
Linux中的汇编语言

 在阅读 Linux源代码时，你可能碰到一些汇编语言片段，有些汇编语言出现在以.S

为扩展名的汇编文件中，在这种文件中，整个程序全部由汇编语言组成。有些汇编命令出

现在以.c为扩展名的 C文件中，在这种文件中，既有 C语言，也有汇编语言，我们把出

现在 C代码中的汇编语言叫所“嵌入式”汇编。不管这些汇编代码出现在哪里，它在一定

程度上都成为阅读源代码的拦路虎。

 尽管 C语言已经成为编写操作系统的主要语言，但是，在操作系统与硬件打交道的过

程中，在需要频繁调用的函数中以及某些特殊的场合中，C语言显得力不从心，这时，

繁琐但又高效的汇编语言必须粉墨登场。因此，在了解一些硬件的基础上，必须对相关的

汇编语言知识也所有了解。

 读者可能有过在 DOS操作系统下编写汇编程序的经历,也具备一定的汇编知识。但是，

在 Linux 的源代码中，你可能看到了与 Intel的汇编语言格式不一样的形式，这就是

AT&T的 386汇编语言。

一、AT&T与 Intel汇编语言的比较

 我们知道，Linux是 Unix家族的一员，尽管 Linux的历史不长，但与其相关的很多事

情都发源于 Unix。就 Linux所使用的 386汇编语言而言，它也是起源于 Unix。Unix最初是

为 PDP－11开发的，曾先后被移植到 VAX及 68000系列的处理器上，这些处理器上的汇编

语言都采用的是 AT&T的指令格式。当 Unix被移植到 i386时，自然也就采用了 AT&T的汇

编语言格式，而不是 Intel的格式。尽管这两种汇编语言在语法上有一定的差异，但所基

于的硬件知识是相同的，因此，如果你非常熟悉 Intel的语法格式，那么你也可以很容

易地把它“移植“到 AT&T来。下面我们通过对照 Intel与 AT&T的语法格式，以便于你把

过去的知识能很快地“移植”过来。

 1．前缀

 在 Intel的语法中，寄存器和和立即数都没有前缀。但是在 AT&T中，寄存器前冠以

“％”，而立即数前冠以“$”。在 Intel的语法中，十六进制和二进制立即数后缀分别

冠以“h”和“b”，而在 AT&T中，十六进制立即数前冠以“0x”，表 2.2给出几个相应

的例子。

表 2.2 Intel与 AT&T前缀的区别

Intel语法 AT&T语法

 mov eax,8 movl $8,%eax

 mov ebx,0ffffh movl $0xffff,%ebx

 int 80h int $0x80

2. 操作数的方向

 Intel与 AT&T操作数的方向正好相反。在 Intel语法中，第一个操作数是目的操作数，

第二个操作数源操作数。而在 AT&T中，第一个数是源操作数，第二个数是目的操作数。由

此可以看出，AT&T 的语法符合人们通常的阅读习惯。

例如：在 Intel中， mov eax,[ecx]

 在 AT&T中，movl (%ecx),%eax

3．内存单元操作数

 从上面的例子可以看出，内存操作数也有所不同。在 Intel的语法中，基寄存器用“

［］”括起来，而在 AT&T中，用“（）”括起来。

例如： 在 Intel中，mov eax,[ebx+5]

 在 AT&T，movl 5(%ebx),%eax

4．间接寻址方式

 与 Intel的语法比较，AT&T间接寻址方式可能更晦涩难懂一些。Intel的指令格式是

segreg:[base+index*scale+disp]，而 AT&T的格式是%segreg:disp(base,index,scale)。其中

index/scale/disp/segreg全部是可选的，完全可以简化掉。如果没有指定 scale而指定了

index，则 scale的缺省值为 1。segreg段寄存器依赖于指令以及应用程序是运行在实模式

还是保护模式下，在实模式下，它依赖于指令，而在保护模式下， segreg是多余的。在

AT&T中，当立即数用在 scale/disp中时，不应当在其前冠以“$”前缀，表 2.3给出其语

法及几个相应的例子。

表 2.3 内存操作数的语法及举例

Intel语法 AT&T语法

指令 foo,segreg:[base+index*scale+disp] 指令 %segreg:disp(base,index,scale),foo

mov eax,[ebx+20h] Movl0x20(%ebx),%eax

add eax,[ebx+ecx*2h Addl (%ebx,%ecx,0x2),%eax

lea eax,[ebx+ecx] Leal (%ebx,%ecx),%eax

sub eax,[ebx+ecx*4h-20h] Subl -0x20(%ebx,%ecx,0x4),%eax

 从表中可以看出，AT&T的语法比较晦涩难懂，因为[base+index*scale+disp]一眼就可

以看出其含义，而 disp(base,index,scale)则不可能做到这点。

 这种寻址方式常常用在访问数据结构数组中某个特定元素内的一个字段，其中，

base为数组的起始地址，scale为每个数组元素的大小，index为下标。如果数组元素还

是一个结构，则 disp为具体字段在结构中的位移。

5．操作码的后缀

在上面的例子中你可能已注意到，在 AT&T的操作码后面有一个后缀，其含义就是

指出操作码的大小。“l”表示长整数（32位），“w”表示字（16位），“b”表示字节

（8位）。而在 Intel的语法中，则要在内存单元操作数的前面加上 byte ptr、 word ptr,

和 dword ptr，“dword”对应“long”。表 2.4给出几个相应的例子。

表 2.4 操作码的后缀举例

Intel语法 AT&T语法

 Mov al,bl movb %bl,%al

 Mov ax,bx movw %bx,%ax

 Mov eax,ebx movl %ebx,%eax

 Mov eax, dword ptr [ebx] movl (%ebx),%eax

二、 AT&T汇编语言的相关知识

 在 Linux源代码中，以.S为扩展名的文件是“纯”汇编语言的文件。这里，我们结合

具体的例子再介绍一些 AT&T汇编语言的相关知识。

 1．GNU汇编程序 GAS（GNU Assembly和连接程序

当你编写了一个程序后，就需要对其进行汇编（assembly）和连接。在 Linux下有两

种方式，一种是使用汇编程序 GAS和连接程序 ld，一种是使用 gcc。我们先来看一下 GAS

和 ld:

GAS把汇编语言源文件（.o）转换为目标文件（.o），其基本语法如下：

as filename.s -o filename.o

一旦创建了一个目标文件，就需要把它连接并执行，连接一个目标文件的基本语法

为：

ld filename.o -o filename

这里 filename.o是目标文件名，而 filename 是输出(可执行) 文件。

GAS使用的是 AT&T的语法而不是 Intel的语法，这就再次说明了 AT&T语法是 Unix

世界的标准，你必须熟悉它。

如果要使用 GNC的 C编译器 gcc，就可以一步完成汇编和连接，例如：

gcc -o example example.S

 这里，example.S是你的汇编程序，输出文件（可执行文件）名为 example。其中，扩

展名必须为大写的 S，这是因为，大写的 S可以使 gcc自动识别汇编程序中的 C预处理命

令，像#include、#define、#ifdef、 #endif等，也就是说，使用 gcc进行编译，你可以在

汇编程序中使用 C的预处理命令。

2. AT&T中的节（Section）

 在 AT&T的语法中，一个节由.section关键词来标识，当你编写汇编语言程序时，

至少需要有以下三种节：

.section .data： 这种节包含程序已初始化的数据，也就是说，包含具有初值的那些变

量，例如：

 hello : .string "Hello world!\n"

 hello_len : .long 13

 .section .bss：这个节包含程序还未初始化的数据，也就是说，包含没有初值的那些变

量。当操作

 系统装入这个程序时将把这些变量都置为 0，例如：

 name : .fill 30 # 用来请求用户输入名字

 name_len : .long 0 # 名字的长度 (尚未定义)

当这个程序被装入时，name 和 name_len都被置为 0。如果你在.bss节不小心给一个

变量赋了初值，这个值也会丢失，并且变量的值仍为 0。

使用.bss比使用.data的优势在于，.bss节不占用磁盘的空间。在磁盘上，一个长整数

就足以存放.bss节。当程序被装入到内存时，操作系统也只分配给这个节 4个字节的内存

大小。

注意：编译程序把.data和.bss在 4字节上对齐（align），例如，.data总共有 34字

节，那么编译程序把它对其在 36字节上，也就是说，实际给它 36字节的空间。

.section .text ：这个节包含程序的代码，它是只读节，而.data 和.bss是读／写节。

3．汇编程序指令（Assembler Directive）

 上面介绍的.section就是汇编程序指令的一种，GNU汇编程序提供了很多这样的指令

（directiv），这种指令都是以句点（.）为开头，后跟指令名（小写字母），在此，我

们只介绍在内核源代码中出现的几个指令（以 arch/i386/kernel/head.S中的代码为例）。

（1）ascii "string"...

.ascii 表示零个或多个（用逗号隔开）字符串，并把每个字符串（结尾不自动加

“0“字节）中的字符放在连续的地址单元。

还有一个与.ascii类似的.asciz，z代表“0“，即每个字符串结尾自动加一个”0“

字节，例如：

int_msg:

 .asciz "Unknown interrupt\n"

（2）.byte 表达式

 .byte表示零或多个表达式（用逗号隔开），每个表达式被放在下一个字节单元。

（3）.fill 表达式

 形式：.fill repeat , size , value

 其中，repeat、size 和 value都是常量表达式。Fill的含义是反复拷贝 size个字节。

Repeat可以大于等于 0。size也可以大于等于 0，但不能超过 8，如果超过 8，也只取 8。把

repeat个字节以 8个为一组，每组的最高 4个字节内容为 0，最低 4字节内容置为 value。

 Size和 value为可选项。如果第二个逗号和 value值不存在，则假定 value为 0。如

果第一个逗号和 size不存在，则假定 size为 1。

 例如，在 Linux初始化的过程中，对全局描述符表 GDT进行设置的最后一句为：

 .fill NR_CPUS*4,8,0 /* space for TSS's and LDT's */

 因为每个描述符正好占 8个字节，因此，.fill给每个 CPU留有存放 4个描述符的位

置。

（4）.globl symbol

 .globl使得连接程序（ld）能够看到 symbl。如果你的局部程序中定义了 symbl，那

么，与这个局部程序连接的其他局部程序也能存取 symbl，例如：

 .globl SYMBOL_NAME(idt)

 .globl SYMBOL_NAME(gdt)

 定义 idt和 gdt为全局符号。

（5）quad bignums

.quad表示零个或多个 bignums（用逗号分隔），对于每个 bignum，其缺省值是 8字

节整数。如果 bignum超过 8字节，则打印一个警告信息；并只取 bignum最低 8字节。

例如，对全局描述符表的填充就用到这个指令：

.quad 0x00cf9a000000ffff /* 0x10 kernel 4GB code at 0x00000000 */

.quad 0x00cf92000000ffff /* 0x18 kernel 4GB data at 0x00000000 */

.quad 0x00cffa000000ffff /* 0x23 user 4GB code at 0x00000000 */

.quad 0x00cff2000000ffff /* 0x2b user 4GB data at 0x00000000 */

（6）rept count

 把.rept指令与.endr指令之间的行重复 count次，例如

 .rept 3

 .long 0

 .endr

 相当于

 .long 0

 .long 0

 .long 0

 （7）space size , fill

 这个指令保留 size个字节的空间，每个字节的值为 fill。size 和 fill都是常量表达式。

如果逗号和 fill被省略，则假定 fill为 0，例如在 arch/i386/bootl/setup.S中有一句：

 .space 1024

 表示保留 1024字节的空间，并且每个字节的值为 0。

 （8）.word expressions

 这个表达式表示任意一节中的一个或多个表达式（用逗号分开），表达式的值占两个

字节，例如：

 gdt_descr:

 .word GDT_ENTRIES*8-1

 表示变量 gdt_descr的置为 GDT_ENTRIES*8-1

 （9）.long expressions

 这与.word类似

 （10）.org new-lc , fill

 把当前节的位置计数器提前到 new-lc（new location counter）。new-lc或者是一个

常量表达式，或者是一个与当前子节处于同一节的表达式。也就是说，你不能用.org横跨

节：如果 new-lc是个错误的值，则.org被忽略。.org只能增加位置计数器的值，或者让其

保持不变；但绝不能用.org来让位置计数器倒退。

 注意，位置计数器的起始值是相对于一个节的开始的，而不是子节的开始。当位置计

数器被提升后，中间位置的字节被填充值 fill（这也是一个常量表达式）。如果逗号和

fill都省略，则 fill的缺省值为 0。

 例如：.org 0x2000

 ENTRY(pg0)

 表示把位置计数器置为 0x2000，这个位置存放的就是临时页表 pg0。

三、 Gcc嵌入式汇编

 在 Linux的源代码中，有很多 C语言的函数中嵌入一段汇编语言程序段，这就是 gcc

提供的“asm”功能，例如在 include/asm-i386/system.h中定义的，读控制寄存器 CR0

的一个宏 read_cr0()：

#define read_cr0() ({ \

 unsigned int __dummy; \

 __asm__(\

 "movl %%cr0,%0\n\t" \

 :"=r" (__dummy)); \

 __dummy; \

 })

这种形式看起来比较陌生，这是因为这不是标准 C所定义的形式，而是 gcc 对 C语

言的扩充。其中__dummy为 C函数所定义的变量；关键词__asm__表示汇编代码的开始。括

弧中第一个引号中为汇编指令 movl，紧接着有一个冒号，这种形式阅读起来比较复杂。

一般而言，嵌入式汇编语言片段比单纯的汇编语言代码要复杂得多，因为这里存在

怎样分配和使用寄存器，以及把 C代码中的变量应该存放在哪个寄存器中。为了达到这个

目的，就必须对一般的 C语言进行扩充，增加对编译器的指导作用，因此，嵌入式汇编

看起来晦涩而难以读懂。

1. 嵌入式汇编的一般形式：

__asm__ __volatile__ ("<asm routine>" : output : input : modify);

 其中，__asm__表示汇编代码的开始，其后可以跟__volatile__（这是可选项），其

含义是避免“asm”指令被删除、移动或组合；然后就是小括弧，括弧中的内容是我们介

绍的重点：

· "<asm routine>"为汇编指令部分，例如，"movl %%cr0,%0\n\t"。数字前加前缀“％“，

如％1，％2等表示使用寄存器的样板操作数。可以使用的操作数总数取决于具体 CPU

中通用寄存器的数量，如 Intel可以有 8个。指令中有几个操作数，就说明有几个变

量需要与寄存器结合，由 gcc在编译时根据后面输出部分和输入部分的约束条件进

行相应的处理。由于这些样板操作数的前缀使用了”％“，因此，在用到具体的寄存

器时就在前面加两个“％”，如%%cr0。

· 输出部分（output），用以规定对输出变量（目标操作数）如何与寄存器结合的约

束（constraint）,输出部分可以有多个约束，互相以逗号分开。每个约束以“＝”开

头，接着用一个字母来表示操作数的类型，然后是关于变量结合的约束。例如，上例

中：

:"=r" (__dummy)

“＝r”表示相应的目标操作数（指令部分的%0）可以使用任何一个通用寄存器，并

且变量__dummy 存放在这个寄存器中，但如果是：

：“＝m”（__dummy）

“＝m”就表示相应的目标操作数是存放在内存单元__dummy中。

表示约束条件的字母很多，表 2－5 给出几个主要的约束字母及其含义：

 表 2.5 主要的约束字母及其含义

 字母 含义

 m, v,o 表示内存单元

 R 表示任何通用寄存器

 Q 表示寄存器 eax, ebx, ecx,edx之一

 I, h 表示直接操作数

 E, F 表示浮点数

 G 表示“任意”

 a, b.c d 表示要求使用寄存器 eax/ax/al, ebx/bx/bl, ecx/cx/cl或 edx/dx/dl

 S, D 表示要求使用寄存器 esi或 edi

 I 表示常数（0～31）

· 输入部分（Input）：输入部分与输出部分相似，但没有“＝”。如果输入部分一个

操作数所要求使用的寄存器，与前面输出部分某个约束所要求的是同一个寄存器，

那就把对应操作数的编号（如“1”，“2”等）放在约束条件中，在后面的例子中

我们会看到这种情况。

· 修改部分（modify）:这部分常常以“memory”为约束条件，以表示操作完成后内存

中的内容已有改变，如果原来某个寄存器的内容来自内存，那么现在内存中这个单

元的内容已经改变。

注意，指令部分为必选项，而输入部分、输出部分及修改部分为可选项，当输入部分

存在，而输出部分不存在时，分号“：“要保留，当“memory”存在时，三个分号

都要保留，例如 system.h中的宏定义__cli()：

 #define __cli() __asm__ __volatile__("cli": : :"memory")

2. Linux源代码中嵌入式汇编举例

 Linux源代码中，在 arch目录下的.h和.c文件中，很多文件都涉及嵌入式汇编，下面

以 system.h中的 C函数为例，说明嵌入式汇编的应用。

（1）简单应用

#define __save_flags(x) __asm__ __volatile__("pushfl ; popl %0":"=g" (x):

/* no input */)

#define __restore_flags(x) __asm__ __volatile__("pushl %0 ; popfl": /* no

output */

 :"g" (x):"memory", "cc")

第一个宏是保存标志寄存器的值，第二个宏是恢复标志寄存器的值。第一个宏中的

pushfl指令是把标志寄存器的值压栈。而 popl是把栈顶的值（刚压入栈的 flags）弹出到

x变量中，这个变量可以存放在一个寄存器或内存中。这样，你可以很容易地读懂第二个

宏。

(2) 较复杂应用

static inline unsigned long get_limit(unsigned long segment)

{

 unsigned long __limit;

 __asm__("lsll %1,%0"

 :"=r" (__limit):"r" (segment));

 return __limit+1;

}

这是一个设置段界限的函数，汇编代码段中的输出参数为__limit（即%0），输入参

数为 segment（即%1）。Lsll是加载段界限的指令，即把 segment段描述符中的段界限字

段装入某个寄存器（这个寄存器与__limit结合），函数返回__limit加 1，即段长。

（3）复杂应用

 在 Linux内核代码中，有关字符串操作的函数都是通过嵌入式汇编完成的，因为内

核及用户程序对字符串函数的调用非常频繁，因此，用汇编代码实现主要是为了提高效

率（当然是以牺牲可读性和可维护性为代价的）。在此，我们仅列举一个字符串比较函数

strcmp，其代码在 arch/i386／string.h中。

static inline int strcmp(const char * cs,const char * ct)

{

int d0, d1;

register int __res;

__asm__ __volatile__(

 "1:\tlodsb\n\t"

 "scasb\n\t"

 "jne 2f\n\t"

 "testb %%al,%%al\n\t"

 "jne 1b\n\t"

 "xorl %%eax,%%eax\n\t"

 "jmp 3f\n"

 "2:\tsbbl %%eax,%%eax\n\t"

 "orb $1,%%al\n"

 "3:"

 :"=a" (__res), "=&S" (d0), "=&D" (d1)

 :"1" (cs),"2" (ct));

return __res;

}

其中的“\n”是换行符，“\t”是 tab符，在每条命令的结束加这两个符号，是为

了让 gcc把嵌入式汇编代码翻译成一般的汇编代码时能够保证换行和留有一定的空格。例

如，上面的嵌入式汇编会被翻译成：

1： lodsb //装入串操作数,即从[esi]传送到 al寄存器，然后 esi指向串

中下一个元素

 scasb //扫描串操作数，即从 al中减去 es:[edi]，不保留结果，只

改变标志

 jne2f //如果两个字符不相等，则转到标号 2

 testb %al %al

 jne 1b

 xorl %eax %eax

 jmp 3f

2: sbbl %eax %eax

 orb $1 %al

3:

 这段代码看起来非常熟悉，读起来也不困难。其中 1f 表示往前（forword）找到第

一个标号为 1的那一行，相应地，1b表示往后找。其中嵌入式汇编代码中输出和输入部分

的结合情况为：

· 返回值__res，放在 al寄存器中，与%0相结合；

· 局部变量 d0，与％1相结合，也与输入部分的 cs参数相对应，也存放在寄存器

ESI中，即 ESI中存放源字符串的起始地址。

· 局部变量 d1， 与％2相结合，也与输入部分的 ct参数相对应，也存放在寄存

器 EDI中，即 EDI中存放目的字符串的起始地址。

通过对这段代码的分析我们应当体会到，万变不利其本，嵌入式汇编与一般汇编的区别

仅仅是形式，本质依然不变。因此，全面掌握 Intel 386 汇编指令乃突破阅读低层代码之

根本。

