
基于Nginx的负载均衡器在
k8s中的实践
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Agenda

• K8S集群中为什么需要负载均衡器

• 在K8S集群的边缘节点运行Nginx

• Nginx如何发现K8S中的服务

• K8S中的Ingress



K8S cluster
node1 node2 node3 node

pod
pod

pod

pod
pod

pod
pod

pod
pod

pod
pod

pod

Service1 Service2

如何获取K8S中的服务？

如何获取K8S集群中的服务?



为何获取K8S中的服务是比较困难的？

• 每一个pod都有一个由网络层提供的私有地址，在K8S集群中的任
一节点上可以可达。K8S集群外部不能直接访问。

• 一组相同功能的pod构成service，K8S赋予每个Service一个cluster 
IP地址。Service可以从cluster IP地址访问。

• Cluster IP地址只在K8S集群内有效，不能从外部直接访问。



外部应用如何才能访问K8S中的service

• K8S集群中要有一个或者多个public IP边缘节点

• 外部要访问K8S集群内的Service必须通过边缘节点的public IP地址
进行访问

• 有public IP地址的边缘节点需要部署如Nginx，HAProxy等反向代理
将请求转发给K8S中的service
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Nginx listen on 
Public IP

如何获取K8S集群中的服务?

通过public IP可以访问K8S中的服务了



如何部署Nginx?
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Nginx部署在K8S集群内和集群外的区别

• Nginx部署在K8S集群内：

• 在Nginx的配置文件中不用指定nameserver， nameserver已由K8S配置好

• K8S管理Nginx的启停

• Nginx监听端口要映射到host的端口上或者使用host网络 (hostNetwork:true)

• Nginx部署在K8S集群外：

• 需要在Nginx的配置文件中指定nameserver

• 需要自己管理Nginx的启停

• 推荐：

• Nginx部署在K8S集群内

• 以Daemon方式运行



如何让Nginx运行在边缘节点上

• 对边缘节点打标签，表明此节点是一个边缘节点

• 创建nginx pod时通过nodeSelector将nginx调度到边缘节点上

$ kubectl label node node3 node-type=edge

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
spec:
template:

spec:
nodeSelector:

node-type: edge
Nginx运行在边缘节点上了



通过Cluster IP 地址发现服务
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$ kubectl run hello –image=hello –replicas=3 –port=8080
$ kubectl expose deployment hello

server {
location / {

proxy_pass http://hello:8080;
}

}

• K8S为服务分配一个cluster VIP, service通过cluster VIP可达

• K8S将服务的名字和cluster VIP放入DNS服务器

• 将服务名配置到nginx.conf

query

在K8S中发布hello 服务

配置nginx:

http://hello:8080/


通过NodePort发现服务

pod pod pod

service

Nginx
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• K8S为服务分配了cluster VIP, service通过cluster VIP可达

• 为service中的POD分配了一个相同的端口，服务通过节点IP+PORT可达

• 可以通过程序发现节点IP地址，动态将地址添加到nginx (ngx_dynamic_upstream) script

动态更新IP+PORT

动态发现服务IP+PORT

$ kubectl run hello –image=hello –replicas=3 –port=8080
$ kubectl expose deployment hello –type=NodePort

upstream my_services {
zone my_zone 1m;

}
server {

location / {
proxy_pass http://my_services;

}
}

在K8S中发布hello 服务 配置nginx:

Add/remove node to/from nginx: 
$ curl http://localhost:6000/dynamic?upstream=zone_for_backends&add=&server=10.10.1.1:30900”

$ curl http://localhost:6000/dynamic?upstream=zone_for_backends&remove=&server=10.10.1.1:30900”

http://hello:8080/


通过Headless service发现服务(推荐）
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• K8S没有为服务分配cluster IP, service无法通过cluster VIP可达

• K8S将服务中的POD IP放入DNS服务器中

• 在DNS中通过服务名查找地址会返回多条IP地址

• Nginx需支持upstream动态后端服务器地址注册(nginx-upstream-dynamic-servers）

$ kubectl run hello –image=hello –replicas=3 –port=8080
$ kubectl expose deployment hello --cluster-ip=None

upstream my_services {
server my_services:8080 resolve;

}
server {

location / {
proxy_pass http://my_services;

}
}

在K8S中发布hello 服务

配置nginx:

http://hello:8080/


为什么有 Ingress?

• Loadbalancer是一个很通用的需求，大多数应用都需要Loadbalancer

• 流行的Loadbalancer除了Nginx还有HA proxy

• 不同的Loadbalancer配置格式不一样，启停方式不同…

• 在L7/L4层面提供的功能大同小异

• 能否在L7/L4业务层面提供抽象并适用于不同的Loadbalancer？

• K8S提供了对L7的HTTP模型抽象，用户只需要关注HTTP的业务分发模型，不用
考虑不同Loadbalancer的配置，更新差异



理解Ingress概念
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• Ingress 资源定义了如何将HTTP/TCP等请求映射到service

• Ingress控制器读取Ingress资源中定义的请求映射，通过apiserver
查找相关的service信息，并更新Loadbalancer配置

• 用户通过获取Ingress控制器的public IP就可以访问K8S中服务了

• 现有的Ingress控制器：nginx, haproxy, GCE, traefik



Ingress 资源定义文件

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: test
spec:

rules:
- host: foo.bar.com

http:
paths:
- path: /foo

backend:
serviceName: s1
servicePort: 80

- path: /bar
backend:

serviceName: s2
servicePort: 80

service
service

service

Nginx ingress 
controller

upstream s1_backends {
server s1:80 resolve;

}
upstream s2_backends {

server s2:52 resolve;
}

server  {
listen 8080;
location /foo {

proxy_pass http://s1_backends;
}

location /bar {
proxy_pass http://s2_backends;

}
}
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