
电子科技大学

硕士学位论文

基于多核系统的线程调度

姓名：覃中

申请学位级别：硕士

专业：计算机系统结构

指导教师：李毅

20090501

摘 要

摘 要

微处理器自诞生以来，性能的提升主要是通过提高主频来实现的，而主频的

提升要求大幅度增加晶体管的数量。巨大的晶体管数量则意味着巨大的能耗，随

之带来的散热问题也日益凸显。当处理器性能受到半导体工艺限制的时候，研究

人员将目光投到了处理器的体系结构，提出了多核处理器的概念。多核处理器已

经成为微处理器发展的趋势，使用多核技术可以使微处理器的性能得到极大的提

高，但同时也对调度策略提出了更高的要求。

本文首先分析了课题研究的背景和意义，简要介绍了进程、线程和多线程以

及在单处理器调度的基本理论知识。介绍了多核处理器硬件相关的主要实现技术，

包括同时多线程(Simultaneous Multithreading，SMT)，片上多处理器(Chip

MultiProcessor，CMP)，片上多线程(Chip Multiple Threading，CMT)；并分析了目前

多核线程调度的研究现状。

其次，本文详细研究了Linux2．6内核的o(1)调度算法及其具体实现。O(1)调

度器中增加了数据结构runqueue，就绪队列被分成活动队列和过期队列，结合

bitmapD不必遍历整个就绪队列，查找next进程的时间复杂度降为O(1)，进程运行

时间片的重新分配更及时；动态优先级的计算过程更简单。详细分析了在Linux

中的SMP的具体实现，着重讨论了Linux负载均衡系统。然后指出了Linux2．6调

度算法的不足：1．因为在处理器间迁移不同进程的代价是不尽相同的，所以在迁

移进程的时候，应该适当考虑进程的特点。2．调度器给处理器分配进程的时候应

该考虑进程的相关性。3．当系统的负载不平衡且很轻微的时候，不一定需要平衡负

载。

最后，提出一种负载均衡的通用模型，使用四元组<E，T，L，S>来表示。然

后根据该模型的各个因子对Linux的负载均衡系统进行剖析，着重分析了Linux的

负载评价因子L和调度策略因子S。针对Linux调度器不考虑进程迁移代价的不足

提出了基于资源利用率的负载均衡算法，通过计算进程的CPU利用率和内存利用

率来选择迁移进程，然后通过统计系统中的过载CPU和轻载CPU，根据Donor或

者Reciever算法来匹配源CPU和目的CPU。

关键词：多核处理器，对称多处理，Linux进程调度，O(1)调度算法，负载均衡

ABSTRACT

ABSTRACT

Since microprocessor was born，the enhancement of its perfomlance has been

achieved by increasing its frequency,of which the upgrade requires a substantial

increase of the number of the transistors，requiring more power consumptions and

causing significant heat dissipation．When cpu's performance WaS restricted by the

semiconductor craft，people turned to multi-process architecture and proposed a new

concept of multi—core process．Nowadays，multicore processor has become the trend of

microprocessor and the utilization of multicore technology increases the performance of

microprocessors significantly．Furthermore，it puts forward higher requirements on the

scheduling strategy．

First,this thesis describes the background and the significance of the research,

introduces briefly the basic theoretical knowledge on process，thread and multi—thread

and scheduling policies on UP．After that，it outlines the implemem of corresponding

hardwares on mulit—core and the current study ofmulti-thread scheduling．

And then,the O(1)scheduling algorithm and it’S implementation in Linux 2．6 kernel

are researched detailed．Data structure nmqueue is added and it’S separated into two

parts：active and expired．Integrate谢m bitmap[]，the time complexity of O(1)scheduler

is reached to O(1)．The reallocation of the process’timeslice becomes more timely and

the calculation of process’priority becomes more simple than before．Then，it analyses

the specific implementation of the SMP and focuses on the load balancing system in

Linux．After that，three deficiencies of scheduler of linux2．6 ale pointed out as follows：

1．no special considerations for the features of processes，for the prices are different

when migration OCCtll"S among CPUs．2．the lack of relativity of processes dispatched by

the scheduler．3．unnecessary load·balancing when the unbalance of loads is tiny in the

system．

Finally,this thesis proposes a general template for load balancing，which is

signified wim a four-dimension vector．The load balancing system ofLinux is analysed

according to the factors in the module，where L factor for loading evaluation and S

factor for sheduling policy are concentrated．T11is thesis puts forward a Load balancing

H

一． 垒呈璺坐竺! 一——
algorithm based on the utilization of resources

for the shortages mentioned above·The

algorithm selects process to be migrated by calculating
the CPU utihzation and memory

utilizatiom statistic over load CPU and light load CPU，and matches
the SOUrCe CPU

and the purpose CPU according to Donor algorithm or Receiver algorithm·

Keywords：multi．core processor,multi-processor architecture，Linux process
schedule，

o(1)schedule algorithm，load balancing

m

独创性声明

本人声明所呈交的学位论文是本人在导师指导下进行的研究工

作及取得的研究成果。据我所知，除了文中特别加以标注和致谢的地

方外，论文中不包含其他人已经发表或撰写过的研究成果，也不包含

为获得电子科技大学或其它教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明

确的说明并表示谢意。

关于论文使用授权的说明

本学位论文作者完全了解电子科技大学有关保留、使用学位论文

的规定，有权保留并向国家有关部门或机构送交论文的复印件和磁

盘，允许论文被查阅和借阅。本人授权电子科技大学可以将学位论文

的全部或部分内容编入有关数据库进行检索，可以采用影印、缩印或

扫描等复制手段保存、汇编学位论文。

(保密的学位论文在解密后应遵守此规定)

签名： 导师躲釜墼
日期：y哆年乡月2日

第一章绪论

1．1课题背景

第一章绪论

从20世纪70年代开始，处理器的发展突飞猛进，许多知名厂家纷纷推出一

代又一代处理器。随着处理器继承晶体管数量越来越多，主频越来越高，而处理

器的性能也越来越强大【lJ。

1965年，Intel CEO戈登摩尔提出了著名的摩尔定律：IC上可容纳的晶体管数

目，约每隔18个月便会增加一倍，性能也将提升一倍。半导体工艺的不断发展，

的确带来了处理器性能的提高，但是到了21世纪，处理器频率已接近4GB，集成

的晶体管数量有数亿个，半导体工艺达到了物理极限，很难再提高处理器的频率。

另外，单纯的通过提高主频来提升性能，引起功耗的不断提高。

处理器性能的提高主要依赖于两方面：一是半导体工艺的飞速发展；二是处

理器体系结构的不断创新。当处理器性能受到半导体工艺限制的时候，研究人员

将目光投到了处理器体系结构，提出了多核处理器的概念。多核，即在一个单芯

片上面集成两个或两个以上处理器内核，每个内核都有控制单元、逻辑单元、中

断控制器、运算单元、一级缓存、二级缓存(可以是共享或独有)，这些部件和单

核处理器内核相比都是一样的。多核体系通过增加计算机中物理处理器的数量，

能够有效地利用线程级并行性，支持了真正意义上的并行执行。

为了充分利用线程级并行性所带来的性能收益，研究人员首先提出了同时多

线程(Simultaneous Multi．Threading，SMT)技术。线程，可以被定义成CPU资源

占用的一个基本单位，包括指向指令流中当前指令的程序计数器、当前线程的CPU

状态信息以及其他一些资源，比如堆栈。通过复制这些状态信息的方法就能够创

建多个逻辑处理器，然后执行资源就被这些不同的逻辑处理器所共享。当多核处

理器出现之后，可以将相互独立的执行核与SMT技术相结合，从而将逻辑处理器

上的数量增加到执行核数量的两倍。图1．1给出了各种不同的处理器结构瞄J。

多核处理器的发展，对操作系统提出了新的要求和挑战。首先，如何合理地

分配、组织和调度任务才能最大程度地发挥多核处理器结构的性能?其次，如何保

持操作系统的外部接口的相对稳定?对用户而言，当然希望从单核到多核能够平滑

的过渡。一方面系统的操作界面最好和以前的操作系统完全相同，另一方面以前

电子科技大学硕士学位论文

的应用程序最好能够不做任何修改就直接在多核处理器系统上运行。也就是说多

核这个特性对于用户来讲是透明的，用户不知道也不关心底层的实现问题，这需

要操作系统在用户界面和编程接1：3方面都保持不变【31。

(a)单核结构

CPU状态 CPU状态

中断逻辑 中断逻辑

执行单元 Cache

(b)多处理器结构

CPU状态 cPU状态

中断逻辑 中断逻辑

执行单元 Cache 执行单元 Cache

(c)超线程技术 (d)多核体系结构

cPu状态 cPu状态

} 中断逻辑 中断逻辑 l

执行单元 执行单元

Cache I

(e)共享cache的多核体系结构

(f)采用超线程技术的多核体系结构

图1-1单核结构、多处理器结构以及多核结构之间的简单对比

如何更好地分配、组织和调度任务以便将多核处理器结构的性能发挥到极致

是多核操作系统的核心问题，这也是人们对多核处理器最大的期望。要解决这个

问题，需要软硬件共同协作，从任务调度、中断分配、资源共享等几个方面入手。

硬件方面则要求多核处理器系统提供全新的同步与互斥、中断分配以及CPU内核

2

第一章绪论

之间的中断等机制n】。

目前为止，世界上还没有专门针对多核体系结构的多核操作系统出现，尤其

是缺乏成熟的调度机制。因此，面向多核体系结构的操作系统调度是目前多核软

件的一个研究热点。

1．2多核系统调度问题的提出

目前，面向多核体系结构的操作系统调度研究的热点主要有以下几个方面：

任务的分配与调度，程序的并行研究，多进程的时间相关性，进程间通信，缓存

的错误共享，一致性访问研究以及多核处理器核内部资源竞争等。这几个因素相

互独立又相互依赖，因此考虑一个系统的性能时必须将其中的几点同时加以考虑

而不能只考虑其中一个因素。

核的任务的分配是多核时代提出的新概念。单核时代，没有核的任务分配问

题，因为只有一个核的计算资源可以使用。而在多核时代，有多个核的计算资源

可以被使用，这就要考虑核的任务分配问题。如果系统中有几个进程需要分配，

要么一起分配到一个核，要么将它们均匀的分配到各个核，或者是按照一定的算

法进行分配。任务分配结束后，接下来需要考虑任务调度。对于不同的核，每个

核都可以有自己独立的调度算法来调度执行不同的任务，也可以使用一致的调度

算法。此外，还可以考虑一个进程上一个时间片运行在一个核上，下一个时间片

是否还继续在这个核上运行，还是进行线程迁移让其他核来承载该线程剩下的执

行活动?系统的核资源分配不平衡时是否要进行负载均衡?怎样直接调度实时任

务和普通任务⋯⋯

对于多核处理器系统的调度，目前还没有明确的标准与规范。由于多核系统

有多个处理器核可用，必须负责分配，有可能为每个处理器核提供单独的队列。

在这种情况下，一个具有空队列的处理器核就会空闲，而另一个处理器核就会很

忙，所以如何处理好负载均衡问题是这种调度策略的关键问题所在。为了解决这

种情况，可以考虑共同就绪队列，所有处理器共用一个就绪队列。但这无疑是增

加了进程上下文切换、锁的转换的执行时间，降低了系统的性能。另外一种考虑

就是创建主从结构，选择一个处理器来为其他处理器调度。有的系统将主从结构

进行扩展，采用单一处理器来处理所有调度的调度策略、VO处理和其他系统活动。

只有一个处理器处理访问系统数据，从而减轻了数据共享需要，但它的执行效率

并不高【1】。

3

电子科技大学硕士学位论文

1．3论文的主要工作

本课题主要讨论了在多核处理器平台上对Linux操作系统调度中负载均衡系

统的扩展和改造，主要研究内容如下：

1．多核处理器体系结构的调查研究
2．多核系统下线程调度的调查研究
3．对Linux2．6内核的O(1)调度算法分析
4．对Linux2．6负载均衡系统的分析

5．具体规划并设计基于资源利用率的负载均衡系统

1．4论文组织结构

本文接下来的章节将具体介绍课题的内容。第2章中，主要介绍与多核体系

结构相关的一些基础知识；第3章将介绍Linux2．6版本内核的调度机制及其存在

的问题；第4章提出一个通用的负载均衡模型，根据该模型定性分析Linux的负载

均衡系统，针对Linux不考虑进程迁移代价的不足提出了基于资源利用率的负载均

衡系统；第5章对本课题进行归纳和总结，指明改进和完善方向。

4

第二章多核系统的有关技术基础

2．1基本概念

2．1．1进程

第二章多核系统的有关技术基础

“进程”这一术语，在60年代初期，首先在麻省理工工学院的MULTICS系

统和IBM公司的CTSS／360系统中引入【4】。我们把“进程”定义为可并发执行的程

序在一个数据集合上的运行过程。或者说，进程是进程实体的运行过程。

进程有五个基本特征：动态性、并发性、．独立性、．异步性和结构特征(由程

序段、数据段以及进程控制块三部分组成)。

进程在运行中不断地改变其运行状态，进程的基本状态有：

新建(New)：刚刚创建的进程，操作系统还没有把它加入到可执行进程组中，

通常是还没有加载到主存中的新进程。

就绪(Ready)：进程做好了准备，只要有机会就开始执行。

运行(Running)-该进程正在被执行。

阻塞(Blocked)．-进程在某些事件发生前不能执行。如I／O操作完成。

退出(Exit)：操作系统从可执行进程组中释放出的进程，或者是因为它自身

停止了，或者是因为某种原因被取消。

2．1．2线程

为了在共享存储环境下有效地开发应用程序的细粒度并行度，将进程分成两

部分，分派的部分称作“线程(thread)"或“轻量级进程(1ightweight process)”，

而资源所有权的部分仍称作进程或任务。线程是进程中的一个实体，是被系统独

立调度和分派的基本单位。线程自己不拥有系统资源，只拥有一点在运行中必不

可少的资源(如程序计数器、一组寄存器和栈)，但它可以与同属一个进程的其他

线程共享进程所拥有的全部资源。

2．1．3多线程

多线程是指操作系统支持在一个进程中执行多个线程的能力。在支持多线程

5

电子科技大学硕士学位论文

的系统中，进程成为资源分配和保护的实体，而线程是被调度执行的基本单元。

进程的资源包括进程的地址空间，打开的文件和I／0等资源。属于同一个进程的线

程共享进程的代码段和数据段，打开的文件、信号等。除了共享资源，每个线程

还包含各自的线程ID，线程执行状态，CPU寄存器状态和栈。如图2．1所示：

图2-1单线程和多线程的进程模型

采用多线程一般主要有两个主要目的：一是为了应付各种并发性问题，二是

为了加快任务处理的速度。二者表面上是类似的，但实际上前者是被动的，后者

是主动的。一个多线程的进程可以利用线程来管理相互独立的工作，包括执行大

量运算、用户界面等‘61。

2．2单核处理器调度

2．2．1处理器调度的类型

操作系统必须为多个进程可能有竞争的请求分配计算机资源。对处理器而言，

可分配的资源是在处理器上的时间，分配途径是调度(scheduling)。调度功能必须

设计成可以满足多个目标，包括公平、任何进程都不会饿死、低开销和有效地使

用处理器时间。此外，调度功能可能需要为某些进程的启动或结束考虑不同优先

级和实时最后期限。

处理器调度的目标是以满足系统目标(如响应时间、吞吐率、处理器效率)

的方式，把进程指定给一个处理器执行。在许多系统中，这个调度活动分成三个

6

第二章多核系统的有关技术基础

独立的功能：长程(10ng term)调度、中程(mindium term)调度和短程(short term)

调度15J。

1．长程调度

长程调度决定哪一个程序可以进入到系统中处理，因此它控制多道程序的程

度。一旦允许进入，一个作业或用户程序成为一个进程，并被添加到短程调度程

序使用的队列中。在某些系统中，一个新近创建的进程从一个换出条件开始，在

这种情况下，它被添加到供中程调度程序使用的队列中。
2． 中程调度

中程调度是交换功能的一部分，换入决策基于管理多道程序程度的要求。对

不使用虚存的系统，存储器管理也是一个问题。因此，换入决策将考虑换出进程

的存储要求。

3．短程调度

按照执行的频率，长程调度程序的执行频率相对较低，并且仅仅是粗略地决

定是否接受新进程以及接受哪一个。为进行交换决策，中程调度程序执行得略微

频繁一些。短程调度程序，也称作分派程序(Dispatcher)，执行的最频繁，并且精

确地决定下一次执行哪一个进程。

2．2．2调度算法

1．先来先服务

最简单的策略是先来先服务(FCFS)，也称作先进先出(FIFO)或严格排队

方案。当每个进程就绪后，它加入就绪队列。当前正在运行的进程停止执行时，

选择在就绪队列中存在时间最长的运行。

FCFS执行长进程比执行短进程更好。如果一个短进程紧随着一个长进程之后

到达，那么它在系统中的总时间比所需要的处理时间长很多。FCFS的另一个难点

是相对于受I／0限制的进程，它更偏爱受处理器限制的进程。
2．循环

为减少FCFS策略下短作业的不利情况，一种简单的方法是基于时钟的剥夺。

以一定的间隔周期性地产生一个时钟中断，当中断发生时，当前正在运行的进程

被置于就绪队列中，然后基于FCFS选择一下就绪作业运行。这种技术也称作时间

片(time slicing)。因此每个进程在被剥夺前都给定一个时间片。

对于循环法，基于设计问题是使用时间片的长度。如果时间片非常短，则短

作业会相对比较快地移动通过系统。另一方面，处理时钟中断、执行调度和分配

函数都需要处理器开销。典型的，时间片最好略大于一次典型的交互所需要的时

7

电子科技大学硕士学位论文

间。如果小于这个时间，大多数进程都会需要两个时间量。图2．2显示了时间片的

大小对响应时间的影响。

·—～响应时闻s———+一．卜—-q—s——◆

·—————一时问片q————————◆

_一时间片q———卜·其他进程运行◆

互

成

(a)时间片大于典型交互时间 (b)时间片小于典型交互时间

图2．2时间片大小的影响

3．最短进程

减少FCFS固有的对长进程的偏爱的另一种方法是最短进程(Shortest Process

Next，SPN)策略。这是一个非剥夺的策略，其原则是下一次选择所需处理时间最

短的进程。因此，短进程将会越过长作业，跳到队列头。

SPN的风险在于只要持续不断地提供更短的进程，长进程就有可能被饿死。

另一方面，尽管SPN减少了对长作业的偏爱，但是由于缺少剥夺机制，它对分时

系统或事务处理环境仍然不理想。
4．最短剩余时间

最短剩余时间(Shortest Remaining Time，SRT)是对SPN增加了剥夺机制的

版本。在这种调度机制下，调度程序总是选择预期剩余时间最短的进程投入运行。

当一个进程加入就绪队列时，它可能比当前运行的进程具有更短的剩余时间，因

此，只要新进程就绪，调度程序就剥夺当前进程并使新进程运行。和SPN一样，

调度程序在执行选择函数时必须包含对处理时间的估计，并且存在长进程被饿死

的危险。

5．最高响应比

根据排队模型，周转时间(turnaround time，TAT)就是驻留时间，或这一项

在系统中花费的总时间(等待时间加服务时间)。一个更有用的数字是标准化的周

转时间，它是周转时间与服务时间的比率，可作为质量因子，这个值表明一个进

程的相对延迟。考虑下面的比率：

n W+S

代=一S

8

(2-1)

第二章多核系统的有关技术基础

其中，R是响应比，W是等待处理器的时间S是期待的服务时间。

调度规则如下：在当前进程完成或被阻塞时，选择R值最大的就绪进程。这

个方法非常具有吸引力，因为它说明进程的年龄。当偏爱短作业时(因为小分母

产生大比率值)，长进程由于等不到服务的时间增加，从而使这个比率值增大了，

最终在竞争中胜了短进程。
6．反馈

基本思想如下：调度基于剥夺(按时间片)使用动态优先级机制。当一个进

程第一次进入系统中时，它被放置在RQO。当它第一次执行后并返回就绪状态时，

它被放置在RQl。在随后的时间里，每当它被剥夺时，它被降级到下一个优先级

队列中。在每个队列中，除了在优先级最低的队列中之外，都使用简单的FCFS机

制。一旦一个进程处于优先级最低的队列中，它就不可能再降低，但是会重复地

返回这个队列，直到运行结束。图2．3显示一个进程经过各种队列的过程来说明反

馈调度机制。

RQO

氅坠⋯⋯[[[口⋯⋯⋯怔三}r骂

．Ll I ． 释放．
r

I
’-处理器

2．3多核相关技术

ROn

图2．3反馈调度

随着单个芯片上晶体管数目的增加，处理器设计者需要提出下一代高性能处

理器的体系结构。近年来，高端处理器主要利用超标量(Superscalar)技术来提高

性能。超标量处理器在每个时钟周期发射多条指令到功能部件上执行，其目的是

9

电子科技大学硕士学位论文

利用程序的指令级并行性(Instruction．Level Parallelism，ILP)来提高性能。但是

单个程序的有限ILP导致了超标量处理的资源利用率不高，进一步增加指令发射

宽度只会加重这种情况。对于下一代高性能处理器而言，开发的并行性不应该仅

限于单个程序内细粒度的ILP。实际上，在许多工作负载中，存在多种形式的粗粒

度的线程级并行性(mead．Level Parallelism，TLP)。例如，对于多道编程负载而
言，存在多个独立运行的应用；而并行程序则可能包含多个线程或者进程。

研究人员提出多种利用TLP来提高处理器资源利用率的处理器体系结构，包

括多线程处理器(Multithreaded Processor)、单片多处理器(Chip MultiProcessor，

CMP)和同时多线程(Simultaneous Multithreading，SMT)结构。2005年SUN公

司提出了片上多线程技术(Chip Multiple Threading，CMT)，即将CMP技术和SMT

技术结合起来。

2．3．1 SMT结构

SMT结构的基本思想是：在一个时钟周期内发射多个线程的指令到功能部件

上执行【8】，以提高功能部件的利用率。同时多线程的概念是加利福尼亚大学的

Tullsen在1995年提出的，他提出的SMT结构只对传统超标量处理器结构做了很

少改动，但是获得了很好的性能【9】，因此，主流的商业微处理器主要受它影响，如

DEC Alpha21464／1 01、Intel Xeon[111。

SMT结合了超标量和多线程处理器的特点，可以同时减少水平和垂直浪费。

SMT在两个方面提高了处理器的总体性能【9】：

1)SMT允许在一个时钟周期内执行来自不同线程的多条指令。在一个时
钟周期内，SMT能够同时利用程序的ILP和TLP来消除水平浪费，提

高处理器发射槽以及功能部件的利用率。
2)从理论上来说，SMT允许任何活动线程的组合来发射指令。当由于在
长延迟操作或者资源冲突导致只有一个活动线程时，该线程能够使用
所有可获得的发射槽。这使得可以通过使用其他线程的未阻塞指令来
消除垂直浪费。

基于乱序执行(Out-Of-Order Execution)的超标量处理器的SMT结构解决了

包括大寄存器读写和指令调度在内的具体实现问题。图2-4为该方法的处理器结构

模型【l刁；图2．5为传统超标量处理器流水线和SMT的流水线【9】o

10

第二章多核系统的有关技术基础

图2-4 SMT组织结构图

(a)超标量处理的流水线

(b)SMT结构的流水线

图2-5传统超标量处理器流水线和SMT结构流水线

Intel公司所实现的SMT技术就是超线程(Hyper-1heading，HT)【13】技术。超线

程技术实际上只有一个实际的物理处理器但是从软件角度来看，存在多个逻辑处

理器。超线程技术支持操作系统和应用程序将多个线程调度到多个逻辑处理器上，

就像多处理器一样。从微体系结构的角度来看，逻辑处理器的指令都是固定的，

并且在共享的执行资源上同时执行。

2．3．2 CMP结构

在同时多线程技术之后就出现了多核处理器。在1996年斯坦福大学的研究人

员提出了单片多处理器(Chip Multi-Processor，CMP)结构，并进行了研究【l 4。。单

片多核处理器的主要思想是通过简化超标量结构设计，将多个相对简单的超标量

处理器核集成到一个芯片上，从而避免线延的影响，并充分开发TLP，提高吞吐

量。CMP存在的主要问题是由于单片多处理器系统的资源是采用划分方式的，当没

有足够的线程时，资源就浪费了【15】。

按计算内核的对等与否，CMP可分为同构多核和异构多核。计算内核相同，

地位对等的称为“同构多核”，现在Intel和AMD主推的双核处理器就是同构的双

核处理器。计算内核不同，地位不等的称为“异构多核”，异构多核多采用“主处

理器核+协处理器核”的设计，IBM、索尼和东芝等联手设计推出的Cell处理器正

11

电子科技大学硕士学位论文

是这种异构架构。处理核本身的结构，关系到整个芯片的面积、功耗和性能。怎

样继承和发展传统处理器的成果，直接影响多核的性能和实现周期【lJ。

CMP处理器的各CPU核心执行的程序之间有时需要进行数据共享与同步，因

此其硬件结构必须支持核间通信。高效的通信机制是CMP处理器高性能的重要保

障，目前比较主流的片上高效通信机制有两种，一种是基于总线共享的cache结构，

一种是基于片上的互连结构。总线共享cache结构是指每个CPU内核拥有共享的

二级或三级cache，用于保存比较常用的数据，并通过连接核心的总线进行通信。

这种系统的优点是结构简单；通信速度高，缺点是基于总线的结构可扩展性较差。

基于片上互连的结构是指每个CPU核心具有独立的处理单元和cache，各个CPU

核心通过交叉开关或片上网络等方式连接在一起。各个CPU核心间通过消息通信。

这种结构的优点是可扩展性好，数据带宽有保证；缺点是硬件结构复杂，且软件

改动较大。

典型的同构多核处理器是Intel最新的多核处理器架构—Core微架构【161，Core

微架构拥有双核心、64bit指令集、4发射的超标量体系结构和乱序执行机制等技

术，使用65nm制造工艺生产，支持36bit的物理寻址和48bit的虚拟内存寻址，

支持包括SSE4在内的Intel所有扩展指令集。Core微架构的每个内核拥有32KB

的一级指令缓存、32KB的双端口一级数据缓存，且2个核心的一级数据缓存之间

可以直接传输数据，2个内核共同拥有4MB或2MB的共享式二级缓存。每个核心

内建4组指令解码单元，支持微指令融合与宏指令融合技术；每个核心内建5个

执行单元；采用新的内存相关性预测技术。如图2-6所示。

典型的异构多核处理器是由索尼、东芝和IBM共同研发的高性能多核心微处

理器叫e11116】处理器，它以IBM的PowerPC微处理器为基础，具备独特的非对
称多核心设计和庞大的总线与内存带宽，拥有高性能的浮点数运算性能。Cell架构

是一个单芯片多核心处理单元，它内置9个处理单元，它们之间共享存储器资源，

从功能块来看，它具有两种类型的处理单元：Power Processor Element(PPE)、the

Synergistic Processor Element(SPE)，PPE 64．bit架构核心同时兼任32南it程序，而

SPE(又称协处理单元)则是一个独立处理单元，每个SPE可以全权访问内存储

器，它们之间通过高速通道有效连接起来，共同交互完成各种复杂工作【31。如图

2．7所示。

12

第二章多核系统的有关技术基础

内核1
指令缓存／预先译码

⋯7’一
V

指令缓存 共享二级

缓存

微 ◆ ～ou朱1叫7 (4MB)

代 +-斗 译码
码
ROM ．r◆

重命名／地址分配 J I J I

山
雷爿E惠耀羞陌，口n骱 L里j哥伊绂什匹LKuD， 一 内核2

+
调度器

， ， ◆ ◆ ，

ALU分 ALU分 ALU分
支 支 支

加 存眦X／ss 埘X／ss m仅／ss
载 储

E E E

FP移动 FP移动 FP移动

◆ ◆

一级数据缓存／一级数据TLB

图2-6 Core微结构示意图

SPE SPE SPE SPE SPE SPE SPE SPE

本地存储 本地存储 本地存储 本地存储 本地存储l 本地存储 本地存储 本地存储

(LS) (LS) (LS) (LS) (Ls) (LS) (LS) (LS)

1L t 』 t 上 t ’L t 上 t 上 t 土 f 上 f
高速总线(Element Interface Bus，ElB)

T
。

： 工L2缓存 64位通用处理器 1

◆ ●

Ll缓存H PPE 访存控制器接口
总线接口(BIC)

(iIIC)

图2．7Cell结构示意图

电子科技大学硕士学位论文

2．3．3 0MT结构

对于TLP较低CMP不能充分被利用这种情况，CMT是一种很好的选择。CMT

是SMT和CMP的结合体，既可以利用SMT充分利用资源的优点，又可以结合

CMP的简单性【1 oJ：

1)利用SMT的特点，每个时钟周期可以发射多个线程的指令到执行部件，
这样可以减少垂直浪费。SMT的这一特点也可以进一步减少水平浪费。
2)利用CMP的特点，不同的线程在不同核上执行，提高资源的利用率，减
少水平浪费。

2005年SUN公司提出了片上多线程技术(Chip Multiple Threading，CMT)，

即将CMP技术和SMT技术结合起来。SUN公司同时宣称将在其新一代处理器
Niagara中使用这种新的多核多线程技术。Niagara#㈣主要包含了8个处理器核，
每个处理器核可以同时运行4个线程t19l。Niagara是CMP和细粒度多线程的结合，

每个核是6站台的单发射处理器，采用CMT技术最大限度地减少垂直浪费。

Niagara[20J结构图如图2_8所示：

交
叉
互
联

I／o和共享功能

内存控制通道0

内存控制通道1

内存控制通道2

内存控制通道3

I／0接口

DDR

DDR

DDR

图2-8 Niagara框图

多核、多线程处理器带来了更高的系统性能、更低的系统开销、更低的功耗、

同时能够保正已存在的软件架构的前期投入。多核、多线程处理器技术具有普通

单核、单线程处理器所未有的性能优势，目前已成为提高处理器性能的主要途径，同

线一线一线一线一线一线一线一线水一水一水一水一水一水一水一水流一流一流一流一流一流一流一流穗一程一程一程一程一程一程一程线一线一线一线一线一线一线一线多一多一多一多一多一多一多一多路一路一路一路一路一路一路一路

第二章多核系统的有关技术基础

时，多核、多线程处理器也为很多的应用领域提供了新的解决方案。

2．3．4 SMP结构

对称对处理机(Symmetrical Multi．Processing，SMP)是指在一个计算机上汇集

了一组处理器(多CPU)，各CPU之间共享内存子系统以及总线结构。在这种架构

中，计算机不再由单个CPU组成，而由多个处理器同时运行操作系统的单一副本，

并共享内存和计算机上的其他资源。系统将任务队列对称地分布于多个CPU之上，

所有CPU都可以平等地访问内存、外部中断和加。在对称多处理系统中，系统
资源被系统中所有CPU共享，工作负载能够均匀地分配到所有可用处理器之上，

从而极大地提高整个系统的数据处理能力【221。虽然使用多个CPU，但是从用户角

度来看，它们的表现就像一台单机一样。SMP体系结构【23】如图2-9所示：

图2-9 SMP体系结构图

2．3．4．1 SMP的操作系统类型

对称多处理机操作系统，目前有三种类型主从式(master-slave)OS、独立监督

式(separatesupervisor)OS和浮动监督式(floatingsupervisor)OS。

1．主从式(master-．slavel

主从式操作系统由一台处理机记录、控制其它从处理机的状态，并分配任务

给从处理机。操作系统在主处理机上运行，从处理机的请求通过陷入传送给处理

机，然后主处理机回答并执行相应的服务操作。主从式操作系统的监控程序及其

提供的过程不必迁移，因为只有主处理机利用它们。主从式OS的缺点是：当不可

恢复错误发生时，系统很容易崩溃，此时要重启主处理机。由于主处理机扮演的

角色非常重要，当它来不及处理进程请求时，其他从属处理机的利用率就会随之

降低。

15

电子科技大学硕士学位论文

2．独立监督式(separatesupervisor)

独立监督式与主从式不同，在这种类型中，每一个处理机均有各自的管理程

序(核心)。

3．浮动监督式(floatingsupervisor)

每次只有一台处理机作为执行全面管理功能的“主处理机”，但根据需要，“主

处理机”是可浮动的，即从一台切换到另一台处理机。这是最复杂、最有效、最

灵活的一种多处理机操作系统，常用于对称多处理机系统(即系统中所有处理机的

权限是相同的，有公用主存和I／0子系统)。浮动监督式操作系统适用于紧耦合多

处理机体系。

2．3．4．2 SMP设计的原则

对称多处理机操作系统的设计与单处理机多道程序设计的不同主要基于两

点：

1．系统的体系结构

各处理机是异构的还是同构的，如果各处理机是异构(nonhomogeneity)的而不

是同构(homogeneity)的，则各台处理机上的可执行代码格式不一样，浮动管理就困

难。有一个解决的办法就是通过仿真软件来“缩小"异构机之间的硬件差异。在

非对称主存系统中，不是所有的处理机都能访问所有的存储器，这给操作系统的

主存管理带来复杂性。

2． 同步

一个并行程序由两个或多个相互作用的进程组成，进程间的同步和通信显得

更加重要，因为并行算法设计得不是很有效，就会降低并行系统的性能。同步原

语通常由软件实现，也可由硬件实现，但硬件实现性能要好些，它可以减少系统

在同步上的开销。

1)同步的实现

如果多处理机器的系统是共享存储的，那么各处理机上的进程可通过共享存

储器进行同步。但是，对于松耦合的多处理机，各处理机有很大的独立性，它们

的进程一部分采用分布式同步机制，另一部分采用集中式。在狭义的多处理机系

统中，进程间更多的是同步且其实现相对简单。广义的多处理机系统利用计算机

网络与分布式系统实现进程间的通信。

2)利用中心进程实现同步

中心进程是多处理机系统管理程序的一部分，它保存了所有用户的冲突图

16

第二章多核系统的有关技术基础

(Conflict graph)和存取权限(Access permissions)等信息。每一个要求访问共享资源

的进程先向中心进程发送请求消息，中心进程收到该请求后首先去查看冲突图。

如果该请求不会引起死锁，就将它插入请求队列，否则将请求退回。当轮到该请

求对应的进程使用共享资源时，中心进程便向该对应进程发送一个应答信息并让

其进入临界区访问共享资源。在退出临界区时，该进程还得向中心进程发送一个

释放资源的消息，中心进程收到消息后又向请求队列的下一个请求进程发送应答

消息，允许它进入临界区。如此继续下去，直到请求队列为空。可以说，中心进

程的作用是为了使共享资源有序地被访问，因此它又称为协调进程。由于每个要

访问共享资源的进程都需要申请、应答、释放3个消息传递，同步的效率并不高瞄j。

2．4多核线程调度研究现状

随着多核处理器的发展，对软件开发有非常大的影响，而且瓶颈在软件上。

软件开发在多核环境下的核心是多线程开发。这个多线程不仅代表了软件实现上

需采用多线程，要求在硬件上也采用多线程技术。只有与多核硬件相适应的软件

才能真正地发挥多核的性能。多核对软件的要求包括对多核操作系统的要求和对

应用软件的要求。

本节先从CMP结构的调度研究开始介绍，然后介绍SMT结构的线程调度策略

研究现状，最后再介绍CMT结构的线程调度策略研究现状。作为一种新的体系结

构，CMT的线程调度策略研究是建立在SMT结构相关研究基础上的心41。

2．4．1 CMP结构调度研究

目前为止，世界上还没有专门针对CMP体系结构的多核操作系统出现，尤其

是缺乏成熟的CMP调度算法。多核操作系统的关注点在于进程的分配和调度。进

程的分配将进程合理地分配到物理核上，因为不同的核在历史运行情况下和共享

性都是不同的。有的物理核能够共享二级Cache，而有的却是独立的。如果将有数

据共享的进程分配给有共享二级cache的核上，将大大提升性能；反之，就可能影

响性能。进程调度会涉及到比较广泛的问题，比如负载均衡、实时性等。

下面是目前几个具有代表性的多核调度算法。

1)对任务的分配进行优化。使同一应用程序的任务尽量在一个核上执行，以

便达到有共享数据的任务能够尽量在一个核上运行的目的，而共享数据量少或者

没有数据共享的任务尽量在不同的核上运行。这样，可以显著地降低cache的缺失

17

电子科技大学硕士学位论文

率，进而在很大程度上提升系统的整体性能。

2)对任务的负载均衡优化。当任务在调度时，出现了负载不均衡的情况，考

。虑将较忙处理器中与其他任务最不相关的任务迁移，以达到数据的冲突量减小。

3)对任务的共享数据优化。由于CMP体系结构共享二级缓存，可以改变任

务在内存中的数据分布，尽量使任务在执行时增加二级缓存的命中率。

2．4．2 SMT结构调度研究

在SMT结构中，当系统中线程数目超过所支持的硬件线程数时，操作系统的

调度器就需要调度线程集合的一个子集合到处理器上运行。由于在SMT机器上同

时执行的一组线程在每个时钟周期都要竞争硬件资源，这使得执行不同的线程集

合可能会获得不同的性能。操作系统的调度器的作用是从等待运行的任务集合中，

选择一组适合同时执行的线程并调度执行[31。

Snavely A1251首先研究了SMT结构上的调度问题，提出了“共生(Symbiotic)’’

概念，用来衡量多个线程在SMT上同时执行的有效性。

Snavely A等【26j针对SMT结构提出了一种调度算法：

S．O．S(Sample，Opitmize，Symbiosis)。S．O．S主要包括采样阶段和共生阶段。S．O．S策

略在采样阶段，利用一组硬件性能计数器从线程集合中收集不同线程子集合的执

行信息，然后在共生阶段利用这些信息来预测不同作业子集的性能，并选择最佳

性能线程子集来进行调度。实验表明，在SOS方案中，一小部分样本就可以快速

确定进行调度的最佳性能子集；其性能比随机调度方案提高17％。

由于SOS方案没有考虑优先级，Sanvely，Tullsen和Volker等127]提出了一种

适用于SMT结构的调度机制，可以保证进程优先级和共生调度低优先级线程和高

优先级线程都能提高系统吞吐量。仿真结果表明，考虑了优先级的调度策略可以

将响应时间降低到33％。

Parekh，Eggers和Levy等人【28J也研究了基于SMT结构的调度算法，提出了

线程敏感的调度算法。为了使处理器的吞吐量达到最大，线程敏感调度算法采用

线程行为反馈来选择一起执行的最佳线程集合。线程敏感调度算法，可以权衡性

能和公平性。与时间片轮转算法相比，基于IPC线程敏感调度算法可以用最小的

硬件成本将加速比提高7％-d5％。

18

第二章多核系统的有关技术基础

2．4．3 GMT结构调度研究

随着多核时代的到来，在机器中使用片上共享cache技术变得普遍起来。尽管

这样的共享有利于隐藏线程间通信延迟和cache的灵活使用，但是却引起了cache

的争用。当前研究表明，协同调度——分配合适的线程到同一个芯片上——有利

于减轻cache争用带来的影响129]。目前对协同调度的研究主要分为两类：一类是依

赖于运行时间采样，比如共生调度。CMT共生策略是SMT共生策略的进一步扩

展。CMT共生策略对运行时间的性能进行采样，然后选择性能最好的进行调度。

该策略对运行时间进行采样的方法对线程数目少的情况效果很好。另一类包含了

profiling．directed技术。profiling．directed技术先分析线程的运行，然后对它们进行

协同调度。虽然这些技术表现出了一定的效率，但是如果实际的执行输入不同于

实验中的输入，我们并不清楚它们将如何工作。

当搜索空间扩展的时候，基于采样的智能调度策略变得不那么有效。Electron

策略一j与这类策略不同，它依赖更多清晰的证据，比如一个特定的核是否过度调度，

适当调度或者不能调度。该策略计算每个核的EDF(Energy Delay Product)，在运行

中定期将EDF最低的核上的一个线程转移至UEDF最高的核上，经过若干次这样的操

作，就可能会出现空闲的核。这时，彻底释放该处理器核，从而达到降低功耗的

效果。

在CMT系统中，根据线程特征对所有资源进行核间划分可以减少核间资源争

用。王晶124】等提出首先对核间L2cache进行划分，缓解核间资源争用情况，然后

对核内线程进行协同调度减少核内资源竞争的策略。该策略作为一种软硬件相互

适应的解决CMT系统资源共享问题的方案，可能会得到令人满意的性能。

2．5典型的支持多核处理器的操作系统

传统的通用的操作系统都是支持多任务执行的，对单处理器中唯一的一个计

算核心通过分时处理，把时间片轮流分配给各个任务使用，从而实现单个CPU执

行多个任务的能。对于多核这种新的体系架构，操作系统并不需要多少修改就已

经能够很好地支持了，从软件角度来看，多核处理器和多路处理器是一样的，所

有针对单核多处理器的软件优化方式都可以用在多核处理器系统上。比如Windows

NT之后的W'mdows系列操作系统，其中可以支持SMP的都可以支持多核。而对

于Linux操作系统内核，其SMP版本的内核能够很好地支持多核CPU，Linux 2．0

19

电子科技大学硕士学位论文

内核是第一个支持对称多处理器硬件的内核。

在2．6版本的Linux中，提出了一种新的O(1)的进程调度器，此调度器可以更

好地支持SMP系统。它的优势在于平衡了多个CPU的负载的同时又能有效地兼

顾cache的有效性。Linux 2．6内核通过给每一个CPU设立单独的任务队列，有效

地实现系统中的各个CPU的负载均衡。内核划分了140个优先级，高100个优先

级用于实时任务，低40个优先级用于普通任务。分配给每个就绪任务一个时间片，

时间片未用完的任务留在活动队列，当时间片用完后任务就转移到过期队列并重

新分配时间片；等活动队列的所有任务的时间片均用完之后，就交换活动队列和

过期队列。这样，调度器为每个任务提供了公平使用CPU的机会，并通过“CPU

亲和力”实现了任务和CPU的绑定。

微软的Windows操作系统对于多核的支持也非常容易解决，微软的操作系统

支持多任务操作，支持认架构32位与64位处理器。Windows目前能够在多核处

理器上运行，但并没有针对这类处理器进行优化。

2．6本章小结

本章首先介绍了进程、线程以及多线程的定义，接着描述了单核处理器的调

度策略，然后重点介绍了目前与多核相关的几种技术，包括SMT，CMP，CMT和

SMP等，并分析了目前多核线程调度的研究现状。最后列举了目前典型的支持多

核处理器的操作系统。

20

第三章Linux调度机制

第三章L i nux调度机制

Linux操作系统是自由软件和开发源码发展中最著名的例子，本课题是以

Linux2．6内核版本为基础展开的。在这一章中，我们先着重介绍Linux2．6版本的

调度机制，特别是O(1)调度算法。然后详细分析了在Linux中的SMP的具体实现，

讨论了Linux负载均衡系统。最后指出了Linux2．6调度算法的不足等等。由于Linux

内核并没有区分进程和线程这两者在概念上的差异，在内核代码中进程和线程都

使用更通用的名字一任务，根据同样的思路，本文中所出现的“任务"和“线程"

具有相同的意义。

3．1 L j nux2．6的调度机制

Linux调度程序定义于kemel／sched．c中。现在的调度程序与以前版本的调度程

序区别很大，实现了下列目标I则：

1)充分实现O(1)调度。不管有多少进程，新调度器采用的每个算法都能在恒
定的时间内完成。
2)加强交互性能。即使在系统处于重载的情况下，也能保证系统的响应，并
立即调度交互式进程。
3)保证公平性。在合理设定的时间范围内，没有进程会处于饥饿状态，也没
有进程能够得到大量时间片。
4)实现SMP的可扩展性。每个处理器拥有自己的锁和自己的可执行队列。
5)强化SMP的亲和力。尽量将相关一组任务分配给同一个CPU进行连续的
执行，只有在需要平衡任务队列的大小时才在CPU之间移动进程。

3．1．1调度程序所使用的数据结构

3．1．1．1新的数据结构runqueue

数据结构runqueue是Linux2．6调度程序最重要的数据结构。系统中每个CPU

都有自己的运行队列，所有的rtmqueue结构都存放在runqueues每CPU变量中。

表3—1列出了runqueue数据结构所包含的字段。‘’

21

电子科技大学硕士学位论文

表3—1 runqueue结构

类型 名称 说明

spinlock_t lock 保护进程链表的自旋锁

unsigned long nr runmng 运行队列链表中可运行进程

的数量

unsigned long cpu_load 基于运行队列中进程的平均

数量的CPU负载因子

unsigned long Ill"switches CPU执行进程切换的次数

unsigned long nr_uninteruptible 先前在运行队列链表中而现

在睡眠在TASK UNINTERR

UPTIBLE状态的进程数量

unsigned long expired_timestamp 过期队列中最老的进程被插

入队列的时间

unsigned long long timestamp_last_tick 最近一次定时器中断时间戳

task t木 CUrr 指向当前正在运行进程

task t木 idle 当前CPU上swapper进程的

进程描述符的指针

stmct mill struct宰 prev_mm 在进程切换期间用来存放被

替换进程的内存描述符地址

prio_array_t木 active 指向活动进程链表的指针

prio_array_t· expired 指向过期进程链表的指针

prio array t『21 arrays 活动和过期进程的两个集合一一一⋯
int’ best_expierd__prio 过期进程中静态优先级最高

的进程(权值最小)

atomic t- nr iowait 先前在运行队列的链表中而

现在正等待磁盘I／O操作结

束的进程的数量

struct sched domain幸 sd 指向当前CPU的基本调度域

int active balante 如果要把一些进程从本地运

行队列迁移到另外的运行队

列就设置这个标志

第三章Linux调度机制

task t} migration_thread 迁移内核线程的进程描述符

指针

struct list head migration_queue 从运行队列中被删除的进程

的链表

在2．4版的内核里，查找最佳候选就绪进程的过程是在调度器schedule0中

进行的，每一次调度都要进行一次，这种查找过程与当前就绪进程的个数相关，

因此，查找所耗费的时间是o(m级的，n是当前就绪进程个数。正因为如此，调

度动作的执行时间就和当前系统负载相关，无法给定一个上限，这与实时性的要

求相违背。在新的O(1)调度中，这一查找过程分解为n步，每一步所耗费的时

间都是O(1)量级的。

在runqueue中有两个优先级数组，一个活跃的和一个过期的，它们是prio

类型的结构体，优先级数组是一种能够提供O(1)级算法复杂度的数据结构，．．a定rr义ay

如下：

struct prio_array<

unsigned int nr_active；

DECLARE_BITMAP(bitmap，MAX_PRIO+I)；／／include 1 bit for delimiter

struct list——head queue[MAX_PRIO]；

}；

系统拥有的优先级个数由MAX PRIO定义，默认值是140。优先级数组使可

运行处理器的每一种优先级都有一个相应的队列，而这些队列包含对应优先级上

的可执行进程链表。优先级数组还拥有一个优先级位图，当需要查找当前系统内

拥有最高优先级的可执行进程时，它可以帮助提高效率。优先级位图数组的类型

为unsigned long长整型，长32位，如果每一位代表一个优先级的话，140个优先

级需要5个长整型数才能表示。bitmap含有五个数组项，总共160位。开始的时

候，所有的位都被置为0，当某个拥有一定优先级的进程开始准备执行时，位图中

相应的位就被置为1。这样，查找系统中最高优先级就变成了查找位图中被设置的

第一个位。因为优先级个数是个定值，查找时间恒定，不受系统的可执行进程数

目的影响。优先级数组的示意图如图3-1所示。

o(1)级的调度程序为每个处理器维护两个优先级数组：活动数组active和过期

数组expired。arrays二元数组就是两类就绪队列的容器，active和expired分别指

向其中一个。活动数组内的可执行队列上的进程都还有时间片剩余；而过期数组

电子科技大学硕士学位论文

的可执行队列上的进程都耗尽了时间片。当一个进程的时间片耗尽时，它会被迁

至过期数组。当活动数组为空时，则表示当前所有进程的时间片都消耗完了，此

时，active和expired进行一次对调，重新开始下一轮的时间片递减过程。

下面就是O(1)级调度的核心：

array=rq->active；

if(unlikely(!array->nr active)){

|★

木Switch the active and expired arrays．

木，

schedstat_inc(rq，schedswitch)；

rq·>active。rq一>expired；

rq->expired=array；

array=rq->active；

rq->expired_timestamp=0；

rq一>best_expired__prio=MAX__PPdO；

>

图3-1 prioarray结构示意图

3．1．1．2改进后的task—struet

Linux的每个进程都用～个进程信息结构task—struct来说明。每个进程的

24

第三章Linux调度机制

task struct结构都记录了关于进程的信息：调度相关的数据成员，进程信号处理的

有关数据成员，进程队列的指针，进程标志数据成员，信号量数据成员，时间定

时器数据成员，文件系统相关数据成员和进程虚拟空间管理数据成员等等。表3．2

列出了task struct结构中与进程调度相关的字段。

1．policy

每个Linux进程都是按照下面的调度类型被调度【3l】：

SCHED FIFO：先进先出的实时进程。

SCHED RR：时间片轮转的实时进程。

SCHED NORMAL：普通分时进程。

SCHED BATCH： CPU密集型进程。2．6．16版本中添加的新的调度类型。
一 ■

2·avg_sle印

进程的平均等待时间(以nanosecond为单位)， 在 O到

NS MAX SLEEP AVG之间取值，初值为O，相当于进程等待时间与运行时间的

差值。sleep_avg所代表的含义比较丰富，既可用于评价该进程的”交互程度”，又

可用于表示该进程需要运行的紧迫性。这个值是动态优先级计算的关键因子，

sleep 越大，计算出来的进程优先级也越高(数值越小)。．avg

进程的sleep 值是决定进程动态优先级的关键，也是进程交互程度评价

的关键，它的设计．．a是v92．6调度系统中最为复杂的一个环节，可以说，2．6调度系

统的性能改进，很大一部分应该归功于sleep avg的设计。

3．static__prio

每个普通进程都有自己的静态优先级，调度程序使用静态优先级来评估系统

中某个进程与其他进程之间调度的程度。内核用从100(最高优先级)到139(最

低优先级)来表示普通进程的静态优先级。新进程总是继承父进程的静态优先级。

nice值沿用Linux的传统，在．20到19之间变动，数值越大，进程的优先级越

小。nice是用户可维护的，但仅影响非实时进程的优先级。2．6内核中不再存储

nice值，而代之以static prio。进程初始时间片的大小仅决定于进程的静态优先级，

这一点不论是实时进程还是非实时进程都一样，不过实时进程的static prio不参

与优先级计算。

nice与static prio之间的关系如下：

static__prio
2 MAX—RT—PRIO+nice+20 1

其中，MAX—RT—PRIO的值定义为100。

电子科技大学硕士学位论文

表3～task—struct中与进程调度相关的字段

类型 名称 说明

unsigned long thread_info一>flag 存TIF NEED RESCHED

标志，如果必须调用调度

程序，则设置该标志

unsigned int thread_info->cpu 可运行进程所在运行队列

的CPU逻辑号

unsigned long state 进程的当前状态

int pno 进程的动态优先级

int static_prio 进程的静态优先级

struct list head run list 指向进程所属的运行队列

链表中的下一个和前一个

元素

prio array_t array 指向包含进程的运行队列

的集合

unsigned long sleep——avg 进程的平均睡眠时间

unsigned long long timestamp 进程最近插入运行队列的

时间，或涉及本进程的最

近一次进程切换的时间

unsigned long long last ran 最近一次替换本进程的进

程切换时间

int activated 进程被唤醒时所使用的条

件代码

unsigned long policy 进程的调度类型

cpumark_t cpus_allowed 能执行进程的CPU的位掩

码

unsigned int time slice 在进程的时间片中还剩余

的时钟节拍数

unsigned hat first time slice 如果进程肯定用不完其时

间片，就把该标志设为1

unsigned long rt__priority 进程的实时优先级

26

第三章Linux调度机制

4．pno

普通进程除了静态优先级还有动态优先级。其值范围是100(最高优先级)到

139(最低优先级)。动态优先级是调度程序在选择新进程来运行的时候使用的数。

它与静态优先级的关系可用下面的公式来表示：

动态优先级2
max(100，min(静态优先级-b。uns+5，139))(3-1)

bouns的范围从0到10，小于5表示降低动态优先级以示惩罚，大于5表示提

高动态优先级以示奖赏。bouns值与进程的平均睡眠时间有关。

动态优先级的计算主要由effect_prioO函数完成，从该函数中还可以看到非

实时进程的优先级仅决定于静态优先级(static_prio)和进程的sleep_avg值两个

因素，而实时进程的优先级实际上是在setschedulerO中设置的，且一经设定就不

再改变。

5．a_priority

每个实时进程都与一个实时优先级相关，实时优先级是一个从1(最高优先级)

到99(最低优先级)的值。与普通进程相反，实时进程总是被当成活动进程。

6．time—slice

静态优先级决定了进程的基本时间片，它们之间的关系可以用下面的公式来

确定：

基本时Is-]片=．f(140一静态优先级)*20 若静态优先级<120

(单位为ms) o(140一静态优先级)木5 若静态优先级>=120

(3·2)

进程的time—slice值代表进程的运行时间片剩余大小，在进程创建时与父进

程平分时间片，在运行过程中递减，一旦归0，则按static_prio值根据公式(3-2)

重新赋予上述基准值，并请求调度。时间片的递减和重置在时钟中断中进行

(sched_tick0)。

3．1．2调度流程

调度器的基本流程仍然可以概括为下面几个步骤：

1．前期工作

2．6内核实现了抢占运行，没有锁保护的任何代码段都有可能被中断。因此，

调度器一开始就禁用内核抢占。然后保证prev不占用大内核锁。

27

电子科技大学硕士学位论文

2．清理当前运行中的进程(prev)

关掉本地中断，并获得要保护的运行队列的自旋锁，然后计算prev所使用的

CPU时间片长度并检查prey的状态。如果它没有在内核态被抢占就应该从运行队

列删除。如果它是非阻塞挂起信号，且状态为TASK INTERRUPIBLE，就把该进

程的状态设为TASK RUNNING，并插入运行队列。

3．选择下一个投入运行的进程(next)

检查运行队列中剩余的可运行进程数nl"running。如果为0，就调用

idle 函数从其他 上迁移进程到本地 。迁移失败就运行 进程。_balance() CPU CPU idle

如果不为0，就检查active队列的活动进程数nr active。如果为0，就交换active

和expired指针内容。现在可以在活动的优先级数组中查找一个优先级最高的可运

行进程了。

由上述可知，2．6的调度器对候选进程的定位有三种可能：

1)active就绪队列中优先级最高且等待时间最久的进程；

2)当前runqueue中没有就绪进程了，则启动负载平衡从别的cpu上转移进

程，再进行挑选。

3)如果仍然没有就绪进程，则将本cpu的idle进程设为候选。

4．设置新进程的运行环境

内核访问next进程的thread info数据结构，prefetch宏提示CPU控制单元将

next的进程描述符第一部分字段内容装入硬件高速缓存。

prey进程的sleep_avg减去其运行时间；timestamp更新为当前时间，记录

被切换下去的时间，用于计算该进程等待时间。

5．执行进程上下文切换

如果prev和next是不同的进程，调用context switch 0函数建立next的地址

空间，调用switch 执行 和 之间的进程切换。_toO prey next

6．后期整理

如果prev是一个内核线程，mmdropO函数就减少内存描述符的使用计数器，

如果该计数器等于0，还要释放与页表相关的所有描述符虚拟存储区。

’释放运行队列自旋锁，打开本地中断。在需要的时候重获大内核锁，重新启

用内核抢占。

第三章Linux调度机制

3．2 L i nux对SMP的支持

对称多处理结构(Symmetric Multi．Processor Architecture，SMP)中，所有的

CPU在运行时都是“对称"的，或者说是“平等”的，没有主次之分‘321。所有的

CPU通过同一条总线共享同一个内存以及所有的外设。为了减少访问内存的冲突，

SMP结构中的各个CPU通常都有自己的高速缓存，它们之间通过特殊的硬件通信。

相对应UP(单处理器)，Linux操作系统内核对SMP系统有额外的代码支持，内

核中的SMP代码部分被单独编译【34】。

在单CPU系统中，任一时刻都只有一个进程在运行，其他进程都不运行。可

是在SMP架构的系统中，可以有多个进程同时运行，所以Linux在进程描述符

task struct结构中增加了下面的字段：

#ifdef CONFIG——SMP

#ifdef—且CH—WANT—UNLOCKED—CTXSW
int oncpu；

#endif

#endif

oncpu字段用来表示该进程是否正在运行，值为1表示进程正在某个CPU上

运行，值为0表示进程不在运行。一个进程只有在oncpu字段为0时才可以接受

调度以投入运行或者被迁移到其他CPU上。在Linux支持的SMP结构中使用

task_mnningO函数来判断一个进程是否正在运行：

static inline int task_running(struct rq木rq，struct task—struct’‘‘p)

{

#ifdef CONFIG．—SMP

return P。>oncpu；

#else

return rq一>CHIT—p；
撑endif

)

下面讨论内核在多个CPU之间是如何安排进程调度问题的。

3．2．1 SMP系统中的进程调度

为了唤醒一个进程，wake_up_processoi函数将调用try_to_wake_upoi垂t数，后

电子科技大学硕士学位论文

者通过把进程状态设置为TASK RUNNING，并把该进程插入本地CPU的运行队

列来唤醒或停止的进程。try up()函数的有的部分对 和UP来说都适．towake SMP

用，而有的部分仅适用于SMP。try up()函数调用taSk()函数，将进．to wake active

程移到运行队列并改变优先级。而active taSk()函数调用recalc task prioO函数跟

新进程的平均睡眠时间和动态优先级。如果被唤醒的进程优先级比当前正在运行

的进程的优先级高，就设置need resched标志。通常哪段代码促使条件达成，它

就负责随后调用wake 数。图3．2，图3．3和图3．4分别是这些函数．up

的流程图。

_proeessO函

在Linux用于SMP架构的进程调度中，对每一个被剥夺的非idle进程，尽力

去寻找空闲CPU让其恢复运行。需要注意的是，由于在有的多核处理器架构中，

L1 Cache是集成在核内的，即每个核都有自己的Cache。在这种情况下，如果进程

从一个处理器核迁移到另一个处理器核，那么这个过程会带来一定的开销。因此，

在SMP结构的进程调度中要考虑这些因素【3】。

3．2．2多处理器系统中运行队列的平衡

为了从多处理器系统获得最佳性能，负载平衡算法应该考虑系统中CPU的拓

扑结构。从内核2．6．7版本开始，Linux提出一种基于“调度域”概念的复杂运行

队列平衡算法【31J。内核周期性地检查运行队列的工作量是否平衡，并在需要的时

候把一些进程从一个运行队列迁移到另一个运行队列。

调度域实际上是一个CPU集合，它们的工作量应当由内核保持平衡。调度域

采取分层的组织形式：最上层的调度域包括多个子调度域，每个调度域包括一个

CPU子集。每个调度域被依次划分为一个或多个组，每个组代表调度域的一个CPU

子集，工作量的平衡总是在调度域的组之间来完成的。只有在某个调度域的某个

组的总工作量远远低于同一个调度域另一个组的工作量时，才把进程从一个CPU

迁移到另一个CPU。在Linux中使用结构sched domain来表示调度域，使用结构

sched group来表示调度域的组。

每一个CPU都有一个“基本"的调度域(struct sched domain)，当然，这是

在定义了CONFIG SMP的情况下才有效。这些调度域是通过函数

cpu sched__domain(i)和宏thissched_domainO用来访问的。调度域的层次结构均是

通过->parent指针所指向的基础域而构建的。．>parent指针要保证以NULL结束，

而且应当为每个CPU分配域结构以便于CPU的增加。

第三章Linux调度机制

图3-2 try to wake up()函数流程图

31

N

甲

电子科技大学硕士学位论文

图3-3 active_task()i函数流程图

32

第三章Linux调度机制

图3-4 recalc_task_pdoO数流程图

33

电子科技大学硕士学位论文

在每一个调度域的范围内都覆盖几个CPU(存于->span中)。调度域的范围

(span)意思是：“在各CPU之间达到负载的平衡”。调度域的span必须是子调度域

span的超集，换句话就是，一个调度域的范围必须不小于它的子调度域范围，而

且CPUi的基础域(Base Domain)范围至少为i。位于调度域层次结构最顶层的域的

范围将覆盖系统中的所有CPU，这样做的好处是，一些CPU在cpu allowed位掩

码没有明确设置的情况下，系统也可以进行任务调度。

每一个调度域都必须有一个或多个CPU组(struct sched group)，这些组用

->groups指针链接成一个单向环形链表。而这些CPU组的cpumask在调度域范围

内都必须是相同的。任意两个组的cpumask交集必须为空集(即不相同)。．>groups

指针所指向的组必须包含这个域所拥有的CPU。而当某些组被建立后，它们可能

因为包含一些只读数据而被其他CPU所共享。

每一个调度域的平衡单位是组，即调度域的平衡操作在组与组之间进行。这

个时候，每一个组将被当成一个整体。一个组的负载定义为该组内所有CPU的负

载总和。当且仅当一个组的负载超出平衡的时候才会发生任务迁移。“基础”域的

“范围”将构成域层次结构的第一级。对SMT而言，基本调度域涵盖所有的物理

CPU，而每个组包含一个虚拟CPUt35】。

在kemel／sched．c中，runrebalance_domains0函数(以前使用的是rebalance_fick0

函数)在每一个CPU上周期性的运行。这个函数在CPU的基础调度域内检查是否

到了重新平衡的时间间隔，如果是，则执行该调度域的load 函数。．balance()

load balance0函数检查本地CPU所在调度域是否处于严重不平衡状态，如果不平

衡就调用move taskO函数实现迁移。而run rebalance domains0函数将接着检查父

调度域(如果parent不为空)，进而是父调度域的父调度域，如此下去。load balance0

函数的流程图如图3．5所示。

3．2．3 L i nux2．6的CPU亲和力特性(aff i n i ty)

CPU亲和力(affinity)是进程要在某个给定的CPU上尽量长时间地运行而不被

迁移到其他处理器的倾向性【36l。在Linux2．6版本中，引入了一种机制，使开发人

员可以编程实现CPU亲和力。

在进程描述符task—struct结构中，有一个字段与CPU亲和力紧密相关

—cpll allowed位掩码。这个位掩码由11个位组成，与系统中11个逻辑处理器一一

对应。具有2个物理CPU的系统可以有2位；若这些CPU都采用超线程技术，那

第三章Linux调度机制

图3-5 load_balaneeO i函数流程图

35

Y

电子科技大学硕士学位论文

么这个系统就有一个4位的位掩码。如果为给定的进程设置了给定的位，那么这

个进程就可以在相关的CPU上运行。因此，如果一个进程可以在任何CPU上运

行，并且能够根据需要在处理器之间进行迁移，那么位掩码就全是1。实际上，

这就是Linux中进程的缺省状态。

Linux内核API提供了一些方法，让用户可以修改位掩码或查看当前的位掩

码：

sched set affinitYO(用来修改位掩码)

sched_get__aiiinity()(用来查看当前的位掩码)

注意，cpu affinity会被传递给子线程，因此应该适当地调用

sched—set affinity。

如果一个给定的进程迁移到其他地方去了，那么它就失去了利用CPU缓存

的优势。因此，如果有多个线程都需要相同的数据，那么将这些线程绑定到一个

特定的CPU上是非常有意义的，这样就确保它们可以访问相同的缓存数据(或

者至少可以提高缓存的命中率)。否则，这些线程可能会在不同的CPU上执行，

这样会频繁地使其他缓存项失效。

3．3 L i nux调度机制的不足

Linux2．6的调度算法在以下几个方面有待改进：

1． 因为在处理器间迁移不同进程的代价是不相同的，所以在迁移进程的时

候，应该适当考虑进程的特点。比如，迁移进程的时应考虑进程的大小(这

里是指占有内存资源的大小)以及进程的类型(CPU受限型，还是IO受限

型)。Linux2．6内核版本的调度算法在迁移进程的时候，并没有考虑到进

程占用内存的大小，迁移大的进程到其他的处理器可能会较严重的影响系

统的性能。

2．调度器给处理器分配进程的时候应该考虑进程的相关性根昧绷明矗。比如，

两个进程频繁的通信(通过管道或者共享内存)，将它们分配在同一个处

理器上工作会更好，因为如果这些进程的共享数据是“高速缓存命中的”，

就不用把共享数据从一个处理器的caehe里拷贝到另一个处理器的cache

里，这样就减少了许多不必要的麻烦。

3． 当系统的负载不平衡程度很轻微的时候，不一定需要平衡负载。这样就不

会造成进程在CPU之间“跳跃”。

第三章Linux调度机制

从调度策略上看，没有采用在实时任务中最常用的EDF等调度策略。当

然，这与它是一种通用的强调公平性的操作系统有关。

3．4本章小结

本章首先概括了Linux2．6的O(1)调度器的特性和优点，然后具体介绍了O(1)

调度器中两个最重要的数据结构：struct runqueue和struct tast—struct，讨论了调

度策略、进程时间片和优先级的计算，详细分析了调度器的工作流程和Linux对

SMP的支持，包括多处理器负载均衡和CPU的亲和力，介绍了相关的主要接口函

数和功能。最后，指出Linux2．6的O(1)调度器的不足。本章的分析为下面的讨论

打下了基础。

电子科技大学硕士学位论文

4．1负载均衡

第四章基于资源利用率的负载均衡系统

负载平衡调度的一个重要目标就是缩短任务的平均响应时间，提高系统性能。

负载平衡的另一个重要目标是均匀地、充分地利用整个系统的资源。这两个目标

是一致的，任务的响应时间依赖于其所运行的系统上的负载，资源的使用越平衡，

任务的响应时间就越短。负载平衡调度算法需要考虑并解决下列问题：何时启动

负载平衡调度?选择哪些任务进行调度负载平衡?转移多少任务?调度的源节点

和目标节点是哪些【j¨?

负载不平衡是导致进程空闲等待的一个重要因素。在设计调度算法的时候要

充分考虑负载平衡问题，必要时使用动态负载平衡技术，即根据各进程计算完成

的情况动态的分配或调整各进程的计算任务。动态调整负载时要考虑负载调整的

开销以及由于负载不平衡引起的空闲等待对性能的影响，寻找最优负载调整方案。

前人通过对负载平衡系统的大量研究得出下面的结论【39】：

1)实现了负载均衡的系统比不实现负载均衡的系统性能要好很多。

2)状态依赖的负载均衡策略比概率论策略性能好很多，但是开销也更大。

3)概率论策略有时对系统的动态改变不敏感，可能会导致不理想的性能。

4)考虑源端状态的负载均衡决策提高性能的可能性不如考虑目的端状态

的负载均衡决策大【40】。

5)过多的状态信息不一定能提高负载均衡效率，反而可能降低系统性能
f41】
o

6)在状态依赖决策中的状态信息必须是现成的。决策基于过期的或者不

准确的状态信息可能会降低系统性能。

4．2理论分析

负载平衡问题是一个经典的组合优化难题之一，其难度与Hamilton问题相当，

是一个NP完全问题。负载平衡问题可分为静态负载平衡和动态负载平衡【421。人们

通过对静态任务划分的研究，间接地实现了静态负载平衡。解决静态负载平衡的

38

第四章基于资源利用率的负载均衡系统

方法主要有：启发式算法，遗传算法，模拟退火算法，基于图论的方法等。对于

动态负载平衡，解决方法主要有以下几种：根据负载变化而基于梯度模型的调度

算法，基于随机选择任务移动节点的概率调度算法，自适应的近邻契约算法等【43J。

影响负载平衡的调度问题因素很多，KirIl【44J提出的调度模型将负载平衡调度过

程分为以下四个阶段：负载估算、负载平衡收益性决策、任务选择和任务转移。

文献[43】通过深入研究负载均衡算法，给出了一个分布式系统的负载平衡调度问题

的一般模型的形式化描述，用一个四元组来表示负载调度的模型，分别为：分布

式系统的网络环境，用户提交的任务集，系统的负载评价，系统所采用的调度策

略。文献[45]的调度模型考虑了以下因素：调度时间、调度的源结点和目标结点、

调度任务的选择。

4．2．1负载均衡调度模型

在深入研究各种负载平衡调度算法和调度模型的基础上，综合考虑影响负载

平衡调度问题的各个因素，可以将负载平衡调度模型用四元组<E，T，L，S>来表

示。其中：

因子E(Environment)-表示系统的环境；

因子T(Task)：表示用户提交的任务属性；

因子L(Load)：表示系统的负载评价；

因子S(Strategy)：表示系统所采用的调度策略。

4．2．1．1 Envi ronment(SE，SD，SG)

定义1系统环境因子E是一个三元组(SE，SD，SG)。其中：

系统环境(System Environment)-为了从多处理器系统获得最佳性能，负载平

衡算法应该考虑系统中CPU的拓扑结构；

负载平衡调度域SD(Scheduling Domain)．表示负载平衡调度节点的逻辑拓扑

结构；

调度组SG(Scheduling Group)：参与某项调度活动的CPU集合。

1．系统环境SE

SE需要描述各节点的性能特性和节点之间物理上的拓扑结构。不同的拓扑结

构对负载平衡调度算法有很大影响。

按照构建多核系统的处理器是否相同，可以分为同构多处理器系统和异构多

处理器系统。同构多处理器系统大多由通用的处理器组成，多个处理器执行相同

39

电子科技大学硕士学位论文

或者类似的任务，而异构多处理器系统除含有通用处理器作为控制、通用计算之

外，多集成DSP、ASIC、VLIW处理器等针对特定的应用提高计算的性能。

多核处理中的SMP是含有两个或两个以上的自治处理单元的情形，每个处理

单元有同样芯片，同结构的核，运行同样的软件。SMP可共用内存及缓存粘接部

分。SMP使用同构的核，尽管同构的内核再不必一定是SMP。若内部是同构的核，

但各核运行的不是相同的操作系统，那就变成非对称多处理机(AMP)。AMP系统

也可以用异构的核和共用存储接口或使用分布存储器。任何情况下，同构或异构

核都可构成多核处理器，多核处理器都可以按SMP(对称)或AMP(非对称)模式

运行。

2．负载平衡调度域SD

在负载平衡调度过程中，根据节点之间的协作协议、任务性质与功能对应关

系以及负载平衡调度策略的差异，多核系统重新构成逻辑意义上的拓扑结构，即

负载平衡调度域SD(Scheduling Domain)。所有负载平衡调度策略均在负载平衡调

度环境SD上进行讨论。

3．调度组SG

负载平衡调度活动(即执行一次负载平衡调度算法)称为调度事件

Sched event。调度组是负载平衡调度活动的基本单位，负责处理具体的调度事件。

调度组中的节点分为两类：一个是启动负载平衡事件的，称为调度服务器；

一个是参与到负载平衡事件中来的，称为调度成员。调度服务器和调度成员不是

固定的。例如，有P1，P2，P3，1"4四个节点，当系统不均衡时，若Pl执行了负

载平衡例程，则Pl就是调度服务器，P2，P3和P4就是调度成员；同样的，若

P2执行了负载平衡例程，则Pl就是调度服务器，P1，P3和P4就是调度成员。

4．2．1．2 Task(TT，TC)

定义2用户任务因子T是一个二元组(TT，TC)。其中：

任务类型TT(Task Type)：表示由用户提交的任务的类型；

任务约束TC(Task Constraints)：表示任务的结构特征与性能要求。

1．任务类型TT

用户提交的任务往往是多种多样的，一般是根据不同系统的侧重点进行区分。

2．任务约束TC

表示任务的结构特征与性能要求。

第四章基于资源利用率的负载均衡系统

4．2．1．3 Load(9，，，F，x，芎)

定义3负载评价因子L是一个五元组(中，，，F，X，毛)，其中

负载参数(Load Parameter)9：表示影响系统或节点负载的因素；

负载函数(Load Function)，：表示系统或节点的负载大小的计算函数；

负载阈值(Load Threshold)F：表示系统或节点的负载阈值；

负载状态(Load State)X：表示系统或节点的负载状态；

负载状态修正因子毛(Load State modifying factor)：表示调节系统或节点的负载

状态的因子。

1．负载参数9

负载平衡调度的一个重要目标就是提供系统性能，缩短平均响应时间。由于

负载越重，运行时间越长，因此，理想的负载指标与响应时间有密切关系。负载

是对一个在系统上运行的所有任务占用资源的衡量，负载参数是对负载进行量化

的评价标准，不同的负载参数定义会得出当前时刻系统的不同负载程度。因此，

一个可以正确反映当前系统负载情况的负载指标对动态负载平衡系统来说至关重

要。

影响负载的因素非常多，衡量这些因素的负载参数包括：运行队列任务数、

系统调用的速率、CPU进程切换率、CPU利用率、空闲内存大小、平均响应时间、

未完成工作量、可用资源、任务到达数等等。因此，负载参数9是这些因素的集合，

可以表示为：

9={唧l，92，93---9。⋯)I 91，92，Q3，．．．9∥．∈R} (4-1)

其中，91,9：，平3，．．．吼⋯分别与运行队列任务数、系统调用的速率、CPU进程切

换率、CPU利用率、空闲内存大小、平均响应时间、未完成工作量、可用资源、

任务到达数等等这些因素相对应。

理想的、体现系统负载情况的负载指标应当满足以下条件‘46】：

①测量开销低，这意味着可以频繁测量以确保信息最新；

41

电子科技大学硕士学位论文
一一———————_—-——————_————————————-——-、———_————-——_-——__——————一

②能体现所有竞争资源上的负载；

⑨各个负载指标在测量及控制上彼此独立。

2．负载函数，

设R为实数集，则负载函数如下：

，=八叻，叩∈R (4-2)

若使用运行队列中的任务数NR作为唯一负载参数的话，那么该系统的负载函

数如下：

，=，(凇)，NR≥0 (4-3)

3．负载阈值I'

负载阈值r是一个序偶<p，，p：>，其中p。，p：∈R，0<p。≤p2。通过判断当前

节点的负载函数，随负载参数(p变化所得的值与p。，p：相比较来判断该节点当前

的负载状态x。

4．负载状态x

负载状态一般有空载(idle)、轻载(1ight load)、适载(suitable load)和过载(oVer

load)四种，故负载状态集为{空载，轻载，适载，过载)。

由上述可知，负载状态x与负载阈值f关系紧密。根据负载阈值r的两个元素

p。和p：在来负载函数，值域中划分的区间来判断当前节点的负载状态：

X= (4—4)

5．负载状态修正因子号

负载状态修正因子专用于修正负载阈值I’，它可以根据环境负载情况动态调整

42

1●J

2

)刚艮∞

．

P

矿O@妒姬

II

∈

∈

∈㈣恸㈨㈨托舶八必载载载载空轻适过

第四章基于资源利用率的负载均衡系统

负载阈值。当毛≠0时，它表示一种自适应负载平衡调度策略。

4．2．1．4 Strategy(ST，sc)

定义4调度策略S是一个二元组(ST，sc)，其中：

调度类型ST(Scheduling Type)：表示负载平衡调度策略的类型。

调度约束SC(Scheduling Constraint)：表示调度策略的约束条件。

1．调度类型ST

负载平衡调度的类型通常分为两类：静态调度和动态调度【471。

①静态调度是根据系统的先验知识做出决策，将任务均匀地分配给各个节点，

每个节点的任务数都是定值，运行时负载不能重新分配，不随时间变化。这种方

法的优点是可以得到最优负载均衡结果，缺点是在现实环境中很难做到。

②动态调度通过收集并分析系统的实时负载信息，动态地将不平衡节点上的

任务迁移到其他合适的节点，在执行过程中调整负载分布的不均衡性。它具有超

过静态算法的执行潜力，能够适应系统负载变化情况，比静态算法更灵活、有效，

但是由于必须收集、存储并分析状态信息，因此动态算法会产生比静态算法更多

的系统开销，不过这种开销和付出常是有所回报削481。

动态负载均衡算法的组成包括四个部分【49】：

①信息策略负责收集整个系统的状态信息。

②转移策略决定节点是否处于适合参加任务转移的状态，即判断某节点是任

务发送者还是接收者。

⑧选择策略决定哪一个任务应该转移。选择一个任务进行转移的基本判别依

据是：转移任务的开销比起它的响应时间的减少是划算的。

④定位策略决定把所选择的任务转移到哪个节点上。

2．调度约束SC

表示调度策略的约束条件。

4．2．2 L i nux的负载平衡调度模型

4．2．2．1 Envi ronment(SE，SD，SG)

1．系统环境SE

Linux一直坚持采用对称多处理模型，这意味着，与其他CPU相比，内核不

应该偏向任何一个CPU。多处理机器与很多不同的风格，而且调度程序的实现随

43

电子科技大学硕士学位论文

硬件特征的不同而有所不同。Linux目前比较关注的是下面3中不同类型的多处理

机器：

标准的多处理器体系结构。这些机器所共有的RAM芯片集被所有CPU共享。

超线程。超线程芯片是一个同时执行几个线程的微处理器，它包括内部寄存

器的拷贝，并快速在它们之间切换。一个超线程的物理CPU可以被Linux看作几

个不同的逻辑CPU。

NUMA。把CPU和RAM以本地“节点"为单位分组(通常一个节点包括一个

CPU和几个RAM芯片)。在NUMA体系结构中，当CPU访问与它同在一个节点

中的“本地”RAM芯片时，速度很快；访问其他节点的RAM芯片就非常慢。

2．负载平衡调度域SD

在Linux中，调度域采取分层的组织形式。最上层的调度域包括多个子调

度域，每个调度域包括一个CPU子集。

3．调度组SG

每个调度域被依次划分为一个或多个组，每个组代表调度域的一个CPU子集。

调度组是负载平衡调度活动的基本单位，负责处理具体的调度事件，因此工作量

的平衡总是在调度域的组之间来完成的。

4．2．2．2 Task(TT，TC)

任务类型TT：Linux根据policy从整体上区分实时进程和普通进程。

任务约束TC：实时进程和普通进程的优先级是不同的，实时进程总是先于普

通进程运行。

4．2．2．3 Load(Q，．厂，F，x，号)

1．负载参数Q

Linux采用CPU运行队列长度即进程数目(m'_running)和运行队列的

raw weight_Ioad这两个指标作为负载参数。设rq是指向某CPU上的运行队列的

指针，P指向该运行队列的第一个任务的执行，则

for(int i=0；i<nr rtmning；i++){

rq->raw_weighted_load+=p->load weight；

P。p->next；

>

每个p->load_weight是通过下面的方法来计算的：

第四章基于资源利用率的负载均衡系统

若P是内核迁移线程则

p->load_weight=O；

若P是实时任务则

P->load_weight=RTPRIojO_LOAD WEIGHT(p·>a_priority)；

若P是普通任务则

P->load_weight=PRIQ jo1Q心N EIGHT(p一>static_．prio)；
可见，任务的load_weight与任务的优先级密切相关。

2．负载函数．厂

Linux每个调度域的平衡单位是组，当且仅当一个组的负载超出平衡才会发生

迁移，故负载函数的定义并不依赖单个运行队列长度，而是依赖于整个组所有运

行队列的nr_running之和与raw_weight_load之和，设n是组拥有的CPU数目，则

负载函数．厂为：

f(nr_running，raw_weight_load)={(sum nr running，sum_weighted_load)

I s呻舛删ng：窆Ilr：删ng，suIIl：weighted-l。ad：窆raw weigⅥ。ad)‘4-5’
i=l j等1

3．负载阈值r

在每个tick处理函数scheduler_tick()会调用update_loadOi函数来更新当前运行

队列的负载，便于在CPU平衡调度时选取最忙的CPU。Linux使用函数

find_busiest__group0选取调度域中最忙的CPU。

1)sum_weighted_load的上限：

avg_load 2(SCHED_LOAD—SCALE宰total Ioad)／total_pwr；

其中，total load和total pwr由下面示例代码得出：

unsigned long total—load=O；

unsigned long total_pwr=O；

unsigned long avg_load=O；

unsigned long load；

int load_group；

struct sched group幸group
2
sd一>groups；

do{

int local group=cpu isset(this_cpu,group一>epumask)；

foreach_cpu_mask(i，group->cpumask){

45

电子科技大学硕士学位论文

if(10cal_group){

load=target_load(i，load_idx)；

)else

load 2 source_load(i，load_idx)；

avg_load工=load；

>

total—load+。avg load；

total_pwr+。group’>cpu_power；

group
2 group->next；

>while(group 12 sd->groups)；

2)sum_nr_running的上限：

group_capacity 2 group->cpu_power|SCHED_LOAD_SCALE；

在sched__group结构中，cpu__power字段表明了调度组的容量，在同一调度域

中不同组之间分配负载时使用。典型地，在一个调度域中所有组的cpu__power都

是一样的，只有在非对称的拓扑结构中才会不一样。cpu power等于

SCHED—LOAD—SCALE乘以某个数的积，这个倍数代表了该组在本调度域中还存

在其他空载或轻载的组的情况下可以处理的任务的最大数。

4．负载状态X

Linux的负载状态分为空载，轻载，适载，过载。

5．负载状态修正因子毛

Linux负载状态修正因子芒不是一个固定值，而是根据实际负载情况动态调整

的。

4．2．2．4 Strategy(ST，sc)

1．调度类型ST

从内核Linux2．6．7版本，Linux提出一种基于“调度域"概念的复杂的队列平

衡算法，这是一种动态负载平衡算法。只有在某调度域的某个组的总工作量远远

低于同一个调度域的另一个组的工作量时，才把进程从一个CPU迁移到另一个

CPU。Linux启动负载平衡事件的时机有：

1)当一个CPU将要空闲的时候，schedule()函数就调用idle_balanceoi函数将

其他CPU上的任务“拉”过来。

2)无论当前cpu是否繁忙或空闲，时钟中断(通过runrebalance__domains0

第四章基于资源利用率的负载均衡系统

函数)每隔一段时间都会检查每个调度域是否平衡，如果不平衡就启动一

次load 函数平衡负载。．balance0

load balance0函数有两种调用方式，分别用于当前CPU不空闲和空闲两种状

态。一般选择当前调度组(sched group)中第一个idleCPU或者第一个busiest CPU

来执行当前调度域或者上层调度域的负载均衡。

Linux的选择策略：

1)在调度域中，寻找最繁忙的组；

2)如果存在最繁忙的组，就在该组中寻找最繁忙的运行队列；

3)如果存在最繁忙的运行队列，首先扫描过期队列优先级最高的任务；如果

过期队列为空，则扫描活动队列：

4)对所有候选进程进行筛选：

I． 进程当前没有在CPU上执行。

II．进程设置的cpu allowed字段允许迁移到某些CPU。

III．被迁移的进程不是“高速缓存命中”的。

Linux的定位策略：

启动负载均衡操作的CPU确定自己所在调度域处于负载均衡状态的时候，将

其他过载CPU的多余负载迁移到自己的运行队列上。如果内核支持超线程技术，

则本地物理芯片中的逻辑CPU必须空闲。

2．调度约束SC

在Linux中，由于引入了CPU亲和力(affinity)，用户可以设定自己的任务到

某个CPU上执行，因此在定位的时候要综合考虑任务的进程描述符的

cpu allowed字段，即目标CPU要在的cpu allowed字段中置位。

4．2．3负载平衡中的几个关键问题

4．2．3．1负载指标的选择

文献【50]提出了一种基于公平指标的任务调度负载均衡算法，可以有效地提高

系统的性能和效率。Kunz比较了运行队列任务数、系统调用的速率、CPU进程切

换率、CPU利用率、空闲内存大小和1分钟内负载平均值等6个单项指标以及它

们的“或"及“与"组合，发现其中效果最好的是单项指标中的运行队列任务数，

任何其它单项指标或其组合都不比它好【461。国际上现有的负载平衡系统多使用运

行队列任务数作为负载指标。文献[51】的研究表明，一般效果较好的是，将单项指

47

电子科技大学硕士学位论文

标中的资源队列长度作为负载指标。文献[46】提出，虽然多数系统使用资源队列长

度(即cPu)队列长度作为负载指标，但是这种负载指标存在不区分进程的性质和大

小的缺点，一个进程对资源的占用量及其运行时间可能比几个小进程对资源的占

有量综合还要多，但直接使用资源利用率，即CPU利用率和I／0利用率却更直观、

准确，而且使用资源利用率作为负载指标比使用资源队列长度作为负载指标对资

源利用率及响应时间的改进更有效。该文献的实验结果还表明，同时考虑了资源

利用率和CPU队列长度时比单独考虑这两个因素具有更好的性能。现有的负载平

衡系统之所以使用CPU队列长度作为负载指标，因为它比较容易获得，而且它与

响应时间有密切联系。

从提高系统吞吐量和降低响应时间这两方面来考虑，Linux选择过期队列中优

先级最高的任务进行迁移不一定是最好的选择。本文使用CPU和内存两种资源作

为负载指标，该模型主要适用于I／O需求和进程间通信需求不强的应用。

4．2．3．2迁移进程的选择

Leland和Ottl52]VAX750和780上分析了9．5×10“6个UNIX进程，提出进程

的生命周期拥有UBNE(used．beRe卜than．new．in．expectation)特性。也就是说，进程

当前已占用CPU的时间(age)越大，它剩余的CPU时间也被认为是越大的。

Harchol—Baiter和Downey【53J通过分析模拟，从大量观测结果中得出下面的结

论：

1)优先迁移“老的"进程，因为这些进程很可能拥有足够长的生命周期，足

以补偿迁移带来的开销。

2)对进程生命周期分布的功能建模为选择合适的迁移进程提供了分析方法，

进程当前已占用CPU时间(age)，迁移开销，在源端的负载和在目的端的

负载都要考虑。

根据结论1)，本文选择拥有较长的未来运行时间的进程来迁移。原因有二：

首先，从进程本身来看，迁移时间对响应时间影响很大。只有进程的未来运行时

间能够补偿迁移带来的开销的情况下才选择该进程进行迁移。其次，从源端来看，

它迁移一个进程就要增加工作量，只有选择那些在本地运行所花费的开销大于迁

移开销的进程。因此，本文选择迁移进程的一个基本要求是：进程的未来运行时

间大于迁移开销。

文献【53]提出了进程迁移代价计算公式：

c—f+la／b (4．6)

第四章基于资源利用率的负载均衡系统

其中，f为固定迁移代价，u为迁移进程的内存大小，b为内存传输带宽。

设进程P的未来运行时间为TQ)，则根据公式(4．6)有：

当T(p)>c，即T(p)>f+u／b时，进程P可以被迁移到另一个CPU上。

进程P的未来运行时间T(p)如何求?结论2)提到了进程生命周期分布，那么

进程生命周期分布是怎样的?这些问题留到“4．2．3．3进程生命周期"小节再具体

讨论。

理想的迁移进程应当具有最大的资源负载向量模、最小的迁移代价和最长的

当前占用CPU时间(age)【561。并且，被迁移的任务当前不在CPU上运行，因为迁

移一个正在CPU上运行的任务带来开销可能远远大于迁移带来的收益。

设进程P的资源负载向量模为R(p)，由公式(4-6)求得迁移代价为f+la(p)／b，

当前占用CPU时间为age(p)。

当下面条件成立时，不处于运行状态的进程P可以被迁移到其他CPU上：

R(圳×万ag瓦e(丽p)=
max(I R(局)忙

age(p1)

f+Az(p1)／b’’’．，J㈨帅蒜， @’7’

其中，j为进程P所在CPU上的进程数量。

由上面推导过程，本文得到了选择迁移进程的两个的条件，算法1(见4．3．1算

法1)的选择策略就是基于这两个条件来实现的。

下面要讨论的是算法2(见4．3．2算法2)的选择策略使用的迁移进程的判断条

件。

基于Harch01．Balter和Downey[53】的工作，可以推导出适合迁移的进程的最小

运行时间为：

施行砌删～朋卿肋，2一呼：趔(4-8)
玎一，”

其中，f+。u／b同公式(4—6)，rl是源端CPU上进程数目，m是目的端CPU上

进程数目。

设进程P当前已占用CPU时间为age(p)，由公式(4—8)得：

当呼(p)>Mini聊甜珑一所igrati伽一呼，即呼(p)>．f+／．z／b l对，可以迁移进程n—m

P到另一个CPU上。

电子科技大学硕士学位论文

由结论2)可知，一个进程从一个CPU迁移到另外一个CPU上，势必会对这

两个CPU负载造成影响，因此迁移进程可以选择除了要考虑进程当前运行时I盲q(age)

还要考虑源CPU和目的CPU负载。一般考虑迁移对源CPU和目的CPU负载造成

影响最小的进程，即

lI R—n(s，P)JI+II吃+灭(s，P，d)II

=rnin(II匙一R(s，Po)I|+lI岛+R(s，Po，d)Il，⋯，(4—9)

||足一R(s，马)|{+||玛+R(J，乃，d)J1)

至此，我们得到了两种不同的选择策略，每个选择策略都由两个判断条件组

成。

4．2．3．3进程生命周期

负载平衡的效率依赖于工作负载的特性，包括进程生命周期的分布和到达的

进程类型。如何预测进程的生命周期?下面给出两种方案。

1．进程生命周期的分布

通过对大量进程的生命时间数据的统计和分析，Harch01．Balteris3]采用统计学

方法，得出了当进程当前已占用CPU时间(age)T大于1s时进程的生命周期(1ifetime)

概率分布形式：

P{Lifetime>T)=Tk (4一lo)

其中，k的值随不同的系统在．1．3到．O．8之间变化，通常靠近．1。基于这个

分布，可以使用进程的当前生命时间来预测进程的未来运行时间。

当进程当前已占用CPU时间(age)T小于1秒时，该进程再运行(1ive)T秒的概

率大于1／2。因此，对生命周期(1ifetime)d,于1秒的进程来说，剩余生命时间的中

位数比当前已占用CPU时间(age)大。

因此进程未来的运行时间T大于或等于用当前进程占用CPU时间(age)的可能

性很大，即T≥age的可能性很大。我们使用当前进程占用CPU时N(age)来预测进

程未来的运行时间T。在“4．3．1．2迁移进程的选择”小节中，提到“当T(p)>c，即

T(p)>f+u／b时，进程P可以被迁移到另一个CPU上"，进程P的未来运行时间

T(p)可以通过当前进程占用CPU时fB-](age)来预测，那么该迁移条件可以写成：

当age(p)>c，即age(p)>f+p／b时，进程P可以被迁移到另一个CPU上。

2．跟踪预测技术

第四章基于资源利用率的负载均衡系统

文献【54]出跟踪预测的方法对任务的执行时间进行估计。

设跟踪预测期(Trace Time)的时间长度为Tt，磁盘访问速率为v，任务所需内

存空间大小M，任务所要访问文件的总长L，任务读写内存数据的总量Dm，任务

要打开的文件名FN，任务从FN中读写数据的总量Df，于是有：

访存速率vm：

％：阜 (4-11)

访问文件的速率Vf：

执行时间T

由上式：

DfV，=上
7

互

丁：丝+三
么 乡

卜互×嗟+专U— Ut

(4—12)

(4-13)

(4—14)

将上述两种方案进行比较，方案2的跟踪预测时间难以把握，首先，跟踪预

测的时间要保证能够收集足以判断一个任务行为的信息；其次，跟踪预测的时间

要尽可能短，这样才能减小系统的开销。因此本文选择方案1提出的方法来计算

进程的生命周期。

4．2．3．4核间通信

在“2．3．2CMP结构”小节中提到，CMP处理器的各CPU核心执行的程序之

间有时需要进行数据共享与同步，因此其硬件结构必须支持核间通信。目前比较

主流的片上高效通信机制有两种，一种是基于总线共享的cache结构，一种是基于

片上的互连结构。总线共享cache结构是指每个CPU内核拥有共享的二级或三级

cache，用于保存比较常用的数据，并通过连接核心的总线进行通信。基于片上互

连的结构是指每个CPU核心具有独立的处理单元和cache，各个CPU核心通过交

51

电子科技大学硕士学位论文

叉开关或片上网络等方式连接在一起。各个CPU核心间通过消息通信。

除了硬件，软件上也要提供高效通信机制保证。Linux内核使用了多种同步技

术来避免由于多个CPU对共享数据的不安全访问导致的数据崩溃1311。

1．每CPU变量。把内核变量声明为每CPU变量是最简单也是最重要的同

步技术。每CPU变量主要是数据结构的数组，系统的每个CPU对应数

组的一个元素。一个CPU可以随意地读写自己的元素而不用担心出现竞

争条件，但是它不应该访问其他CPU对应的数组元素。内核抢占可能使

每CPU变量产生竞争条件，因此内核控制路径在禁用抢占的情况下访问

每CPU变量。

2．原子操作。避免由于“读一修改一写"指令引起的竞争条件的最容易的

方法就是确保这样的操作在芯片级是原子的。这样的操作必须以单个指

令执行，不能中断，且避免其他CPU访问同一存储器单元。Linux内核

提供了专门的数据类型atomic t和一些专门的函数和宏，这些函数和宏

作用于atomic t类型的变量，并当作原子的汇编语言指令来使用。

3．自旋锁。自旋锁是用来在多处理器环境中工作的一种特殊的锁。如果内

核控制路径发现自旋锁开了，就获取锁继续自己的执行；如果发现锁由

运行在其他CPU上的内核控制路径锁着，就忙等，即反复执行一条紧凑

的循环指令直到锁被释放。即使忙等的内核控制路径无事可作，它也在

CPU上保持运行。

4．信号量。Linux提供了两种信号量：内核信号量，由内核控制路径使用；

System V IPC信号量，由用户态进程使用。在此，我们只讨论内核信号

量。当内核控制路径试图获取内核信号量所保护的资源被其他内核控制

路径占用时，与前者相应的进程被挂起。只有在资源被释放时，该进程

才再次变为可运行状态。

5．读—拷贝一更新(RCU)。为了保护在多数情况下被多个CPU读的数据

结构而设计了另一种同步技术，读一拷贝一更新(RCU)。RCU允许多
个读者和写者并发执行。它通过指针而不是锁来访问共享数据结构，其

关键思想包括限制RCP的范围，如下所述：

1)RCU只保护被动态分配并通过指针引用的数据结构。

2)在被RCU保护的临界区中，任何内核控制路径都不能睡眠。

52

第四章基于资源利用率的负载均衡系统

4．2．3．5进程迁移代价

在多核系统中，“进程迁移"是一种在进程生命周期内将它从一个核迁移到另

一个核上，并使进程从其“断点”继续运行下去的方法。多核系统中的“进程迁

移"与传统的进程迁移是不同的。多核系统的进程迁移基于内核的实现可以充分

利用操作系统提供的功能，获取进程和操作系统的状态，因此实现效率较高，提

供了很好的透明性。但是，在有的多核处理器架构中，L1 Cache是集成在核内的，

即每个核都有自己的Cache。在这种情况下，如果进程从一个处理器核迁移到另一

个处理器核，那么这个过程会带来一定的开销。

在我们的负载均衡系统中还是继续沿用Linux2．6内核已有的函数

can migrate 来做最后的判断，即候选迁移进程最后都要满足下面的要求：．task 0

(1)进程当前没有在CPU上执行。

(2)进程设置的cpu allowed字段允许迁移到某些CPU。

(3)被迁移的进程不是“高速缓存命中"的。

注意，为了叙述的简洁，在下面的算法中不再显示说明，最后确定的被迁移

进程默认都满足了上面的要求。

传统的进程迁移的主要工作在于提取进程的状态，以便它在另一台计算机上

根据这些状态再生该进程，继续存取它所有资源并运行。一般，进程的状态包括【54J：

1)进程执行状态：表示当前运行进程的处理器状态，包括内核在上下文切换

时保存和恢复信息，如通用寄存器，浮点寄存器，栈指针等。

2)进程地址空间和内存状态信息：这是进程状态最主要的一部分，包括进程

的虚存信息，进程数据信息和堆栈信息等。

3)进程控制信息：包括进程标识符，进程优先级，父进程标识等。

4)打开文件信息：进程打开的文件信息包括文件描述符和文件缓冲块。

5)进程的消息状态：包括进程缓冲的消息和连接的控制信息。

在多核系统中，进程的迁移要简单很多。内核暂停一个进程的执行时，就把

几个相关处理器寄存器的内容保存在进程描述符中，这些寄存器包括：程序计数

器(PC)，栈指针寄存器(SP)，通用寄存器，浮点寄存器，包含CPU状态信息的

处理器控制寄存器，用来跟踪进程对RAM访问的内存管理寄存器。当系统要迁移

该进程，在指定CPU核心上恢复该进程的执行时，内核用进程描述符合适的字段

来装载CPU寄存器就可以了。

由于在Linux中，被迁移的进程都不是正在执行的并且不是“高速缓存命中’’

电子科技大学硕士学位论文

的进程，因此迁移操作只需要下面几句简单的代码就可以完成：

dequeue task(p，src_array)；

dec nr running(p，srcrq)；

set task_cpu(p，thiscpu)；

inc nr nmning(p，this_rq)；

enqueue task(p，this_array)；

首先，将被迁移进程P从源CPU的优先级数组SrC (可能是活动数组也．array

可能是过期数组)中摘下，并将该优先级数组的nr active以及该优先级数组所在

运行队列srcrq的nr_running减一，然后将进程P的thread_info一>cpu设置为将要

被迁移到的目的CPU，并将目的CPU运行队列this 的 增1，最后将．rq fir_running

进程P插入thisrq的优先级数组this_array(可能是活动数组也可能是过期数组)

中，thisarray->nr_active增1。

上述迁移操作涉及两个CPU的运行队列，将一个进程描述符从一个运行队列

删除然后再插入另一个运行队列所花费的时间是恒定，因此可以假设其固定开销

为fo

由于大多数多核系统都是共享内存，因此迁移进程的时候不必像传统的进程

迁移那样将该进程的用户上下文和系统上下文(系统上下文是否迁移视具体系统

而定)都传送到目的节点。另外，由于被迁移进程不是“高速缓存命中的"，因此

当它迁移到另一个核上要运行时，虽然不需要从一个cache拷贝数据到另一个

cache，但还是需要从内存读取与该进程相关的数据，这个操作的开销可以用进程

稳定工作集大小u除以内存带宽b来获得。

综上，我们可以得到迁移一个不正在运行、不是“高速缓存命中”的进程总

的开销是C=f+u／b。这与文献【53】提出的进程迁移代价计算公式是一样的。

4．3算法设计

本文使用任务的CPU利用率和内存利用率作为负载因子，所以每个CPU的负

载R是一个向量(％CPU，％MEM)，资源负载向量的各个分量表示不同资源的使

用情况，向量的角度能够显示资源使用的平衡状态。

设某个CPU上运行队列的长度为rl，n的值与CPU的处理能力成正比。L是

采用指数平滑算法得到的CPU队列的长度。M为可用内存总量，m(i)是进程i的

稳定工作集大小。

第四章基于资源利用率的负载均衡系统

％CPU：旦x100％
三

∑肌(f)％朋EM=上L×100％
M

(4—15)

(4-16)

为了衡量迁移进程对源CPU的影响，定义迁移进程i相对于源CPU的资源负

载向量R(s，i)为：

删)-(丢，等) (4-17)

为了衡量迁移进程对目的CPU的影响，定义迁移进程i相对应目的CPU的资

源负载向量R(s，i，d)为：

删棚=哇，争 (4-18)

通过资源负载向量的向量加减运算，可以方便地获得迁移进程对源CPU和目

的CPU资源使用情况的影响。该负载均衡算法的目标之一是找到CPU资源利用率

和内存利用率之间的某种关系使系统负载平衡，即找到系统平衡时每个CPU负载

向量角度的大小。

4．3．1算法1

4．3．1．1转移策略

本文使用普遍认可的阈值策略作为转移策略：当某节点的负载小于阈值盹

时，就将该节点确定为接受者；当某节点的负载大于阈值p：时，就将该节点确定
为发送者。

4．3．1．2选择策略

算法的具体步骤如下：

第一步确定适合迁移的进程的集合Pmingrati∞。根据“4．2．3．2迁移进程的选择”，

小节的分析，可以用进程的当前生命时间来预测进程的未来运行时间。进程的未

来运行时间大于进程迁移代价，因此，

55

电子科技大学硕士学位论文

己。倒f。={见1只∈‰。^age(p,)>f+mem(p，)lb) (4-19)

若己删。=g，跳至第五步。

第二步设源CPU过期队列进程集合eexp删一删，优先考虑在‰～一删和

Pmingrati伽的进程作为候选的迁移进程，即

‰。删2{B I P，∈乞螂。人只∈eexpf耐一删) (4-20)

第三步如果‰俐=g，则P=己删。；如果‰，删≠o，则P=‰，删。
第四步从集合P中选择迁移进程p。，Pm应具有最大的资源负载向量模、最

小的迁移代价(迁移代价由公式(4-6)求得)和最长的当前生命时间：

‰2圳n∈圳讹孙万a丽ge(p,) =
max(II R(s，1)忪

age(p1)

f+mem(p1)lb’‘．．，㈣咧l×万a丽ge(pj) J．mem ／， (4-21)
，+ I矽。l D

其啊爿P1)

第五步算法结束。

4．3．1．3定位策略

文献[563提出了一种最小k子集随机算法SKR，主要步骤为：当位置策略进行

目标节点选择时，首先从所有节点中挑选k个负载最少的节点，然后再从这k(1≤k

≤N)个节点中随机选择一个节点作为目标节点。但是这样做的话一次只能减轻一

个节点的负载。文献[57】的启发式负载重分配算法中，提出了LDS，LRS，LHS三种

算法，其中LDS算法的目标是使过载CPU发送出的消息数目最少，LRS算法是使

轻载CPU接收到的消息数数目最少。基于文献[57]和[58】的工作，本文得出负载均

衡系统的定位策略。

根据负载状态X，本文只讨论两类CPU：一类为过载CPU，其负载状态x=过

载；一类为轻载CPU，其负载状态)C=空载或轻载。由于过载CPU提供多余的负

载，故将其称为提供者(Donor)，记为D。轻载CPU称之为接受者(Receiver)，记为

R，R中的CPU负载较轻，有能力接受新的负载。注意，为了简单起见，本文下

面直接用“负载"来代表CPU的负载向量的模。

第四章基于资源利用率的负载均衡系统

D提供的多余负载使用形表示：

W={Awl，△w2⋯眺)

其中，她是D中第i个CPU的多余负载，即△W=形一r。，Fw是负载阈值，

若CPU的负载形超过这个值，该CPU的负载过重。由于Linux引入了调度域的

概念，因此矿咖劬表示某个过载的调度域中所有CPU的多余负载，而矿聊表示

某个调度域中的某～过载的组所有CPU的多余负载。

R能够接受的负载用C表示：

C={Aq，Ac2⋯Ac。)

其中，△c，是R中第i个CPU在能力范围内还能接受的负载，即Ac，=F。7一彬，

r。’是负载阈值，若CPU的负载形小于这个值，该CPU的负载过轻。C抽砌表示

某个轻载调度域中所有CPU能接受的负载，而乙聊表示一个调度域中某一个轻

载的组能接受的负载。

假设∑△M=∑△勺，其中i∈D，／∈R。

将矿={△M，△№．．．△％)和己={Aq，△乞⋯△气)中的元素按降序排列，得到：

形={w1，w2⋯％)，其中wl>％>⋯>‰

C={q，乞⋯Cn)，其中c1>乞>⋯>厶

假设存在一个负载分配矩阵A，使得C=WxA，则A为mxn阶矩阵：

A一：rtl
L‰。

∑w(／)嘞=Cj，／∈R
f∈D

电子科技大学硕士学位论文

∑w(，)=w，Vi∈D
』∈R

嘞∈{0，1)，i∈D，J∈R

当嘞为1时，发送者i与接受者j之间发生通信。∑嘞表示第j个CPU收到
j∈D

的信息；∑x0表示第i个CPU发出的信息。w(，)表示第i个CPU向第j个CPU
JE|R

发送的负载。

CPU之间通信的开销是很大的【571，因此，定位策略的目标是减少CPU之间的

通信开销，也就是使每个CPU发送和接受的消息总数最小。由于负载分配矩阵A

可以有很多解，这个问题可以抽象为下面的组合优化问题：

F砒{maX∑嘞，vj∈R，maxE吻，Vi D) (4-22)
jED 3eR

若要F最小，可以从两方面考虑。使maX∑％，vj∈R最小，或者使
f邑D

max∑％，Vi∈D最小。Donor算法的目标是使max∑％，Vi∈DJgEd、，即使W中的
．／eR 』ER

每个CPU发出的消思数最小。

Donor算法描述为：

1)令形=睨唧，c=％唧。

2)将W与C按降序排列。若w1=O，跳至10)。

3)若C1=0，搜索范围从本调度组group扩大到本调度域sd，若sd

的多余负载为W。d，能接受的负载为C。d。令形=％，C=％，将

W与C按降序排列。若q≠0，跳至7)。

4)若cl=0，继续向上层调度域搜索，直到Cl≠0或者搜索到了最上

5R

第四章基于资源利用率的负载均衡系统

层调度域为止。

5)如果搜索到了最上层调度域且q=0，所有CPU都处于过载状态，

则跳至10)。

6)若当前搜索到的调度域的多余负载为Wd伽ain，能接受的负载为

Cd鲫ai。。令W=‰，C=‰，将W与C按降序排列。
7)若W中w1≤cl，则在C中搜索，看是否存在一个勺∈C，使得

巳=wl。若存在，则将w1与勺进行负载均衡。

8)若不存在巳使得巳=川，则直接将Ⅵ与q进行负载均衡，此时，

嵋=0，q=Ci-w!。将q按顺序重新插入C中。跳至7)。

9)若Ⅵ>max{c,，C2⋯Cn)，即嵋>q，直接将Ⅵ与c1进行负载均衡，

此时q=0，嵋=Ⅵ--C1。将wl按顺序重新插入W中。跳至7)。

10)算法结束。

假设w={33，9，7，6}，C={26，20，7，2)，使用Donor算法的过程如下：

聃腿曜
A B C D E

图4．1 Donor算法

此时，相应的各CPU之间的通信关系可以通过矩阵B表示为：

日。4=

1 1

O l

O O

O l

O O

O 0

1 O

0 l

矩阵的行表示负载接受者，即在C={26，20，7，2，中各负载对应的CPU；列

电子科技大学硕士学位论文

表示负载提供者，即在W={33，9，7，6)中各负载对应的CPU。负载为33的CPU

(列的第一个元素)与负载为26的CPU(行的第一个元素)进行了一次通信，因

此矩阵的第一行第一列的值为1。负载为9的CPU(列的第二个元素)与负载为

20的CPU(行的第二个元素)进行了一次通信，因此矩阵的第二行第二列的值为

1．⋯··可得到这些CPU之间通信的总数为6次。在这些CPU之间，经过6次通信

就可以使系统达到平衡。

4．3．2算法2

4．3．2．1转移策略

采用与算法1相同的转移策略，即阈值策略。

4．3．2．2选择策略

可以使用与算法1相同的选择策略。也可以使用下面的算法：

第一步确定适合迁移的进程的集合Pmingrati∞。根据“4．2．3．2迁移进程的选择"，

小节的分析，适合迁移的进程集合为：

巴，删啪：{A p，∈乙。人age(p，)>．f+mem(p,)／b}(4-23)

若己删册=9，跳至第五步。

第二步设源CPU过期队列进程集合1expJmd—an'ay，优先考虑在1 expired—array和
n n

Pmingration的进程作为候选的迁移进程，即

‰刎={B l易∈己胛蝴人忍∈‰删一删>

第三步如果‰tred 29，则P=己咖砌；如果‰tred≠o，则尸2‰tred。

第四步从集合P中选择迁移进程‰，迁移进程‰对源节点和目标节点的资

源负载向量的影响是最小的：

Pm={Pi l p，∈尸人ll足一R(s，i)ll+ll Rd+R(s，i，d)lI

=min(If R-R(s，0)Il+||局+g(s，0，d)忆．．， (4-24)

|l R-R(s，J)lI+|I钙+R(s，／，d)11)，其中，，刊P I>

60

第四章基于资源利用率的负载均衡系统

第五步算法结束。

4．3．2．3定位策略

使F最小的另一个方法就是使ma)【∑勺，vj∈R最小。Receiver算法的目标就
，∈D

是为了实现该目的，即C中的每个CPU接受的消息数最小。Receiver算法与Donor

算法很相似，它们的不同之处只是前者以多余负载接受者为主体来进行负载均衡。

Receiver算法描述：

1)令矿=％唧，C=％即。

2)将W与C按降序排列。若Cl=0，跳至10)。

3)若M=0，搜索范围从本调度组group扩大到本调度域sd，若sd的多

余负载为W。d，能接受的负载为C。d。令W=Wsd，C=C耐，将W与C

按降序排列。若Ⅵ≠0，跳至7)。

4)继续向上层调度域搜索，直到Ⅵ≠O或者搜索到了最上层调度域为止。

5)如果搜索到了最上层调度域且Ⅵ=0，所有CPU都处于适载状态，则

跳至10)

6)若当前搜索到的调度域的多余负载为Wd伽aill，能接受的负载为Cd伽ain。

令形=％棚拥，C=％棚，将W与C按降序排列。

7)若C中Cl≤wl则在W中搜索，看是否存在一个％∈形，使得一=c1，

若存在将w，与q进行负载均衡。

8)如果不存在一使得-=C1，则直接将Ⅵ与c·进行负载均衡，此时，

cl=0，w1=w1一Cl。将Ⅵ按顺序重新插入W中。跳至7)。

9)若cl>ma)【{wl，％⋯％)，即c1>wl，直接将q与Ⅵ进行负载均衡，此时

Ⅵ=0，c1=Cl—wl。将q按顺序重新插入C中。跳至7)。

61

电子科技大学硕士学位论文

10)算法结束。

假设W={34，9，7，7)，C={26，22，8，1)，使用Receiver算法过程如下：
C W C 冒 C W C W C

C D

图4-2 Receiver算法

此时，相应的各CPU之间的通信关系可以通过矩阵B表示为：

日。4=

O O

l 0

0 1

0 O

矩阵的列表示负载接受者，即在C={26，22，8，1}中各负载对应的CPU；行表示

负载提供者，即在W={34，9，7，7}中各负载对应的CPU。负载为26的CPU(列的第

一个元素)与负载为34的CPU(行的第一个元素)进行了一次通信，因此矩阵的

第一行第一列的值为1。负载为22的CPU(列的第二个元素)与负载为9的CPU

(行的第二个元素)进行了一次通信，因此矩阵的第二行第二列的值为1⋯⋯可得

到这些CPU之间通信的总数为7次。在这些CPU之间，经过7次通信就可以使系

统达到平衡。

4．4数据结构

1．进程负载信息表示

struct resource_vector{

unsigned long cpu usage；HCPU利用率

unsigned long mem_usage；／／内存利用率

)；

2．在进程描述符task struct中添加与负载均衡相关的变量

struct resource vector res yec；／／存放进程负载信息

第四章基于资源利用率的负载均衡系统

unsigned long age； ／／存放进程已占用CPU时间

unsigned long overhead；／／存放进程迁移开销(估计值)

3．CPU负载信息表示

struct cpuload{

spinlock t lock；／／保护该结构的自旋锁

hat cpu； ∥当前cpu号

hatdest cpu； ／／目的epu号

unsigned long delta work load；／／与负载上限或下限相比的负载差值

struct rtmqueue木rq； ／／指向本地运行队列的指针

struct list head cpu list： ／／在负载均衡全局链表中的占位符

>；

每个CPU都有一个对应的struct cpu load结构，用以记录它们的负载信息以

方便系统的负载均衡操作。

4．负载均衡全局链表

stmct list head木donor； ／／指向负载提供者链表

struct list head*receiver； ／／指向负载接受者链表

这两个链表的元素是struct cpuload结构，根据该结构中delta—work—load成员

的大小，按从大到小的顺序排列的。一个CPU的struct cpu_load结构不能同时出

现在这两个链表上，因为它不可能既是负载的提供者又是负载的接受者，它要么

在donor链表上，要么在receiver链表上，或者它一个链表都不属于，因为它可以

是适载的CPU。

5．负载上限load upper threshold与下限load lower threshold

unsigned long load upperthreshold；／／负载上限

unsigned long load lowerthreshold；／／负载下限

定义两个阈值：上限load_upper_threshold与下限load—lower—threshold，使得

load > 。对于第个 上的负载．upperthreshold load lower threshold i CPU Res：

(1)如果Res>load_upper_threshold，表明第i个CPU过载，将该CPU列人过

载集合D(I主t donor指针指向)中，并将Res—load_upper_threshold所得的差值存入

该CPU对应的struct cpu 结构的 成员中。．10ad delta work load

(2)如果Res<load lower threshold，表明第i个CPU轻载，将该CPU列人

轻载集合R(由receiver指针指向)中，并将load lower threshold—Res所得差值存

入该CPU对应的struct cpu load结构的delta work load成员中。

电子科技大学硕士学位论文

(3)如果10ad upper threshold>Res>load lower threshold，表明第i个CPU

负载适中，不需要做负载均衡，这个CPU对应的st]met州load结构就不需要被
插入donor或者receiver链表之中。

6．改变负载上限与下限的系统调用

set_load_upperthreshold0；

seLload_lowerthreshold0；

负载上限与下限并不是固定不变的，针对系统面向的任务类型，用户可以通

过set_load_upperthreshold0和set_load_lower_threshold0系统调用来改变负载上限

10ad upper threshold与下限load lower threshold的值。

4．5本章小结

本章首先提出一种负载均衡的通用模型，使用四元组<E，T，L，S>来表示。

然后根据该模型的各个因子对Linux的负载均衡系统进行剖析，着重分析了Linux

的负载评价因子L和调度策略因子S。最后通过详细的理论分析，提出了两种不同

的算法。这两种负载均衡算法的相同之处在于都采用了资源利用率(cPu利用率和

内存利用率)作为负载因子。不同之处在于，算法l的选择策略选出的迁移进程具

有最大的资源负载向量模、最小的迁移代价和最长的当前生命时间；而算法2选

择对源节点和目标节点的资源负载向量的影响是最小的进程进行迁移。算法l的

定位策略从提供者角度考虑，而算法2的定位策略从接受者角度考虑。

第五章总结与展望

第五章总结与展望

随着对处理器性能要求的不断提高，多核处理器技术越来越受到人们的广泛

关注。多核处理器的发展对操作系统提出了新的要求，相应地，操作系统的调度

机制也面临新的挑战。传统的操作系统Linux，FreeBSD，Windows等目前还不能非

常好的在具有几十个核的芯片上运行的。多核处理器的出现对我们来说，既是机

遇也是挑战。我们应该抓住这个发展机遇，在系统软件上加大研究力度。同时要

利用好开源软件的能力，尤其是Linux内核方面的研究与开发，开发出具有核心竞

争力的系统软件。

目前国际上对于CMP的研究还处于探索阶段，多核操作系统也处在积极研究

时期。研究，分析，总结和借鉴支持CMP的操作系统的关键技术对于我们认识、

理解和设计用于CMP的操作系统有着非常重要的意义。通过查阅大量的国内外文

献，本文对多核处理器的相关技术及其线程调度技术进行了分析和总结；对

Linux2．6内核的O(1)调度算法和负载均衡进行了详细分析；在讨论Linux操作系统

的一般性原理基础上，针对Linux调度器不考虑进程迁移代价的不足，以提高系统

的吞吐量减少响应时间为目标，设计了一个基于资源利用率的负载均衡系统。该

算法通过计算进程的CPU利用率和内存利用率来选择迁移进程，使用Donor或

Receiver算法来定位，具有很好的现实意义和实用价值。该系统在实现上还有很多

内容值得我们进一步深入探讨和研究，未来还需要继续进行的工作有：

1．当前的算法仅仅考虑了CPU和内存两种资源，这实际上还不足以体现利用多

种资源作为负载指标的平衡算法的效果，下一步将进行更多种类资源情况的研究。

2．在定位算法中，使用根据降序排列的链表来存储CPU负载信息，当查找目标

CPU时，需要遍历链表上所有结点，这样是很低效的。为了减少时间开销提高查

找效率，可以考虑折半查找，或者存储的时候使用哈希表来存储。

3．当前的算法中得到的多余负载集合与能够接受负载集合中的元素信息可能过

时。由于从负载信息的收集到真正负载平衡之间具有时间差，因此元素在开始收

集信息时刻是过载的，很可能开始执行负载均衡的时候就已经变成轻载或者空载

了，因此要继续深入研究这类问题的解决方案。

4．同一个任务队列的进程和同一家族的进程尽量映射到同一个处理器上，因为

这些进程之间需要频繁通信的可能性是最大的。

65

电子科技大学硕士学位论文

致 谢

本文的最后，我衷心地感谢我的导师李毅教授。本课题从选题到调研，再到

撰写论文，都是在李老师悉心的指下完成的。他渊博的学识、严谨的治学态度、

精益求精的工作态度和诲人不倦的为师风范，让我感受到了一名杰出学者所具有

的素质，并深受其影响。在三年的硕士研究生学习阶段，李老师给我提供了优越

的科研、学习环境；对我在学习中遇到的困难也尽力的给予指导和帮助。

我要感谢教研室的师兄李一明博士，他在项目开发和本论文撰写的过程给予

我很大的帮助。还要感谢教研室的同学陈秋益、曾星科、杨波、何进仙、沈雪峰、

董旭，史成伟，我们在相互学习、讨论和争论中度过了愉快的三年时光。也要感

谢教研室的师弟师妹，他们使得教研室充满生机而有活力。

我要感谢我的父母，感谢他们的养育之恩，感谢他们对我的一如既往的支持

和无私的奉献。

最后，衷心的感谢为评阅本论文而付出辛勤劳动的各位专家和学者。

覃中

二OO九年三月于电子科技大学

参考文献

参考文献

【1】多核系列教材编写组．多核程序设triM]．北京：清华大学出版社，2007．9

【2】2 Akhter S,Roberts J．Multi—Core Programming_-lncreasing Preformance through Software

Multi-threading[M]．Intel Corporation,Intel Press Business Unit，2004．3

[3】章承科．基于多核处理器实时操作系统的扩展：【硕士学位论文】．成都：电子科技大学，

2006．6：23·24

【4】汤子瀛，哲风屏，汤小丹．计算机操作系统【M】．西安：西安电子科技大学出版社，2002：39．40

[5】StaUings W．Operating Systems：Internals and Design Principles(Fourth Edition)[M]．

Prentice---Hall，Inc．，200 1：30—48

[6】金惠芳．超线程及其实现技术分析【J】．计算机工程．2004．12，30(23)：93—95

【7】邹治锋．基于Linux进程调度的改进与实现：【硕士学位论文】．无锡：江南大学，2006．3：

18一19

[8】屈文新，樊晓桠，张盛兵．多核多线程处理器存储技术研究进展[J]．计算机科学，2007，34(4)：

13一16

[9】章隆兵，何立强．同时多线程结构研究综述[J]．中国科学院计算技术研究所内部刊物—信

息技术快报，2004，8：1．12

【1O】R．Kessler,“The Alpha 2 1 264 Microprocessor'’，IEEE Micro，March-April 1 999，pages 24—36

[11】Dual-Core Intel Xeon Processor 7 1 00 Series．

【12】张盛兵，王晶．同时多线程结构的线程预构[J】．西北工业大学学报，2007．4，25(2)：159-162

[1 3】D．Marr,et a1．，Hyper-Threading Technology Architecture and Microarchitecture，Intel

Technology Journal，Q1，2002

[14】Kunie O K，Basem A N，Hammond L，et a1．The Case for a Single-chip Multiprocessor[C]／／Proc．
of the 7th International Conferenceon Architectural Support for Programming Languagesand

Operating Systems，New York．1 996

【15】Hammond L，Hubbert B A，Siu M，et a1．The StaInford Hydra CMP．IEEE Micro，2000，20

(2)：7】"84

【1 6】Inside Intel@Core删Microarchitecture：setting New Standards for Energy—Efficient

Performance．http：／／www．intel．corn／technology／architecture—silicon／core／index．htm

[1 7]Kahle J A．Introduction to the Cell Multiprocessor[J]．mM Jouma Res，2005，49(4／5)：589-604

67

电子科技大学硕士学位论文

【1 8】颜世云，翁志强．CMT结构研究综述【J】．计算机科学，2006，33(7)：1 96．1 98

【19】何军，王飙．多核处理器的结构设计研究【J】．计算机工程．2007．8，33(16)：208-210

【20】Kongetira只Aingaran K，Olukotun K．Niagara：A 32一Way Muhithreaded Spare

Processor[J]．IEEE Micro，2005，25(2)：21—29

【21】刘近光，梁满贵．多核多线程处理器的发展及其软件系统架构[J]．微处理机，2007，1：1．3

【22】对称多处理机．http：／／www．hudong．com／wiki／％E5％AF％B9％E7％A7％B0％E5％A4％9A％E

5％A4％84％E7％90％86％E6％9C％BA

【23】Schimmel C．现代体系结构上的Unix系统【M】．张辉译．北京：人民邮电出版社，2003．

[24】王晶，樊晓桠，张盛兵，王海．多核多线程结构线程调度策略研究[J]．计算机科学，2007，34(9)：

256-258

【25】Snavely A，Mitchell N，Carter L，et a1．Explorations in Symbiosis 011 two Muhithreaded

Architectures[C]／／In：Workshop 01"1 Multithreaded Execution And Compilation(MTEAC)，

January 1 999：568—572

【26】Snavely A，et a1．Symbiotic Jobscheduling for a Simultaneous Multithreading Processor[C]／／In：

Proceedings ofASPLOS IX，November 2000：234．244

【27】Sanvely A．，Tullsen D．M．，Voelker G Symbiotic jobscheduling with priorities for a simultaneous

multithreading processor[C]／／In：Proc．of the ACM SIGMETR．ICS International Conference Oil

Measurement and Modeling of Computer Systems，2002"66—76

【28】Parekh S，Fe．gers S，Levy H．Thread-Sensitive Scheduling for SMT Processors阴．University of

Washington，2000：l一18

【29】DeVuyst M．，Kumar R,Dean T．Exploiting Unbalanced Thread Scheduling for Energy and

Performance on a CMP of SMT Processors[C]／／In：IPDPS一2006，Rhodes Island，Greece，April

2006．10—18

【30】Robert Love．Linux Kernel Development(Second Edition)[M]．Pearson Education，Ine．，2005：

30一48

【31】Bovet P．D．Cesati M．Understanding the Linux Kernel[M]．O’REILLY Media,Inc．，2006：

258．290

f32】Linux 2．6调度系统分析．http：／／www．ibm．com／developerworks／cn／linux／kernel／1．kn26sch／inde

x．htrnl

【33】李彬，任国林．Linux内核基于对称多处理机的实现分析叨．计算机技术与发

展，2006．1，16(1)：129·131

参考文献

【34】高珍，吴永明，周卫华．Linux操作系统内核对SMP(对称多处理器)的支持[J】．计算机应用

研究，2002，9：62—63

【35】初探Linux2．6内核—进程调度．http：／／www．9 1 linux．com／html／article／database／mysql／200708

l 5／5762．html

【36】管理处理器的亲和力．http：／／www．ibm．com／developerworks／cn／linurdl—affinity．html#resources

【37】Linux2．4与Linux2．6内核调度器的比较研究．http：／／www．chinaaet．com／jishu／jslw／2008—05-27

／8789．shtml

【38】李冬梅，施海虎，毓清．基于规则的分层负载平衡调度模型[J】．计算机科学，2003，30(10)：

16-20

[39】S．Zhou,X．z．Delisle．Utopia：a Load Sharing Facility for Large，Heterogeneous Distributed

Computer Systems[J]．Software Practice and Experience，1993：1305-1336

【40】Y．T．Wang and J．T．Morris，‘'Load sharing in distributed systems[J],"IEEE Trans．Computers，

1 985，v01．C·34．：204—2 1 7．

【4l】D．L．Eager，E．D．Lazowska,and J．Zahorjan，Adaptive load sharing in homogeneous

distributed systems[J]．IEEE Trans．Software Eng．1986，v01．SE-12：662—675

【42】刘振英，方滨兴，胡铭曾等．一个有效的动态负载平衡方法【J】．软件学报．2001，12(4)：563-569

【43】李冬梅，施海虎．负载平衡调度问题的一般模型研究叨．计算机工程与应．2007，43(8)：

121．125

【44】Marc H，Willebeek-L M．Strategies for dynamic load balancing on highly parallel

computers[J]．IEEE Transactions on Parallel and Distrubuted System，1993，4(9)：979-993

[45】陈华平，计永昶，陈国良．分布式动态负载平衡调度的一个通用模型【J】．软件学报，1998，9

(1)：25．28

[46】鞠九滨，杨鲲，徐高潮．使用资源利用率作为负载平衡系统的负载指标明．软件学

报，1996，7(4)：16-20

【47】Kunz T．The influence of different workload description on a heuristic load balance scheme[J]．

IEEE Trans on Software Engineering．1991，17(7)：725—730

[4s】王力生，毛昀波．多处理机系统的负载平衡模型设计阴．单片机与嵌入式系统，2008，1：lO一13

【49】胡亮，徐高潮，鞠九滨．一个基于收益与开销的作业选择策略田．软件学报．1998．4，9(4)：

280．283

【50】梁根，郭小雪，秦勇．基于公平调度算法的分布式系统负载均衡研究．计算机工程与设计，

2008．3，29(6)：1362-1363

电子科技大学硕士学位论文

[51】Zhou Songnian,Zhen Xiaohu．Utopia：load shadnig facility for large heterogeneous distributed

computer system[J]．Software—Practice and Experience，1993，23(12)：1305—1336

【52】Leland W，Ott T．Load balancing huristicsand process behavior[C]／／In Proc．ACM

SIGMETRICS Conf．Measurement and Modeling of Computer Syst,May 1 986．

[53】M Harchol—Baiter A B Downey．Exploiting process lifetime distributions for dynamic load

balancing【J】．ACM Transactions 011 Computer Systems，1997，15(3)：253-285．

【54】进程迁移．http：／／mesopodamia,blogbus．corrfflogs／37552587．html

【55】Ju Jiubin,Xu Gaochao，YangKun．On-Line Prediction Behaviors of Jobs in Dynamic Load

Balance[J]．Comput．Sci．Techn01．1996．1，11(1)：39-48

[56】蒋江，张民选，廖湘科．基于多种资源的负载平衡算法的研究【J】．电子学报，2002．8，30(8)：

1 148-1152

【57】Pardines，E F．River．Minimizing the Load Redistribution Cost in Cluster Architectures[C]／／In

Proceedings of the 12th Euromicro Conference On Parallel，Distributed and Network—Based

Processing(EUROMICRO—PDP‘04),2004

【58】王碉，蔡皖东，段琪．一种自适应动态负载均衡算法[J]．计算机工程与应用，2006，21：121-123

攻硕期间取得的研究成果

攻硕期间取得的研究成果

一、参与项目

2007．3-2008．5参与教研室和东方电气自动控制工程有限公司(DEA)共同开发的火电

自控工程项目～EDA项目的开发。实现了报表组态子系统，报表运行子系统，单点实时趋势显

示控件和画面打印模块，参与系统性能测试并编写用户手册。

二、发表的论文

【1】覃中，李毅．一种Excel报表运行系统的设计与实现．科技信息，2009

【2】覃中，李毅．基于多核系统的线程调度研究．研究生学报，2009

基于多核系统的线程调度
作者： 覃中

学位授予单位： 电子科技大学

本文链接：http://d.g.wanfangdata.com.cn/Thesis_Y1463635.aspx

http://d.g.wanfangdata.com.cn/Thesis_Y1463635.aspx
http://g.wanfangdata.com.cn/
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e8%a6%83%e4%b8%ad%22+DBID%3aWF_XW
http://s.g.wanfangdata.com.cn/Paper.aspx?q=School%3a%22%e7%94%b5%e5%ad%90%e7%a7%91%e6%8a%80%e5%a4%a7%e5%ad%a6%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y1463635.aspx

	﻿封面
	﻿文摘
	﻿英文文摘
	﻿声明
	﻿第一章绪论
	﻿1.1课题背景
	﻿1.2多核系统调度问题的提出
	﻿1.3论文的主要工作
	﻿1.4论文组织结构

	﻿第二章多核系统的有关技术基础
	﻿2.1基本概念
	﻿2.1.1进程
	﻿2.1.2线程
	﻿2.1.3多线程

	﻿2.2单核处理器调度
	﻿2.2.1处理器调度的类型
	﻿2.2.2调度算法

	﻿2.3多核相关技术
	﻿2.3.1 SMT结构
	﻿2.3.2 CMP结构
	﻿2.3.3 CMT结构
	﻿2.3.4 SMP结构

	﻿2.4多核线程调度研究现状
	﻿2.4.1 CMP结构调度研究
	﻿2.4.2 SMT结构调度研究
	﻿2.4.3 CMT结构调度研究

	﻿2.5典型的支持多核处理器的操作系统
	﻿2.6本章小结

	﻿第三章Linux调度机制
	﻿3.1 Linux2.6的调度机制
	﻿3.1.1调度程序所使用的数据结构
	﻿3.1.2调度流程

	﻿3.2 Linux对SMP的支持
	﻿3.2.1 SMP系统中的进程调度
	﻿3.2.2多处理器系统中运行队列的平衡
	﻿3.2.3 Linux2.6的CPU亲和力特性(affinity)

	﻿3.3 Linux调度机制的不足
	﻿3.4本章小结

	﻿第四章基于资源利用率的负载均衡系统
	﻿4.1负载均衡
	﻿4.2理论分析
	﻿4.2.1负载均衡调度模型
	﻿4.2.2 Linux的负载平衡调度模型
	﻿4.2.3负载平衡中的几个关键问题

	﻿4.3算法设计
	﻿4.3.1算法1
	﻿4.3.2算法2

	﻿4.4数据结构
	﻿4.5本章小结

	﻿第五章总结与展望
	﻿致谢
	﻿参考文献
	﻿攻硕期间取得的研究成果

