g A RBIAR Y
(model) MER] . Wl & A AT SR AL BEAN 3 41K BiAE Gtk TreeView s 05

M. GtkTreelter W& N4 BT T7E GtkTreeView KJEH, A7 A (K46 31 T 14

f£. GtkTreeSelection N|J& kAL BEIE I) .

—AME I B R MR B (Simple List View)

FEIZANBIT HoRE 1) KK R — AN AR O . s B AL DU SOR

#include <gtk/gtk.h>

enum{ LIST ITEM = 0, N COLUMNS}:
static void init list(GtkWidget *list) {

GtkCellRenderer *renderer;
GtkTreeViewColumn *column;

GtkListStore *store;

renderer = gtk cell renderer text new();

column = gtk tree view column new with attributes(“List Items”,
renderer, “text”, LIST ITEM, NULL);

gtk tree view append column(GTK TREE VIEW(list), column);
store = gtk list store new(N COLUMNS, G TYPE STRING);
gtk tree view set model (GTK TREE VIEW(list), GTK TREE MODEL (store)) ;

g object unref(store) ;

static void add to list(GtkWidget *list, const gchar *str) {
GtkListStore *store;

GtkTreelter iter;

store =
GTK _LIST STORE(gtk tree view get model (GTK TREE VIEW(list))):

gtk list store append(store, &iter);

gtk list store set(store, &iter, LIST ITEM, str, —1);

void on changed(GtkWidget *widget, gpointer label) {

GtkTreelter iter;

GtkTreeModel *model;

char *value;

if (gtk tree selection get selected(GTK TREE SELECTION (widget),
&model, &iter)) {

gtk tree model get(model, &iter, LIST ITEM, &value, -1);

gtk label set text(GTK LABEL (label), value);

g free(value);

int main (int argc, char *argv[]) {

GtkWidget *window;

GtkWidget *1ist;

GtkWidget *vbox;

GtkWidget *label;

GtkTreeSelection *selection;

gtk init (&arge, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk container set border width (GTK CONTAINER (window), 10);

gtk widget set size request(window, 270, 250);

gtk window set title(GTK WINDOW(window), “List View”);

list = gtk tree view new();

gtk tree view set headers visible (GTK TREE VIEW(list), FALSE);
vbox = gtk vbox new (FALSE, 0);

gtk box pack start(GTK BOX(vbox), list, TRUE, TRUE, 5);

label = gtk label new(””);

gtk label set justify(GTK LABEL (label), GTK JUSTIFY CENTER) ;
gtk box pack start(GTK BOX(vbox), label, FALSE, FALSE, 5);

gtk container add (GTK CONTAINER (window), vbox);

init list(list);

add to list(list, “Aliens”);

add to list(list, “Leon”);

add to list(list, “Capote”):

add to list(list, “Saving private Ryan”);

add to list(list, “Der Untergang”);

selection = gtk tree view get selection(GTK TREE VIEW(list));

g signal connect(selection, “changed”, G CALLBACK (on changed),
label) ;

g signal connect (G OBJECT
(window), “destroy”, G CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;

gtk main ();

return 0O;

FEBAT LT X AN SRS R, AR 7 KK RIS 5 N4 H I E T GtkTreeView 4
Fi. FATTE Se7E window R E — GtkVBox #fE. fEIXD GtkVBox ST PN
f£: GtkTreeView fl GtkLabel.

list = gtk tree view new();

gtk tree view set headers visible (GTK TREE VIEW(list), FALSE);

LA A T A GtkTreeView ffFf HA S E 4 FALSE BRI —4%,
label = gtk label new(””);
gtk label set justify(GTK LABEL (label), GTK JUSTIFY CENTER);

gtk box pack start (GTK BOX(vbox), label, FALSE, FALSE, 5);

LT —A GtkLabel #ff, Jf HAL AL GtkTreeView MFHT 7, BB ET.

init list(list);

WH listQea %, WIisterIf list,
renderer = gtk cell renderer text new();

column = gtk tree view column new with attributes(“List
Items”, renderer, “text”, LIST ITEM, NULL);

gtk tree view append column(GTK TREE VIEW(list), column);

R R R, BATAR T JAT—#41 GtkTreeView.
store = gtk list store new(N COLUMNS, G TYPE STRING) ;

gtk tree view set model (GTK TREE VIEW(list), GTK TREE MODEL (store)) ;

B N RIAT LA T —/ GtkListStore #ff:(a model) A JEHE S list 190 E .
g object unref(store);
XA model ¥ A SIS, LIRS A2 W) .
add to list(list, “Aliens”);
L AAEVH add_to_list O ey, SEHLR list ThAERG I — A D) fg .
store = GTK LIST STORE(gtk tree view get model (GTK TREE VIEW(list))):

gtk list store append(store, &iter);

gtk list store set(store, &iter, LIST ITEM, str, —-1);
i E add_to_list() #, FEATFIH RS K% gtk_tree_view_get_model) k3K
model. A4 BHT I —47 HAEAT h I EHEAZ 4 model 4bFE, X HIF 5B GtkTreelter >k
SERIX AT RE -

selection = gtk tree view get selection(GTK TREE VIEW(list));
GtkTreeSelection Br FIFATTEHMA K. EXE, EAEFH GtkTreeView ¥ H3)
KA RS B 58 SO 0 AT 1) TE R i L 21 (1) 72 22 458 pR 4

gtk _tree_view_get_selection().

g signal connect(selection, “changed”, G CALLBACK (on changed), label) ;

EAARLF B T, 8 changed {555 GtkTreeSelection 455E, FAl Tk vl LU (911 &
¥ on_changed)& THA,

gtk tree model get(model, &iter, LIST ITEM, &value, -1);
gtk label set text(GTK LABEL (label), value);
AN R BCE, BT T AT ROAE, AR i iter RIRINA.

| List View — | O =

Aliens

Leon

Saving private Ryan

Oer Urtergang

Capote

Figure: List View

B4 %% (Advanced List View)

FEEE =AM b, AT AERT 2 B AR Al I — oA D e . FRA TR S RE 5 41 2 vh Ul
R AR A I

#include <gtk/gtk.h>

enum{ LIST_ITEM = 0, N_COLUMNS} ;

GtkWidget *list;

static void append item(GtkWidget *widget, gpointer entry) {
GtkListStore *store;
GtkTreelter iter;

const char *str = gtk entry get text(entry);

store =
GTK _LIST STORE(gtk tree view get model (GTK TREE VIEW(list))):

gtk list store append(store, &iter);

gtk list store set(store, &iter, LIST ITEM, str, —1);

static void remove item(GtkWidget *widget, gpointer selection) {
GtkListStore *store;
GtkTreeModel *model;
GtkTreelter iter;
store=GTK LIST STORE (gtk tree view get model (GTK TREE VIEW(list))):
model = gtk tree view get model (GTK TREE VIEW (list));
if (gtk tree model get iter first(model, &iter) == FALSE) return;

if (gtk tree selection get selected(GTK TREE SELECTION (selection),
&model, &iter)) { gtk list store remove(store, &iter);}

static void remove all (GtkWidget *widget, gpointer selection) {
GtkListStore *store;
GtkTreeModel *model;
GtkTreelter iter;

store=GTK LIST STORE (gtk tree view get model (GTK TREE VIEW(list))):

model = gtk tree view get model (GTK TREE VIEW (list));
if (gtk tree model get iter first(model, &iter) == FALSE) return;

gtk list store clear(store);

static void init list(GtkWidget *list) {

GtkCellRenderer *renderer;
GtkTreeViewColumn *column;
GtkListStore *store;

renderer = gtk cell renderer text new();

column = gtk tree view column new with attributes(“List Item”,
renderer, “text”, LIST ITEM, NULL);

gtk tree view append column(GTK TREE VIEW (list), column);
store = gtk list store new (N COLUMNS, G TYPE STRING);

gtk tree view set model (GTK TREE VIEW (list),
GTK_TREE MODEL (store)) ;

g object unref (store) ;

int main (int argc, char *argv[]) {
GtkWidget *window;

GtkWidget *sw;

GtkWidget

GtkWidget

GtkWidget

GtkWidget

GtkWidget

GtkWidget

*remove;

*add;

*removeAll;

*entry;

*vbox;

*hbox ;

GtkTreeSelection *selection;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

sw = gtk scrolled window new(NULL, NULL);

list = gtk tree view new();

gtk window set title (GTK WINDOW (window), “List View”);
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk container set border width (GTK CONTAINER (window), 10);
gtk widget set size request (window, 370, 270);

gtk scrolled window set policy (GTK SCROLLED WINDOW (sw),
GTK POLICY AUTOMATIC, GTK POLICY AUTOMATIC) ;

gtk scrolled window set shadow type (GTK SCROLLED WINDOW (sw),
GTK_SHADOW ETCHED IN) ;

gtk tree view set headers visible (GTK TREE VIEW (list), FALSE);

vbox = gtk vbox new (FALSE, 0);

gtk box pack start(GTK BOX(vbox), sw, TRUE, TRUE, 5):

hbox = gtk hbox new(TRUE, 5);

add = gtk button new with label (“"Add”);

remove = gtk button new with label ("Remove”) ;

removeAll = gtk button new with label ("Remove All”):

entry = gtk entry new();

gtk box pack start (GTK BOX (hbox), add, FALSE, TRUE, 3);

gtk box pack start(GTK BOX (hbox), entry, FALSE, TRUE, 3);

gtk box pack start (GTK BOX(hbox), remove, FALSE, TRUE, 3);
gtk box pack start(GTK BOX(hbox), removeAll, FALSE, TRUE, 3);
gtk box pack start (GTK BOX(vbox), hbox, FALSE, TRUE, 3);

gtk container add(GTK CONTAINER (sw), list);

gtk container add(GTK CONTAINER (window), vbox);

init list(list);

selection = gtk tree view get selection(GTK TREE VIEW(list));

g signal connect (G OBJECT (add), “clicked”,
G _CALLBACK (append item), entry):

g signal connect (G OBJECT (remove), “clicked”,
G _CALLBACK (remove item), selection);

g signal connect (G OBJECT (removeAll), “clicked”,
G _CALLBACK (remove all), selection);

g signal connect (G OBJECT (window), “destroy”,
G_CALLBACK (gtk main quit), NULL):

gtk widget show all (window) ;
gtk main ();

return O;

LRI A7) label AR, FATTAERL T =AM — AN BAT SOAS A . JRA TH S B e
5 B AR 1) 2 B HE N — A (¥ K Tl 25 Ak 3 v 10 B T LR 4 i a0

sw = gtk scrolled window new(NULL, NULL);

gtk scrolled window set policy (GTK SCROLLED WINDOW (sw),
GTK POLICY AUTOMATIC, GTK POLICY AUTOMATIC) ;

gtk scrolled window set shadow type (GTK SCROLLED WINDOW (sw),
GTK_SHADOW ETCHED IN) :

gtk box pack start(GTK BOX (vbox), sw, TRUE, TRUE, 5);

gtk container add (GTK CONTAINER (sw), list);

GtkTreeView MR EAE N AT IO E L.

if (gtk tree selection get selected(GTK TREE SELECTION(selection),
&model, &iter)) { gtk list store remove(store, &iter); }

ZYE gtk _list_store_remove () I3RS L 240513 1) AT 1 16 BdE 30

gtk list store clear(store);
RY % gtk_list_store_clear () TiE R 412 o 10 BT Bk 0 .
if (gtk tree model get iter first(model, &iter) == FALSE) return;

i AR T A SRAE SR A A7 AT R N I BRI AR BAR, FATREAS I RIF RN — T
SE

| List View = | VT |

Brian Tracy

Mapaoleon Hil

David Schwartz

Add Jack Carfie Remove Remove Al

Figure: Advanced List View

FRIRPLE (Tree View)

Bedtr, BAPK IR s i is A F GtkTreeView k& Rty &40 J i8R 0. 72587
KIS, BATFRATHI S T AR BUAEBAT PRI -

#include <gtk/gtk.h>

enun{ COLUMN = 0, NUM_COLS}

void on changed(GtkWidget *widget, gpointer statusbar) {
GtkTreelter iter;
GtkTreeModel *model;

char *value;

if (gtk tree selection get selected(
GTK_TREE SELECTION(widget), &model, &iter)) {
gtk tree model get(model, &iter, COLUMN, &value, -1);

gtk statusbar push (GTK STATUSBAR (statusbar),
gtk statusbar get context id(GTK STATUSBAR (statusbar),
value), value):

g free(value);

static GtkTreeModel *
create and fill model (void) {
GtkTreeStore *treestore;
GtkTreelter toplevel, child;
treestore = gtk tree store new(NUM COLS, G TYPE STRING) ;

gtk tree store append(treestore, &toplevel, NULL);

gtk tree store set(treestore, &toplevel, COLUMN, “Scripting

languages”, -1);

gtk tree store append(treestore, &child, &toplevel);

gtk tree store set(treestore, &child, COLUMN, “Python”, -1);

gtk tree store append(treestore, &child, &toplevel);

gtk tree store set(treestore, &child, COLUMN, “Perl”, -1);

gtk tree store append(treestore, &child, &toplevel);

gtk tree store set(treestore, &child, COLUMN, “PHP”,-1);

gtk tree store append(treestore, &toplevel, NULL);

gtk tree store set(treestore, &toplevel, COLUMN, “Compiled
languages”, -1) ;

gtk tree store append(treestore, &child, &toplevel);

gtk tree store set(treestore, &child, COLUMN, “C”,-1);

gtk tree store append(treestore, &child, &toplevel);

gtk tree store set(treestore, &child, COLUMN, “C++”,-1);

gtk tree store append(treestore, &child, &toplevel);

gtk tree store set(treestore, &child, COLUMN, ”Java”, -1);

return GTK TREE MODEL (treestore) ;

static GtkWidget *

create view and model (void) {

GtkTreeViewColumn *col;

GtkCellRenderer *renderer;

GtkWidget *view;

GtkTreeModel *model;

view = gtk tree view new();

col = gtk tree view column new() ;

gtk tree view column set title(col, “Programming languages”) ;

gtk tree view append column(GTK TREE VIEW(view), col);

renderer = gtk cell renderer text new();

gtk tree view column pack start(col, renderer, TRUE);

gtk tree view column add attribute(col, renderer, “text”, COLUMN);
model = create and fill model();

gtk tree view set model (GTK TREE VIEW(view), model)

g object unref (model) ;

return view;

Int main (int argc, char #**kargv) {
GtkWidget *window;
GtkWidget *view;
GtkTreeSelection *selection;
GtkWidget *vbox;
GtkWidget *statusbar;
gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;
gtk window set title(GTK WINDOW (window), “Tree View”);
gtk widget set size request (window, 350, 300);

vbox = gtk vbox new(FALSE, 2):

gtk container add(GTK CONTAINER (window), vbox);

view = create view and model () ;

selection = gtk tree view get selection(GTK TREE VIEW (view)) ;
gtk box pack start(GTK BOX(vbox), view, TRUE, TRUE, 1);
statusbar = gtk statusbar new() ;

gtk box pack start(GTK BOX(vbox), statusbar, FALSE, TRUE, 1);

g signal connect(selection, “changed”, G CALLBACK (on changed),
statusbar) ;

g signal connect (G OBJECT (window),
"destroy”, G_CALLBACK (gtk main quit), NULL);

gtk widget show all (window) ;
gtk main() ;

return 0O;

FEBAT LRI, FATIRGE R — LSS JEMIASTE 5 A0 4% G Rt vl 500 I B I, MEAT X
Gr o VT PRSRTAE J O N K T AR O TOUZ AT, e it — AT Hm SR I Sk Sk T
IR I, R AR A A 7 K

METT XD B, AT LA A 2, BRI S 51 R AL R A O AR A B

GtkTreeStore *treestore;

X B RAT MRS T — A F) model— GtkTreeStore.,

treestore = gtk tree store new(NUM COLS, G TYPE STRING) ;

BAER GtkTreeStore R %1,
gtk tree store append(treestore, &toplevel, NULL);

gtk tree store set(treestore, &toplevel, COLUMN, “Scripting
languages”, -1) ;

X AP ARl A A e AN T2 T R IR
gtk tree store append(treestore, &child, &toplevel);

gtk tree store set(treestore, &child, COLUMN, “Python”, -1);

T AR A A R A R T

= | Tree View = ||| et
Frogramming languages
P Scripting languages
¥ Compiled langusges
C
C++
Java
Jawva A

Figure: Tree View

Gtk PRI AFE (GtkTexView Widget)

FEAF (] Gtk+FEFBEHHRE S, BATHE R4 GtkTexView #{f.

GtkTexView w M # R B Mg 247 0 SCR . IEWERAT— 3R 2,
GtkTexBuffer M4 T MVC [f111T. GtkTextView it/ (view) JLEIM
GtkTexBuffer {7 model jtZ%. GtkTexBuffer 7 il H i Ab HSr A3
GtkTextTag W& Rl T AR EYE. GtkTextlter MEMRE T WD PR K45 o
IS AR GFHRAR, SCARMIHEREAE 2 H] iterators.

fiBKH T (Simple example)

LEFRAI S M1, AT IH) KK g 7R GtkTexView [)—48Dfg. FATIERBORK E AR
LB SCARRE C tags) .

#include <gtk/gtk.h>
int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *view;
GtkWidget *vbox;
GtkTextBuffer *buffer;
GtkTextIter start, end;
GtkTextlter iter;
gtk init (&argc, &argv);
window = gtk window new(GTK WINDOW TOPLEVEL) ;
gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW(window), 250, 200) :;
gtk window set title(GTK WINDOW (window), “TextView”):
gtk container set border width(GTK CONTAINER (window), 5);

GTK_WINDOW (window)—>allow shrink = TRUE;

vbox = gtk vbox new (FALSE, 0);

gtk text view new();

view

gtk box pack start (GTK BOX(vbox), view, TRUE, TRUE, O0);
buffer = gtk text view get buffer (GTK TEXT VIEW(view)) ;

gtk text buffer create tag(buffer, “gap”, “pixels above lines”, 30,
NULL) ;

gtk text buffer create tag(buffer, “lmarg”, ”“left margin”, 5, NULL);

gtk text buffer create tag(buffer, “blue fg”, “foreground”, “blue”,
NULL) ;

gtk text buffer create tag(buffer, “gray bg”, “background”, ”“gray’,
NULL) ;

gtk text buffer create tag(buffer, “italic”, ”“style”,
PANGO STYLE ITALIC, NULL);

gtk text buffer create tag(buffer, “bold”, “weight”,
PANGO WEIGHT BOLD, NULL);

gtk text buffer get iter at offset(buffer, &iter, 0):
gtk text buffer insert (buffer, &iter, “Plain text\n”, -1);

gtk text buffer insert with tags by name (buffer, &iter, “Colored
Text\n”, -1, “blue fg”, “lmarg”, NULL);

gtk text buffer insert with tags by name (buffer, &iter, “Text with
colored background\n”, -1, “lmarg”, “gray bg”, NULL);

gtk text buffer insert with tags by name (buffer, &iter, “Text in
italics\n”, -1, “italic”, “lmarg”, NULL);

gtk text buffer insert with tags by name (buffer, &iter, “Bold
text\n”, -1, “bold”, “lmarg”, NULL);

gtk container add(GTK CONTAINER (window), vbox);

g signal connect swapped (G OBJECT (window),
“destroy”, G_CALLBACK (gtk main quit), G OBJECT (window)) ;

gtk widget show all (window) ;

gtk main() ;

return O;

AN R T I A B RS AR SCARR IS (GtkTextTags) RER A,

view = gtk text view new();

A li— GtkTextView.

gtk text buffer create tag(buffer, “blue fg”, “foreground”, “blue”,
NULL) ;

Xg— e GtkTextTag M5, X AMRICHEAE T ICRKIEE .

gtk text buffer insert with tags by name (buffer, &iter, “Colored
Text\n”, -1, “blue fg”, “lmarg”, NULL);

AN T — 230K, JHEH T — MR SCARR L blue_fg.

'®m simple TextView = |0/%|

Plain text

Colored Text

Text with colored background
Text in italics

Bold text

Figure: Simple TextView

T~ (Lines and Columns)

FERE N ORI R 2 R SOR G DGR HRTAL T (AT ER 8114

#include <gtk/gtk.h>
update statusbar (GtkTextBuffer *buffer, GtkStatusbar *statusbar) {
gchar *msg;
gint row, col;
GtkTextIter iter;
gtk statusbar pop(statusbar, 0);

gtk text buffer get iter at mark(buffer, &iter,
gtk text buffer get insert(buffer));

row = gtk text iter get line(&iter);
col = gtk text iter get line offset(&iter);
msg = g strdup printf(“Col %d Ln %d”, col+l, row+l):

gtk statusbar push(statusbar, 0, msg);

g free (msg) ;

static void mark set callback (GtkTextBuffer *buffer, const GtkTextIter
*new location, GtkTextMark *mark, gpointer data) {

update statusbar (buffer, GTK STATUSBAR (data)) ;

int main(int argc, char *argv[]) {
GtkWidget *window;

GtkWidget *vbox;

GtkWidget *toolbar;

GtkWidget *view;

GtkWidget *statusbar;

GtkToolltem *exit;

GtkTextBuffer *buffer;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW (window), GTK WIN POS CENTER) ;
gtk window set default size(GTK WINDOW (window), 250, 200) ;

gtk window set title(GTK WINDOW(window), “lines & cols”);

vbox = gtk vbox new (FALSE, 0);

gtk container add(GTK CONTAINER (window), vbox);
toolbar = gtk toolbar new() ;
gtk toolbar set style(GTK TOOLBAR (toolbar), GTK TOOLBAR ICONS) ;

exit = gtk tool button new from stock (GTK STOCK QUIT) ;

gtk toolbar insert(GTK TOOLBAR (toolbar), exit, —1);

gtk box pack start (GTK BOX(vbox), toolbar, FALSE, FALSE, 5);
view = gtk text view new();

gtk box pack start(GTK BOX(vbox), view, TRUE, TRUE, 0);

gtk widget grab focus(view) ;

buffer = gtk text view get buffer (GTK TEXT VIEW(view)) ;
statusbar = gtk statusbar new() ;

gtk box pack start(GTK BOX(vbox), statusbar, FALSE, FALSE, 0);

g signal connect (G OBJECT (exit),
“clicked”, G_CALLBACK (gtk main quit), NULL);

g signal connect (buffer, “changed”, G CALLBACK (update statusbar),
statusbar) ;

g signal connect object (buffer,
“mark set”, G CALLBACK (mark set callback), statusbar, 0);

g signal connect swapped (G OBJECT (window), “destroy”,
G_CALLBACK (gtk main quit), NULL):

gtk widget show all (window) ;

update statusbar (buffer, GTK STATUSBAR (statusbar)):

gtk main() ;

return O;

7T AR S B R, BRATTTE R T AR AL TR RS 2 B SO G AR BT AL T HIAT 815
view = gtk text view new() ;
HR— T GtkTextView #ff:.

g signal connect (buffer, “changed”, G CALLBACK (update statusbar),
statusbar) ;

BRI T A, AL [P i % update_statusbar() AT .

g signal connect object (buffer, “mark set”,
G CALLBACK (mark set callback), statusbar, 0);

MRS SMNAE, mark_set (55 AR LT,

gtk statusbar pop(statusbar, 0);

XBACHE I BRI R T G AT AT — L2 P A5 R

gtk text buffer get iter at mark (buffer, &iter,
gtk text buffer get insert (buffer));

row = gtk text iter get line (&iter);

col = gtk text iter get line offset (&iter);

SR RIS AR TP AL T HAT 5 5515 .

msg = g strdup printf(“Col %d Ln %d”, col+l, row+l):
LI RARRIAE R, SRR SR R AT 5 515 A 25

gtk statusbar push(statusbar, 0, msg);

W, BATIAEIRGEA BB asSOR

lines & cols

»]

All happy families are alike.

Each unhappy family is unhappy

in its own w|

Col 14 Ln 3

Figure: Lines & Columns

Bm& ®RE (Search & Highlight)

B TR IBIFrh, AT ZAE GtkTextBuffer Hfii—2e il TA/E. A IR — L0k
(KT A R REAT R R AL

#include <gtk/gtk.h>
#include <gdk/gdkkeysyms.h>

ghoolean key pressed(GtkWidget * window, GdkEventKey* event,
GtkTextBuffer *buffer) ({

GtkTextIter start sel, end sel;
GtkTextIter start find, end find;
GtkTextIter start match, end match;
gboolean selected;

gchar *text;

if ((event—>type == GDK KEY PRESS) && (event->state &
GDK_CONTROL MASK)) f{

switch (event—>keyval) {
case GDK m :

selected = gtk text buffer get selection bounds (buffer,
&start sel, &end sel);

if (selected) {
gtk text buffer get start iter (buffer, &start find);
gtk text buffer get end iter (buffer, &end find);

gtk text buffer remove tag by name (buffer, “gray bg”,
&start find, &end find);

text = (char *) gtk text buffer get text(buffer, &start sel,
&end sel, FALSE);

while (gtk text iter forward search(&start find, text,
GTK TEXT SEARCH TEXT ONLY ‘ GTK TEXT SEARCH VISIBLE ONLY,
&start match, &end match, NULL)) {

gtk text buffer apply tag by name (buffer, “gray bg”,
&start match, &end match) ;

int offset = gtk text iter get offset(&end match);

gtk text buffer get iter at offset(buffer, &start find,
offset) ;

g free(text);

break;

case GDK r:

gtk text buffer get start iter (buffer, &start find);
gtk text buffer get end iter (buffer, &end find);

gtk text buffer remove tag by name (buffer, “gray bg”,
&start find, &end find);

break;

return FALSE;

int main(int argc, char *argv[]) {
GtkWidget *window;
GtkWidget *view;
GtkWidget *vbox;
GtkTextBuffer *buffer;
GtkTextIter start, end;
GtkTextlter iter;
gtk init (&argc, &argv);
window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;

gtk window set default size(GTK WINDOW(window), 250, 200);

gtk window set title(GTK WINDOW (window), “Search & Highlight”);
gtk container set border width (GTK CONTAINER (window), 5);
GTK_WINDOW (window)->allow shrink = TRUE;

gtk vbox new(FALSE, 0);

vbox
view = gtk text view new();

gtk widget add events(view, GDK BUTTON PRESS MASK) ;

gtk box pack start (GTK BOX(vbox), view, TRUE, TRUE, 0);
buffer = gtk text view get buffer (GTK TEXT VIEW(view)) ;

gtk text buffer create tag(buffer, “gray bg”, “background”, “gray”,
NULL) ;

gtk container add(GTK CONTAINER (window), vbox);

g signal connect swapped (G OBJECT (window), “destroy”,
G CALLBACK (gtk main quit), G OBJECT (window)) ;

g signal connect (G OBJECT (window), “key—press—event”,
G_CALLBACK (key pressed), buffer);

gtk widget show all (window) ;
gtk main() ;

return 0;

FEBRAT B, AT S TS PR Ctrl + M RIS R BAT 4 AT FT R E SCAS 4 25
Ctrl + R U2 ARG L m R #AE

gtk text buffer create tag(buffer, “gray bg”, “background”, ”“gray’,
NULL) ;

WAEBI T P 2R B GtkTextTag o XAMRIC AT LME AT S

selected = gtk text buffer get selection bounds(buffer, &start sel,
&end sel) ;

X HLFRATIAS B0 FRATT I8 vh 1 SO Pl B (P af R 2% A
gtk text buffer get start iter (buffer, &start find);

gtk text buffer get end iter (buffer, &end find);

TAMFEN T SCRZE MK (text buffer) [HEZIHFIZ fSALE

gtk text buffer remove tag by name(buffer, “gray bg”, &start find,
&end find);

b, FESCETAIRS L KA.

text = (char *) gtk text buffer get text(buffer, &start sel, &end sel,
FALSE) ;

P TATAF RN T e B SCAR N, JA PR3- A T I U

while (gtk text iter forward search(&start find, text,
GTK_TEXT SEARCH TEXT ONLY |
GTK_TEXT SEARCH VISIBLE ONLY,
&start match, &end match, NULL)) {

gtk text buffer apply tag by name (buffer, “gray bg”, &start match,
&end match) ;

int offset = gtk text iter get offset(&end match);

gtk text buffer get iter at offset(buffer, &start find, offset);

}

KBRS R AL BT AT BATT BT IR #8610 SCAS i K B A AR B S0, — EURCILS AT o SRR N AT DL e sl
U BATBEE LS AR AEVLRE TARSE R Ja BTl)RR R A e I D AR A 1) 3 o

'm Search & Highlight =8|

C programming language
FPython programming language
Java programming language

M programming IEngL.ElgE:I

Figure: Search & Highlight

GTK+H [FH#44 (Custom GTK+ widget)

FEAZNT, WU ABR G — 5 AR AR a2 3 2 DY —ANSEA . e
WA IRATIE K] 2 Cairo EIJE e 8 T H A

CPU widget

FEAE R OR 7R A 28— DI ilE—4N“CPU #fE7,

/* cpu.h */

#ifndef _ CPU_H

#define _ CPU_H

#include <gtk/gtk.h>

#include <cairo.h>

G_BEGIN_DECLS

#tdefine GTK CPU(obj) GTK CHECK CAST(obj, gtk cpu get type (), GtkCpu)

#tdefine GTK CPU CLASS (klass) GTK CHECK CLASS CAST (klass,
gtk cpu get type(), GtkCpuClass)

#tdefine GTK IS CPU(obj) GTK CHECK TYPE(obj, gtk cpu get type())

typedef struct GtkCpu GtkCpu;

typedef struct GtkCpuClass GtkCpuClass;

struct GtkCpu { GtkWidget widget; gint sel;};

struct GtkCpuClass { GtkWidgetClass parent class;};

GtkType gtk cpu get type(void);

void gtk cpu set sel (GtkCpu *cpu, gint sel);

GtkWidget * gtk cpu new() ;

G _END DECLS

#endif /* CPU H %/

/* cpu.c */

#tinclude “cpu.h”

static void gtk cpu class init(GtkCpuClass *klass) ;

static void gtk cpu init (GtkCpu *cpu) ;

static void gtk cpu size request(GtkWidget *widget, GtkRequisition
*requisition) ;

static void gtk cpu size allocate (GtkWidget *widget, GtkAllocation
*allocation) ;

static void gtk cpu realize (GtkWidget *widget) ;

static ghoolean gtk cpu expose (GtkWidget *widget, GdkEventExpose
*event) ;

static void gtk cpu paint (GtkWidget *widget) ;

static void gtk cpu destroy (GtkObject *object) ;
GtkType
gtk cpu get type(void) {
static GtkType gtk cpu type = 0;
if (lgtk cpu type) f{
static const GtkTypelInfo gtk cpu info = {
”GtkCpu”,
sizeof (GtkCpu),
sizeof (GtkCpuClass),
(GtkClassInitFunc) gtk cpu class init,
(GtkObjectInitFunc) gtk cpu init,
NULL,
NULL,

(GtkClassInitFunc) NULL

gtk cpu type = gtk type unique (GTK TYPE WIDGET, >k cpu info);

return gtk cpu type;

void gtk cpu set state(GtkCpu *cpu, gint num) {
cpu—>sel = num;

gtk cpu paint (GTK WIDGET (cpu)) ;

GtkWidget * gtk cpu new() {

return GTK WIDGET (gtk type new(gtk cpu get type())):

static void gtk cpu class init(GtkCpuClass *klass) {
GtkWidgetClass *widget class;
GtkObjectClass *object class;

widget class = (GtkWidgetClass *) klass;

object class = (GtkObjectClass *) klass;

widget class—>realize = gtk cpu realize;

widget class—>size request = gtk cpu size request;
widget class—>size allocate = gtk cpu size allocate;

widget class—>expose event = gtk cpu expose;

object class—>destroy = gtk cpu destroy;

static void gtk cpu init (GtkCpu *cpu) { cpu—>sel = 0;}

static void gtk cpu size request(GtkWidget *widget, GtkRequisition
*requisition) {

g return if fail (widget != NULL);

g return if fail (GTK IS CPU(widget));
g return if fail(requisition != NULL);
requisition—>width = 80;

requisition—>height = 100;

static void gtk cpu size allocate (GtkWidget *widget, GtkAllocation
*allocation) {

g return if fail (widget != NULL);
g return if fail (GTK IS CPU(widget));
g return if fail(allocation != NULL);
widget—>allocation = *allocation;

if (GTK_WIDGET REALIZED (widget)) f{

gdk window move resize (widget—>window, allocation—>x, allocation—>y,
allocation—>width, allocation—>height);

static void gtk cpu realize(GtkWidget *widget) {

GdkWindowAttr attributes;

guint attributes mask;

g return if fail(widget != NULL);

g return if fail (GTK IS CPU(widget)) ;
GTK_WIDGET SET FLAGS (widget, GTK_REALIZED) ;

attributes. window type = GDK_WINDOW CHILD;

attributes.x = widget—>allocation. x;
attributes.y = widget—>allocation. y;

attributes. width = 80;

100;

attributes. height
attributes. wclass = GDK INPUT OUTPUT;

attributes. event mask = gtk widget get events (widget) |
GDK_EXPOSURE MASK:

attributes mask = GDK WA X | GDK WA Y;

widget—>window = gdk window new(gtk widget get parent window
(widget), &attributes, attributes mask) ;

gdk window set user data(widget—>window, widget);
widget—>style = gtk style attach(widget—>style, widget—>window) ;

gtk style set background(widget—>style,
widget—>window, GTK STATE NORMAL) ;

static ghoolean gtk cpu expose (GtkWidget *widget, GdkEventExpose
*event) {

g return val if fail (widget != NULL, FALSE);

g return val if fail (GTK IS CPU(widget), FALSE);

g return val if fail(event != NULL, FALSE);

gtk cpu paint (widget) ;

return FALSE;

static void gtk cpu paint (GtkWidget *widget) {
cairo t *kcr;
cr = gdk cairo create(widget—>window) ;
cairo translate(cr, 0, 7);
cairo set source rgb(cr, 0, 0, 0);

cairo paint(cr);

gint pos = GTK CPU(widget)->sel;

gint rect = pos / 5;
cairo set source rgb(cr, 0.2, 0.4, 0);
gint 1;

for (i =1;1i<=20; i++) {

if (i > 20 - rect) {
cairo set source rgb(cr, 0.6, 1.0, 0);
} else { cairo set source rgh(cr, 0.2, 0.4, 0); }
cairo rectangle(cr, 8, i*4, 30, 3);
cairo rectangle(cr, 42, i*4, 30, 3);

cairo fill(cr);

cairo destroy(cr) ;

static void gtk cpu destroy (GtkObject *object) {
GtkCpu *cpu;
GtkCpuClass *klass;
g return if fail (object != NULL);
g return if fail (GTK IS CPU(object));
cpu = GTK CPU(object) ;
klass = gtk type class(gtk widget get type()):
if (GTK OBJECT CLASS (klass)—>destroy) {

(* GTK OBJECT CLASS (klass)—>destroy) (object):

/* main.c */

#tinclude “cpu. h”

static void set value(GtkWidget * widget, gpointer data) {
GdkRegion *region;
GtkRange *range = (GtkRange *) widget;
GtkWidget *cpu = (GtkWidget *) data;
GTK CPU(cpu)—>sel = gtk range get value(range) ;
region = gdk drawable get clip region(cpu—>window) ;
gdk window invalidate region(cpu—>window, region, TRUE);

gdk window process updates (cpu—>window, TRUE) ;

int main (int argc, char ** argv) {

GtkWidget *window;

GtkWidget *cpu;

GtkWidget *fixed;

GtkWidget *scale;

gtk init (&argc, &argv);

window = gtk window new(GTK WINDOW TOPLEVEL) ;

gtk window set title(GTK WINDOW (window), ”CPU widget”):

gtk window set position(GTK WINDOW(window), GTK WIN POS CENTER) ;

gtk window set default size (GTK WINDOW(window), 200, 180) ;

g signal connect (G_OBJECT (window), “destroy”,
G_CALLBACK (gtk main quit), NULL):

fixed = gtk fixed new();

gtk container add(GTK CONTAINER (window), fixed);

cpu = gtk cpu new() ;

gtk fixed put (GTK FIXED(fixed), cpu, 30, 40);

scale = gtk vscale new with range (0.0, 100.0, 1.0);

gtk range set inverted(GTK RANGE (scale), TRUE);

gtk scale set value pos(GTK SCALE (scale), GTK POS TOP) ;

gtk widget set size request(scale, 50, 120);

gtk fixed put (GTK FIXED(fixed), scale, 130, 20);

g signal connect (G OBJECT (scale), “value changed”,
G CALLBACK (set_value), (gpointer) cpu);

gtk widget show(cpu);

gtk widget show(fixed);

gtk widget show all (window) ;

gtk main() ;

return 0O;

PRAT LR 2 BT g A, SR IR CPU #fFB2)s T Ff GtkWidget,
FATRHIT Cairo API R TIEA I LRIHAR . BAIRB T D REAMNT FHEAT 40 D/
Ko EANKTTTEA TP T IR R4kt . GtkVScale #fFHIREE
R g 1R KT TR REAER I 22 R

ARG — IR B R ERVFIE W AR - -IMERBESEE, IFARR TR A . KEH
ACHD A IEAERACES, M BATE AL MBI T B PRI, AR 2 AU EGE R .

2R E R TAEM S AEDhRE R 2 gtk_cpu_paintQ)H 7.
cairo t *kcr;
cr = gdk _cairo create(widget—>window) ;
cairo translate(cr, 0, 7);
cairo set source rgb(cr, 0, 0, 0);

cairo paint (cr) :

W], B4R T —A cairo context. FATIEBIE T K/N. IFAERE N RIENIZAIFBCE
THRO—BE,

gint pos = GTK CPU(widget)->sel;

gint rect = pos / 5;

RHEATIE) 722 sel HRO%y. WS NP1 (scale widget) H (#4734
(K1 AN DILAT 100 MECT o FATIERE I B 2 17 (K07 B ro6s W By (B4 L B 2 DA R
NI, RIABATREAT 22 B

gint 1i;
for (1 =1; 1<=20; i++) {
if (i > 20 - rect) {
cairo set source rgb(cr, 0.6, 1.0, 0);

} else { cairo set source rgb(cr, 0.2, 0.4, 0); }

cairo rectangle(cr, 8, i*4, 30, 3);
cairo rectangle(cr, 42, i*4, 30, 3);
cairo fill(cr);

}

WA AT B s . AL B T — 3L 40 NN TR OFRRE MR SR OAEN . EH1T
BE— N2, FATERTTEMNT, 75 GTK+RGH M B FRI, PrLRE 2/,

GtkRange *range = (GtkRange *) widget;
GtkWidget *cpu = (GtkWidget *) data;

GTK CPU(cpu)—>sel = gtk range get value(range) ;

fEH set_value() ', FAHEEHIN ART{EfLi%4T CPU FfT.

GdkRegion *region;

region = gdk drawable get clip region(cpu—>window) ;
gdk window invalidate region(cpu—>window, region, TRUE) ;

gdk window process updates(cpu—>window, TRUE) ;

X BB EAE CPU P IR 5 1 R, AT A DR A4 s SXRERRATT T LLSEBL
BN RORM ™ ~~

.........

Figure: CPU widget

	GTK+
	BlankWindow
	Window
	Icon
	Button
	MenuBar
	Mnemonics
	Check
	ToolBar
	Undo
	GtkFixed
	GtkVBox
	GtkTable
	GtkAlignment
	Windows
	Signals
	Moving Window
	Mouse Enter
	Disconnect
	Drag
	Timer
	Message Dialog
	GtkAboutDialog
	GtkFontSelectionDialog
	GtkColorSelectionDialog
	GtkButton
	GtkCheckButton
	GtkFrame
	GtkLabel
	GtkComboBox
	GtkHSeparator
	GtkEntry
	GtkImage
	GtkStatusBar
	GtkIconView
	List View
	Advanced List
	GtkTreeView
	GtkTexView
	Lines and Columns
	GtkTextBuffer
	CPU Widget

