?ﬁa

LI' 3‘1

wwm m %B

kt Ku bernetes
g i i “| HH ||H”I|‘ 1|H H“ Hl‘ £l

274 i l |
ﬁ!ﬁ.ﬂ.ﬂ. (Ylfan Gu) SoftwarH Englneer @ CoreOS
L github.comlyifan-gu

—
o
| = .
e |
1 BT ‘ 3 1
1 'i|' 1443 i 1 oL
111 = R 1oL d
I LEL! =

Overview

Container s HOT

Google amazoncom @ rednat

Ve

-
HUAWEI docker

Cﬂmpare Search terms »

linux container

Search tarm

+Add term

Interest over time

Container is not a new technology, Why?

5

So, what is container?

Container = Docker ?

So, what is container?

So, what is container?

Container = Docker ? No

So, what is container?

Container = Docker ? No
Container = cgroup + namespace ? No

So, what is container?

FreeBSD.

x\ud

soLa rIS

So, what is container?

Container = package + runtime !

So, what is container?

Container = package + runtime !
e Easy packaging (build/push/pull)
e [solated, controlled (run/stop)

If it’s hot, then standardize it

Container Spec Timeline

2013.3 2014.12 2015.6 2016.3

S S S /

Docker 1.0 Appc 0.1 OCI (Runtime OCI (Image Spec)
Spec)

>

Container Spec

@ rkt

github.com/coreos/rkt

Whatis rkt ?

rkt is a CLI for running app containers on Linux. rkt is designed to
be secure, composable, and standards-based.

rkt doesn’t require a long-running daemon and provides a powerful,
pluggable, abstraction around isolation and runtime initialization.

How rkt does security

GPG signatures to verify images
SELinux contexts

Can run containers in hypervisor

Can do TPM measurements, provides a
tamper-proof audit log

How rkt does composability

Integrating well with init systems

Aims to work well with other projects
rkt has the concept of a “stage1”, which
IS a swappable component that actually
runs the container

Available stageis

o chroot

o Linux namespaces (default)
o LKVM

How rkt does standards/compatibility

Implementation of AppC, a well defined
spec

Uses CNI for networking, common
plumbing used by many other projects
Can run docker images

Will be fully OCI| compliant

Distributed Trusted Computing

Cluster

Containers

0S

Hardware

Only attested machines are allowed to join

Verify images with trusted keys

Verify configuration state

Verify integrity of the OS release
Customer key embedded in firmware

Tamper-proof
Audit log

Cluster

Only attested machines are allowed to join

Containers
Verify images with trusted keys
Veriyiconmicurar gy Tamper-proof
0S Audit log
Verify integrity D'ﬁ'* e
Hardware | v

Customer key en—

rkt internals

modular architecture
execution divided into stages
stage0 > stagel > stage2

rkt Stages

Image discovery and fetching - Locate and download
ACI and Docker images

Unpacking/preparing the container manifest and
filesystem ...
Setting up network and namespace isolation
Handle any needed runtime setup / features (e.g.
systemd)

Container entrypoint!

Stage 0 - Fetch

Stage 0 - Fetch

$ rkt fetch example.com/redis
GET https://example.com/redis

<meta name="ac-discovery" content="example.com/redis
https://example.com/redis.{ext}”>

GET https://example.com/redis.aci.asc
GET https://example.com/redis.aci
Downloading signature:

Downloading ACI:

image: signature verified:
Example <example@example.com>
sha512-...

https://example.com/redis
https://example.com/redis.%7Bext
https://example.com/redis.%7Bext
https://example.com/redis
https://example.com/redis

Stage 0 - Prepare

Stage 1 run-prepared

$ rkt run-prepared uuid

Default: Systemd-nspawn

e Writes a unit file for each application based on its manifest
e Setup network namespaces (CNI)

e Handle mounts via systemd-nspawn (default)

e Hand off to systemd

Stage 1

$ rkt run-prepared uuid

Default: Systemd-nspawn

S systemd-nspawn --boot --register=false --link-journal=try-guest --quiet --
uuid=alcaebb1-948b-4486-8133-bb21133a7090 --machine=rkt-alcaebbl-
948b-4486-8133-bb21133a7090 --directory=stagel/rootfs --
capability=CAP_AUDIT_WRITE,CAP_CHOWN,CAP_DAC_OVERRIDE,
CAP_FSETID,CAP_FOWNER,CAP_KILL,CAP_MKNOD,CAP_NET_RAW,
CAP_NET_BIND_SERVICE,CAP_SETUID,CAP_SETGID,CAP_SETPCAP,
CAP_SETFCAP,CAP_SYS_CHROQOT -- --default-standard-output=tty --log-
target=null --show-status=0

Stage 1 (Continued)

e Distributed as a containerimage (rkt-fetchable, self-

containerd)
e Run with noisolation on the host
e Support multiple stagel for different purpose

Examples

e stagel-coreos - Run all applications under systemd
e stagel-kvm - Run all applications under lkvm
e stagel-fly- Run an application under chroot “isolation”

Stage 2

e App +some nice features:
rkt

systemd-nspawn systemd——redis-server

L _systemd-journal

rkt Stages

bash/runit/systemd/... (invoking process)

L rkt (stageo)

gl I =IIE INE IS - -

5 appl (stage2)

_, app2 (stage2)

«®’
o

rkt is in production

BlaglaCar
github.com/coreos/rkt

L] coreos / rkt @ Unwatch~ 417 s Unstar 5534 % Fork 518

<> Code (1) Issues 279 11 Pull requests 47 4~ Pulse [ili Graphs 1 Settings

Cluster

Containers

0S

Hardware

Only attested machines are allowed to join

Verify images with trusted keys

Verify configuration state

Verify integrity of the OS release
Customer key embedded in firmware

Tamper-proof
Audit log

Only Container Runtime Is Not Enough

Fleet,

Mesos (marathon)
Docker Swarm

A EINEIGCE

Kubernetes API

e Pod (Co-located containers)
e Replication Controller (HA & Resize)
e Service (Service discovery, Load balancer)

Kubelet

scheduler replication
controller

\

| Iabel | label [labs il
pod | ene W pod [eve B service

DIrOXy
label label _;
pod pod | label pod | label
Kubelet - »

¥]

devops

5 3

o

docker

registry

Kubelet Overview

API server/ file/ http

create/kill

kubelet : - :

container
runtime

pod lifecycle event generator (PLEG) SXAITING

containers

upstream container state
event generator

Kubelet Overview

API server/ file/ http

create/kill

1 e
kubelet : - :

container

ﬁ runtime
pod lifecycle event generator (PLEG) SXAITING
I containers

upstream container state
event generator

Kubelet Overview

API server/ file/ http

create/kill
:

workerN

container
runtime

pod lifecycle event generator (PLEG) SXAITING

containers

upstream container state
event generator

Kubelet -- Runtime Interface

Started from nothing but Docker
— Deep-coupled with Docker

Kubelet -- Runtime Interface

Started from nothing but Docker
— Deep-coupled with Docker
— started rkt integration

— Pod level runtime interface

Kubelet -- Runtime Interface

[l docker / docker @ Watch~ 2,641 s Unstar 31519 % Fork 8999

<5 Code @ Issues 1542 1) Pull requests 86 [EE] Wiki 4~ Pulse |:11 Graphs

Proposal: Make Pods (collections of containers) a first order [Newissue |
container object. #8781

brendandburns opened this issue on Oct 25, 2014 - 64 comments

@ brendandburns commented on Oct 25, 2014 +@
Pods

Milestone

This is a proposal to change the first order container object within the Docker API from a single)
No milestone

container to a pod of containers.

Kubelet -- Runtime Interface

GetPods()
SyncPod()
KillPod()
GetPodStatus()

Listimages()
Pulllmage()
Removelmage()
ImageStats()

GetContainerLogs()
ExeclnContainer()

Kubelet -- Runtime Interface
GetPods()

KillPod()
GetPodStatus()

Listimages()
Pulllmage()
Removelmage()
ImageStats()

GetContainerLogs()
ExeclnContainer()

Kubelet -- Runtime Interface

Kubelet -- Runtime Interface

Has the container spec changed?
Is the container healthy?

Does the container needs to restart?
Is the container a pod infra container?

Kubelet -- Runtime Interface

Has the container spec changed?
Is the container healthy?

Does the container needs to restart?

Observation

Pod level interface

e Simpler

e (Coarse-grained

e Not every runtime
implements “Pod”

Container level interface

More complexity in
Kubelet

Doesn’t make sense to
VM based runtime
Fine-grained

Runtime implementation
can be easy

Future of Runtime Interface

e |mprove extensibility: Easier container runtime
integration.

e Improve feature velocity

e Improve code maintainability

Container level, Pod level, or both?
It's under debate!
https://github.com/kubernetes/kubernetes/pull/25899

https://github.com/kubernetes/kubernetes/pull/25899
https://github.com/kubernetes/kubernetes/pull/25899

Summary

e Container is the future, standard is important
e rktis a composable, secure container runtime
e Kubernetes, kubelet and container runtime interface

CoreQOS is running the world’s containers

We’re hiring: careers@coreos.com

OPEN SOURCE ENTERPRISE

