
Container, rkt, Kubernetes

顾宜凡 (Yifan Gu) Software Engineer @ CoreOS
github.com/yifan-gu

1. Containers, OCI, Appc
2. rkt
3. Kubernetes, and rkt + Kubernetes

Overview

Container Is HOT

 Container is not a new technology, Why?

 Container = Docker ?

So, what is container?

Control group

- CPU
- Memory
- IO
- Devices
- ...
-

Namespaces

- Network
- IPC
- ProcessID
- ...

So, what is container?

 Container = Docker ? No

So, what is container?

 Container = Docker ? No
 Container = cgroup + namespace ? No

So, what is container?

Solaris Zones ~ 2005

FreeBSD ~ 2000

So, what is container?

 Container = package + runtime !

So, what is container?

 Container = package + runtime !

● Easy packaging (build/push/pull)
● Isolated, controlled (run/stop)

So, what is container?

If it’s hot, then standardize it

Container ~ 1950

Container ~ 2010

If it’s hot, then standardize it

2013.3

Docker 1.0

2016.32015.62014.12

Appc 0.1 OCI (Runtime
Spec)

OCI (Image Spec)

Container Spec Timeline

Open Container Specifications

- Runtime Spec
- config.json
- runtime.json
- rootfs

- Image Spec
- started from Docker v2
- absorb from Appc

- discovery
- signing
- app configs

Container Spec

github.com/coreos/rkt

rkt is a CLI for running app containers on Linux. rkt is designed to
be secure, composable, and standards-based.

rkt doesn’t require a long-running daemon and provides a powerful,
pluggable, abstraction around isolation and runtime initialization.

 What is rkt ?

● GPG signatures to verify images
● SELinux contexts
● Can run containers in hypervisor
● Can do TPM measurements, provides a

tamper-proof audit log

 How rkt does security

● Integrating well with init systems
● Aims to work well with other projects
● rkt has the concept of a “stage1”, which

is a swappable component that actually
runs the container

● Available stage1s
○ chroot
○ Linux namespaces (default)
○ LKVM

 How rkt does composability

● Implementation of AppC, a well defined
spec

● Uses CNI for networking, common
plumbing used by many other projects

● Can run docker images
● Will be fully OCI compliant

How rkt does standards/compatibility

Distributed Trusted Computing

Distributed Trusted Computing Stack

Distributed Trusted Computing Stack

rkt internals

modular architecture
execution divided into stages

stage0 → stage1 → stage2

● Image discovery and fetching - Locate and download
ACI and Docker images

● Unpacking/preparing the container manifest and
filesystem

● Setting up network and namespace isolation
● Handle any needed runtime setup / features (e.g.

systemd)
● Container entrypoint!

Stage 0

Stage 1

Stage 2

rkt Stages

$ rkt fetch example.com/redis

$ rkt fetch docker://nginx

$ rkt fetch https://my_web_container.aci

$ rkt fetch ./my_container.aci

Stage 0 - Fetch

$ rkt fetch example.com/redis

GET https://example.com/redis

<meta name="ac-discovery" content=”example.com/redis
https://example.com/redis.{ext}”>

GET https://example.com/redis.aci.asc

GET https://example.com/redis.aci

Downloading signature:
[=======================================] 287 B/287 B

Downloading ACI:
[===] 10 MB/10 MB

image: signature verified:

 Example <example@example.com>

sha512-...

Stage 0 - Fetch

https://example.com/redis
https://example.com/redis.%7Bext
https://example.com/redis.%7Bext
https://example.com/redis
https://example.com/redis

$ rkt prepare example.com/redis

uuid

$ tree /var/lib/rkt/pods/prepared/uuid

/var/lib/rkt/pods/prepared/uuid/

├── appsinfo
│ └── redis
│ ├── manifest
│ └── treeStoreID
├── overlay-prepared
├── pod
├── stage1
│ └── manifest
└── stage1TreeStoreID

Stage 0 - Prepare

$ rkt run-prepared uuid

Default: Systemd-nspawn
● Writes a unit file for each application based on its manifest
● Setup network namespaces (CNI)
● Handle mounts via systemd-nspawn (default)
● Hand off to systemd

Stage 1 run-prepared

$ rkt run-prepared uuid

Default: Systemd-nspawn

$ systemd-nspawn --boot --register=false --link-journal=try-guest --quiet --
uuid=a1caebb1-948b-4486-8133-bb21133a7090 --machine=rkt-a1caebb1-
948b-4486-8133-bb21133a7090 --directory=stage1/rootfs --
capability=CAP_AUDIT_WRITE,CAP_CHOWN,CAP_DAC_OVERRIDE,
CAP_FSETID,CAP_FOWNER,CAP_KILL,CAP_MKNOD,CAP_NET_RAW,
CAP_NET_BIND_SERVICE,CAP_SETUID,CAP_SETGID,CAP_SETPCAP,
CAP_SETFCAP,CAP_SYS_CHROOT -- --default-standard-output=tty --log-
target=null --show-status=0

Stage 1

● Distributed as a container image (rkt-fetchable， self-
containerd)

● Run with no isolation on the host
● Support multiple stage1 for different purpose

Examples
● stage1-coreos - Run all applications under systemd
● stage1-kvm - Run all applications under lkvm
● stage1-fly - Run an application under chroot “isolation”

Stage 1 (Continued)

● App + some nice features:
rkt───systemd-nspawn───systemd─┬─redis-server

 └─systemd-journal

$ machinectl list

rkt-uuid

...

$ journalctl -M rkt-uuid

...

 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 3.2.0 (00000000/0)
 .-`` .-```. ```\/ _.,_ ''-._
 (' , .-` | `,) Running in standalone mode
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
 | `-._ `._ / _.-' | PID: 5
 `-._ `-._ `-./ _.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' | http://redis.io
 `-._ `-._`-.__.-'_.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' |
 `-._ `-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

Stage 2

rkt (stage0)

pod (stage1)

bash/runit/systemd/... (invoking process)

app1 (stage2)

app2 (stage2)

rkt Stages

rkt is in production

github.com/coreos/rkt

Only Container Runtime Is Not Enough

● Fleet,
● Mesos (marathon)
● Docker Swarm
● Kubernetes
● ...

Only Container Runtime Is Not Enough

● Pod (Co-located containers)
● Replication Controller (HA & Resize)
● Service (Service discovery, Load balancer)

Kubernetes API

Kubelet

Kubelet Overview

Kubelet Overview

Kubelet Overview

Started from nothing but Docker
→ Deep-coupled with Docker

Kubelet -- Runtime Interface

Started from nothing but Docker
→ Deep-coupled with Docker
→ started rkt integration
→ Pod level runtime interface

Kubelet -- Runtime Interface

Kubelet -- Runtime Interface

● GetPods()
● SyncPod()
● KillPod()
● GetPodStatus()

● ListImages()
● PullImage()
● RemoveImage()
● ImageStats()

● GetContainerLogs()
● ExecInContainer()
● ...

Kubelet -- Runtime Interface

● GetPods()
● SyncPod(), declarative
● KillPod()
● GetPodStatus()

● ListImages()
● PullImage()
● RemoveImage()
● ImageStats()

● GetContainerLogs()
● ExecInContainer()
● ...

Kubelet -- Runtime Interface

func SyncPodIdeal (expectedPod, actualPod) {
 foreach container in actualPod {
 if container is not in expectedPod.Containers {
 KillContainer()
 }
 }
 foreach container in expectedPod {
 if container is not in actual.Containers {
 StartContainer()
 }
 }
}

Kubelet -- Runtime Interface

func SyncPodLessIdeal (expectedPod, actualPod) {
 foreach container in actualPod {
 Has the container spec changed?
 Is the container healthy?
 if container is not in expectedPod.Containers {
 KillContainer()
 }
 }
 foreach container in expectedPod {
 if container is not in actualPod.Containers {
 Does the container needs to restart?
 Is the container a pod infra container?
 StartContainer()
 }
 }
}

Kubelet -- Runtime Interface

func SyncPodRkt (expectedPod, actualPod) {
 foreach container in actualPod {
 Has the container spec changed?
 Is the container healthy?
 if container is not in expectedPod.Containers {
 goto restart
 }
 }
 foreach container in expectedPod {
 if container is not in actualPod.Containers {
 Does the container needs to restart?
 goto restart
 }
 }
restart: RestartPod()
}

Kubelet -- Runtime Interface

Pod level interface
● Simpler
● Coarse-grained
● Not every runtime

implements “Pod”

Container level interface
● More complexity in

kubelet
● Doesn’t make sense to

VM based runtime
● Fine-grained
● Runtime implementation

can be easy

Observation

● Improve extensibility: Easier container runtime
integration.

● Improve feature velocity
● Improve code maintainability

Container level, Pod level, or both?
It’s under debate!
https://github.com/kubernetes/kubernetes/pull/25899

Future of Runtime Interface

https://github.com/kubernetes/kubernetes/pull/25899
https://github.com/kubernetes/kubernetes/pull/25899

● Container is the future, standard is important
● rkt is a composable, secure container runtime
● Kubernetes, kubelet and container runtime interface

Summary

CoreOS is running the world’s containers

We’re hiring: careers@coreos.com

sales@coreos.com

90+ Projects on GitHub, 1,000+ Contributors

coreos.com

Support plans, training and more

OPEN SOURCE ENTERPRISE

