
基于Nginx的负载均衡器在
k8s中的实践

NO K IA ST E VE N O U

Agenda

• K8S集群中为什么需要负载均衡器

• 在K8S集群的边缘节点运行Nginx

• Nginx如何发现K8S中的服务

• K8S中的Ingress

K8S cluster
node1 node2 node3 node

pod
pod

pod

pod
pod

pod
pod

pod
pod

pod
pod

pod

Service1 Service2

如何获取K8S中的服务？

如何获取K8S集群中的服务?

为何获取K8S中的服务是比较困难的？

• 每一个pod都有一个由网络层提供的私有地址，在K8S集群中的任
一节点上可以可达。K8S集群外部不能直接访问。

• 一组相同功能的pod构成service，K8S赋予每个Service一个cluster
IP地址。Service可以从cluster IP地址访问。

• Cluster IP地址只在K8S集群内有效，不能从外部直接访问。

外部应用如何才能访问K8S中的service

• K8S集群中要有一个或者多个public IP边缘节点

• 外部要访问K8S集群内的Service必须通过边缘节点的public IP地址
进行访问

• 有public IP地址的边缘节点需要部署如Nginx，HAProxy等反向代理
将请求转发给K8S中的service

K8S cluster
node1 node2

node3

node

pod
pod

pod

pod
pod

pod
pod

pod
pod

pod
pod

pod

Service1 Service2

Nginx listen on
Public IP

如何获取K8S集群中的服务?

通过public IP可以访问K8S中的服务了

如何部署Nginx?

K8S cluster

Nginx

Edge node

K8S cluster
Nginx

Edge node

Nginx部署在K8S集群外 Nginx部署在K8S集群内

Vs

Nginx部署在K8S集群内和集群外的区别

• Nginx部署在K8S集群内：

• 在Nginx的配置文件中不用指定nameserver， nameserver已由K8S配置好

• K8S管理Nginx的启停

• Nginx监听端口要映射到host的端口上或者使用host网络 (hostNetwork:true)

• Nginx部署在K8S集群外：

• 需要在Nginx的配置文件中指定nameserver

• 需要自己管理Nginx的启停

• 推荐：

• Nginx部署在K8S集群内

• 以Daemon方式运行

如何让Nginx运行在边缘节点上

• 对边缘节点打标签，表明此节点是一个边缘节点

• 创建nginx pod时通过nodeSelector将nginx调度到边缘节点上

$ kubectl label node node3 node-type=edge

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
spec:
template:

spec:
nodeSelector:

node-type: edge
Nginx运行在边缘节点上了

通过Cluster IP 地址发现服务

pod pod pod

service

cluster VIP

Nginx

Kube-dns

$ kubectl run hello –image=hello –replicas=3 –port=8080
$ kubectl expose deployment hello

server {
location / {

proxy_pass http://hello:8080;
}

}

• K8S为服务分配一个cluster VIP, service通过cluster VIP可达

• K8S将服务的名字和cluster VIP放入DNS服务器

• 将服务名配置到nginx.conf

query

在K8S中发布hello 服务

配置nginx:

http://hello:8080/

通过NodePort发现服务

pod pod pod

service

Nginx

Kube-dns

• K8S为服务分配了cluster VIP, service通过cluster VIP可达

• 为service中的POD分配了一个相同的端口，服务通过节点IP+PORT可达

• 可以通过程序发现节点IP地址，动态将地址添加到nginx (ngx_dynamic_upstream) script

动态更新IP+PORT

动态发现服务IP+PORT

$ kubectl run hello –image=hello –replicas=3 –port=8080
$ kubectl expose deployment hello –type=NodePort

upstream my_services {
zone my_zone 1m;

}
server {

location / {
proxy_pass http://my_services;

}
}

在K8S中发布hello 服务 配置nginx:

Add/remove node to/from nginx:
$ curl http://localhost:6000/dynamic?upstream=zone_for_backends&add=&server=10.10.1.1:30900”

$ curl http://localhost:6000/dynamic?upstream=zone_for_backends&remove=&server=10.10.1.1:30900”

http://hello:8080/

通过Headless service发现服务(推荐）

pod pod pod

service

Nginx

Kube-dns

query

• K8S没有为服务分配cluster IP, service无法通过cluster VIP可达

• K8S将服务中的POD IP放入DNS服务器中

• 在DNS中通过服务名查找地址会返回多条IP地址

• Nginx需支持upstream动态后端服务器地址注册(nginx-upstream-dynamic-servers）

$ kubectl run hello –image=hello –replicas=3 –port=8080
$ kubectl expose deployment hello --cluster-ip=None

upstream my_services {
server my_services:8080 resolve;

}
server {

location / {
proxy_pass http://my_services;

}
}

在K8S中发布hello 服务

配置nginx:

http://hello:8080/

为什么有 Ingress?

• Loadbalancer是一个很通用的需求，大多数应用都需要Loadbalancer

• 流行的Loadbalancer除了Nginx还有HA proxy

• 不同的Loadbalancer配置格式不一样，启停方式不同…

• 在L7/L4层面提供的功能大同小异

• 能否在L7/L4业务层面提供抽象并适用于不同的Loadbalancer？

• K8S提供了对L7的HTTP模型抽象，用户只需要关注HTTP的业务分发模型，不用
考虑不同Loadbalancer的配置，更新差异

理解Ingress概念

Ingress
controller

Ingress
resource

service

pod pod pod

• Ingress 资源定义了如何将HTTP/TCP等请求映射到service

• Ingress控制器读取Ingress资源中定义的请求映射，通过apiserver
查找相关的service信息，并更新Loadbalancer配置

• 用户通过获取Ingress控制器的public IP就可以访问K8S中服务了

• 现有的Ingress控制器：nginx, haproxy, GCE, traefik

Ingress 资源定义文件

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: test
spec:

rules:
- host: foo.bar.com

http:
paths:
- path: /foo

backend:
serviceName: s1
servicePort: 80

- path: /bar
backend:

serviceName: s2
servicePort: 80

service
service

service

Nginx ingress
controller

upstream s1_backends {
server s1:80 resolve;

}
upstream s2_backends {

server s2:52 resolve;
}

server {
listen 8080;
location /foo {

proxy_pass http://s1_backends;
}

location /bar {
proxy_pass http://s2_backends;

}
}

Q & A

