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u-boot(Makefile)

当我们编译U－BOOT的时候，大家键入make smdk2410_config,make 的时候都作了那些动作呢，这里我先大概介绍一下
Makefile的内容，然后在大概理解一下命令执行的流程。如果有错的地方，希望大家指正，谢谢。

1.u-boot顶层目录的Makefile分析:

HOSTARCH := $(shell uname -m | \

        sed -e s/i.86/i386/ \

            -e s/sun4u/sparc64/ \

            -e s/arm.*/arm/ \

            -e s/sa110/arm/ \

            -e s/powerpc/ppc/ \

            -e s/macppc/ppc/)

首先执行uname -m得到I686,通过管道传送给sed命令,然后sed命令将执行sed -e s/i.86/i386/,将I686替换成i386,最后的结果是
HOSTARCH=i386.

HOSTOS := $(shell uname -s | tr '[:upper:]' '[:lower:]' | \

            sed -e 's/\(cygwin\).*/cygwin/')

首先执行uname -s 查看开发平台的系统,结果为Linux,然后通过管道传送给tr命令,tr命令利用字符类[:lower:]和[:upper:]将LInux字符
串转化为linux,然后再利用sed命令.最后的结果是HOSTOS=linux

export HOSTARCH HOSTOS

export 是Makefile的语法关键词,将这些变量传递给下一层的Makefile.总控Makefile的变量可以传递到下级的Makefile中（如果你显
示的声明），但是不会覆盖下层的Makefile中所定义的变量，除非指定了“-e”参数。
如果你要传递变量到下级Makefile中，那么你可以使用这样的声明：
     export <variable ...>;

如果你不想让某些变量传递到下级Makefile中，那么你可以这样声明：
     unexport <variable ...>;

TOPDIR := $(shell if [ "$$PWD" != "" ]; then echo $$PWD; else pwd; fi)

export TOPDIR

得到U-BOOT的绝对路径为TOPDIR.

ifeq (,$(findstring s,$(MAKEFLAGS)))

XECHO = echo

   else

   XECHO = :

endif

通过findstring函数来找MAKEFLAGS是否有匹配s的关键词，如果没有则ifeq就为真。那么变量XECHO就等于echo 反之亦然。

ifdef O

ifeq ("$(origin O)", "command line")

   BUILD_DIR := $(O)

   endif

   endif

这里主要说明origin的语法：

origin函数不像其它的函数，他并不操作变量的值，他只是告诉你你的这个变量是哪里来的？其语法是：
     $(origin <variable>;)

注意，<variable>;是变量的名字，不应该是引用。所以你最好不要在<variable>;中使用“$”字符。Origin函数会以其返回值来告诉
你这个变量的“出生情况”，下面，是origin函数的返回值:

“undefined”

       如果<variable>;从来没有定义过，origin函数返回这个值“undefined”。
“default”

       如果<variable>;是一个默认的定义
“environment”

       如果<variable>;是一个环境变量，并且当Makefile被执行时，“-e”参数没有被打开。
“file”

       如果<variable>;这个变量被定义在Makefile中。
“command line”

       如果<variable>;这个变量是被命令行定义的。
“override”

       如果<variable>;是被override指示符重新定义的。
“automatic”

       如果<variable>;是一个命令运行中的自动化变量。

$(shell [ -d ${BUILD_DIR} ] || mkdir -p ${BUILD_DIR}) //判断当前是否有个｛BUILD_DIR｝目录，如果没有执行mkdir -p

${BUILD_DIR}，创建｛BUILD_DIR｝目录,这个变量为空。

# ifneq ($(BUILD_DIR),)
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OBJTREE     := $(if $(BUILD_DIR),$(BUILD_DIR),$(CURDIR))

   SRCTREE     := $(CURDIR)

   TOPDIR      := $(SRCTREE)

LNDIR       := $(OBJTREE)

export TOPDIR SRCTREE OBJTREE

MKCONFIG    := $(SRCTREE)/mkconfig

export MKCONFIG

//最后 TOPDIR SRCTREE OBJTREE这三个变量一样，都是u-boot源码目录的根目录路径。然后设置MKCONFIG变量，代表一
个脚本，这个脚本以后用。
ifneq ($(OBJTREE),$(SRCTREE))

obj := $(OBJTREE)/

src := $(SRCTREE)/

else

obj :=

src :=

endif

export obj src

//由以上可知obj,src都为空

ifeq (include/config.mk,$(wildcard include/config.mk)) //通过wildcard文件名函数判断是否有include/config.mk文件,也就是执行
make smdk2410_config以后产生的文件.

$(wildcard pattern)

参数pattern是一个文件名格式，包含有通配符。函数wildcard的结果是一列和格式匹配且真实存在的文件的名称，文件名之间用
一个空格隔开。
比如当前目录下有文件1.c,2.c,1.h,2.h 则
c_src := $(wildcard *.c)

结果为：1.c 2.c

# load ARCH, BOARD, and CPU configuration

include $(obj)include/config.mk //包含这个文件.这里obj为空

export ARCH CPU BOARD VENDOR SOC //将include/config.mk里的变量申明给其他的Makefile使用.

# load other configuration

include $(TOPDIR)/config.mk //然后包含根目录的config.mk文件.

这些config.mk将在以后介绍

ifndef CROSS_COMPILE   //确实没有定义CROSS_COMPILE变量
ifeq ($(HOSTARCH),ppc) //HOSTARCH为i386,CROSS_COMPILE所以不为空
CROSS_COMPILE =

else

ifeq ($(ARCH),ppc)

CROSS_COMPILE = powerpc-linux-

endif

ifeq ($(ARCH),arm)

CROSS_COMPILE = arm-linux-

endif

......

首先没有定义CROSS_COMPILE,然后我们的HOSTARCH=i386,然后在判断ARCH,由于在前面已经指定ARCH=arm.所以
CROSS_COMPILE=arm-linux-.通过这个可以选择不同平台下的交叉编译器.

include $(TOPDIR)/config.mk //包含根目录下的config.mk文件，这个文件以后会分析到。

OBJS = cpu/$(CPU)/start.o

ifeq ($(CPU),i386)

OBJS += cpu/$(CPU)/start16.o

OBJS += cpu/$(CPU)/reset.o

endif ........

OBJS := $(addprefix $(obj),$(OBJS)) //将OBJS赋值给OBJ

$(addprefix src/,foo bar)

结果：src/foo src/bar

由于start.S是我们启动代码,所以首先编译.OBJ=cpu/arm920t/start.o

LIBS = lib_generic/libgeneric.a

LIBS += board/$(BOARDDIR)/lib$(BOARD).a

LIBS += cpu/$(CPU)/lib$(CPU).a

ifdef SOC

LIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).a

endif

LIBS += lib_$(ARCH)/lib$(ARCH).a

........

.PHONY : $(LIBS)

添加相应的静态库.
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__OBJS := $(subst $(obj),,$(OBJS)

__LIBS := $(subst $(obj),,$(LIBS)) $(subst $(obj),,$(LIBBOARD))

(1) $(subst from,to,text).

在文本“text”中使用to替换每一处的from。
比如：
$(subst ee,EE,feet on the street)

结果为：fEET on the strEET

ALL += $(obj)u-boot.srec $(obj)u-boot.bin $(obj)System.map $(U_BOOT_NAND) $(U_BOOT_ONENAND) //这个是最后要生成
的文件。$(U_BOOT_NAND) $(U_BOOT_ONENAND) 要添加相应的宏定义即可。
$(obj)u-boot.hex:   $(obj)u-boot

        $(OBJCOPY) ${OBJCFLAGS} -O ihex $< $@ 将u-boot ELF格式文件生成16进制格式的文件
$(obj)u-boot.srec: $(obj)u-boot

        $(OBJCOPY) ${OBJCFLAGS} -O srec $< $@ 将u-bootELF格式文件生成另一种S-Record格式的文件
unconfig:

    @rm -f $(obj)include/config.h $(obj)include/config.mk \

       $(obj)board/*/config.tmp $(obj)board/*/*/config.tmp \                  $(obj)include/autoconf.mk $(obj)include/autoconf.mk.dep

//删除以前的配置文件
以上是一些Makefile的大概信息，这里就说到这里。感兴趣的可以再深入了解。
//当我们执行make smdk2410_config的时候，要作的事情如下：
Makefile文件里面可以看出支持好多种体系结构，并有相应开发板的配置信息。这里主要研究的是ARM，开发板是smdk2410.

当我们执行：make smdk2410_config的时候，首先执行：
smdk2410_config :   unconfig

    @$(MKCONFIG) $(@:_config=) arm arm920t smdk2410 NULL s3c24x0

可以看出。现执行unconfig这个标签，以上可以看出主要是删除以前的配置信息。
然后执行$(MKCONFIG),也就是mkconfig脚本，并传递6个参数。
$(@:_config=)他的作用就是将smdk2410_config中的_config设置为空，结果为smdk2410.

这个命令也就是：./mkconfig smdk2410 arm arm920t smdk2410 NULL s3c24x0.

接下来看看mkconfig的源代码：
1.确定开发板的名称
APPEND=no   # Default: Create new config file

BOARD_NAME=""   # Name to print in make output

while [ $# -gt 0 ] ; do

    case "$1" in

    --) shift ; break ;;

    -a) shift ; APPEND=yes ;;

    -n) shift ; BOARD_NAME="${1%%_config}" ; shift ;;

    *) break ;;

    esac

done

由于参数里没有-- -a -n等参数，所以这个while没有执行。然后APPEND BOARD_NAME没有改变。
[ "${BOARD_NAME}" ] || BOARD_NAME="$1" //这个时候BOARD_NAME的值就等于"smdk2410".

[ $# -lt 4 ] && exit 1 //参数的个数小于4退出
[ $# -gt 6 ] && exit 1//参数的个数大于6退出
2.创建开发板相关的头文件的连接
//判断源代码目录和目标文件目录是否一样，由于直接我们都是在源代码目录编译，所以将执行else分之的代码。
if [ "$SRCTREE" != "$OBJTREE" ] ; then

    mkdir -p ${OBJTREE}/include

    mkdir -p ${OBJTREE}/include2

    cd ${OBJTREE}/include2

    rm -f asm

    ln -s ${SRCTREE}/include/asm-$2 asm

    LNPREFIX="../../include2/asm/"

    cd ../include

    rm -rf asm-$2

    rm -f asm

    mkdir asm-$2

    ln -s asm-$2 asm

else

    cd ./include

    rm -f asm

    ln -s asm-$2 asm

fi

//进入include目录，删除asm文件（这是上一次的配置时建立的连接文件），然后再次建立asm文件，并令它连接向asm-$2目
录，也就是asm-arm目录。
rm -f asm-$2/arch //删除asm-$2即asm-arm目录
if [ -z "$6" -o "$6" = "NULL" ] ; then //-z表示：[ -z STRING ] “STRING” 的长度为零则为真。
    ln -s ${LNPREFIX}arch-$3 asm-$2/arch

else

    ln -s ${LNPREFIX}arch-$6 asm-$2/arch

fi

//对于$6就是s3c24x0,不为空，也不是NULL，所以将执行else分之。LNPREFIX为空，所以连接的命令就是ln -s arch-$6

asm-$2/arch,也就是ln -s arch-s3c24x0 asm-arm/arch

if [ "$2" = "arm" ] ; then
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    rm -f asm-$2/proc

    ln -s ${LNPREFIX}proc-armv asm-$2/proc

fi

重新建立asm-arm/proc文件，并让它连接向proc-armv目录。
3.创建顶层Makefile包含的文件include/config.mk

echo "ARCH   = $2" > config.mk //“>”，“>>”如果有config.mk文件，并将ARCH输入到config.mk文件里。如果没有首先创建然后将
ARCH输入。
echo "CPU    = $3" >> config.mk

echo "BOARD = $4" >> config.mk

//将ARCH，CPU，BOARD变量重定向到include/config.mk文件里
[ "$5" ] && [ "$5" != "NULL" ] && echo "VENDOR = $5" >> config.mk

[ "$6" ] && [ "$6" != "NULL" ] && echo "SOC    = $6" >> config.mk

//将VENDOR，SOC变量重定向到include/config.mk文件里
这样include/config.mk文件里的内容如下：
ARCH   = arm

CPU    = arm920t

BOARD = smdk2410

SOC    = s3c24x0

#

# Create board specific header file

#

if [ "$APPEND" = "yes" ]    # Append to existing config file

then

    echo >> config.h

else

    > config.h      # Create new config file //创建include/config.h文件
fi

echo "/* Automatically generated - do not edit */" >>config.h

echo "#include <configs/$1.h>" >>config.h //将#include <configs/$1.h重定向到include/config.h文件里。
exit 0

这样include/config.h里的内容如下：
/* Automatically generated - do not edit */

#include <configs/smdk2410.h>

3.u-boot的编译和连接过程
首先在Makefile里包含了include/config.mk和根目录的config.mk两个文件。第一个主要是那6个参数。第二个config.mk文件的内
容如下：
BOARDDIR = $(BOARD)

endif

ifdef   BOARD

sinclude $(TOPDIR)/board/$(BOARDDIR)/config.mk # include board specific rules

endif //包含board/smdk2410/config.mk，里面主要定义了TEXT_BASE=0x33f80000

........

LDSCRIPT := $(TOPDIR)/board/$(BOARDDIR)/u-boot.lds

。。。。
LDFLAGS += -Bstatic -T $(LDSCRIPT) $(PLATFORM_LDFLAGS)//加入连接文件为以后使用。LDFLAGS有“-T board/smdk2410

/u-boot.lds -Ttext 0x33f80000”字样。首先我们的u-boot.lds告诉我们的代码的分布状况，而 -Ttext 0x33f80000 告诉我们text段放
在0x33f80000.待会会讲到u-boot.lds的内容。对于OBJS，LIBS的每个成员，都将进入相应的子目录执行make命令。当所有的
OBJS，LIBS所表示的.o,.a文件生成后，就剩下最后的连接了，这对应Makefile的如下几行：
$(obj)u-boot.srec: $(obj)u-boot

        $(OBJCOPY) ${OBJCFLAGS} -O srec $< $@

$(obj)u-boot.bin:   $(obj)u-boot

        $(OBJCOPY) ${OBJCFLAGS} -O binary $< $@

$(obj)u-boot:       depend $(SUBDIRS) $(OBJS) $(LIBBOARD) $(LIBS) $(LDSCRIPT)

        UNDEF_SYM=`$(OBJDUMP) -x $(LIBBOARD) $(LIBS) | \

        sed -n -e 's/.*\($(SYM_PREFIX)__u_boot_cmd_.*\)/-u\1/p'|sort|uniq`;\

        cd $(LNDIR) && $(LD) $(LDFLAGS) $$UNDEF_SYM $(__OBJS) \

            --start-group $(__LIBS) --end-group $(PLATFORM_LIBS) \

            -Map u-boot.map -o u-boot

首先使用下面的语句连接得到ELF格式的u-boot.最后转化为二进制格式的u-boot.bin,S-Record格式的u-boot.srec。LDFLAGS确定
了连接的方式，其中“-T board/smdk2410/u-boot.lds -Ttext 0x33f80000”字样指定了程序的布局和地址。u-boot.lds的文件如下：
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")

/*OUTPUT_FORMAT("elf32-arm", "elf32-arm", "elf32-arm")*/

/*指定输出可执行文件是elf格式,32位ARM指令,小端*/

OUTPUT_ARCH(arm)

/*指定输出可执行文件的平台为ARM*/

ENTRY(_start)

/*指定输出可执行文件的起始代码段为_start*/

(.globl _start _start: b       start_code//cpu/arm920t/start.S)

SECTIONS

{

/*指定可执行image文件的全局入口点，通常这个地址都放在ROM(flash)0x0位置。必须使编译器知道这个地址，通常都是修改此
处来完成*/

    . = 0x00000000; /*;从0x0位置开始*/
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    . = ALIGN(4);/*代码以4字节对齐*/

    .text      :

    {

      cpu/arm920t/start.o   (.text) /*代码的第一个代码部分*/

      *(.text) /*其它代码部分*/

    }

    . = ALIGN(4);

    .rodata : { *(.rodata) } /*指定只读数据段*/

    . = ALIGN(4);

    .data : { *(.data) }/*指定读/写数据段*/

    . = ALIGN(4);

    .got : { *(.got) } /*指定got段, got段是uboot自定义的一个段, 非标准段*/

    . = .;

                                /*把__u_boot_cmd_start赋值为当前位置, 即起始位置*/

    __u_boot_cmd_start = .;

                                /*指定u_boot_cmd段, uboot把所有的uboot命令放在该段.*/

    .u_boot_cmd : { *(.u_boot_cmd) }

                                /*把__u_boot_cmd_end赋值为当前位置,即结束位置*/

    __u_boot_cmd_end = .;

    . = ALIGN(4);

    __bss_start = .;    /*把__bss_start赋值为当前位置,即bss段的开始位置*/

    .bss (NOLOAD) : { *(.bss) } /*指定bss段,告诉加载器不要加载这个段*/

    _end = .;                   /*把_end赋值为当前位置,即bss段的结束位置*/

｝
这样代码的都是以0x33f80000+0x0为基准开始，如果你从nandflash启动，测试前4K的代码的地址都是在0x0，那么4K的代码的
实现可以通过位置无关指令b来实现。b指令的程序不依赖代码存储的位置－即不管这条代码放在什么位置，B指令都可以跳转到
正确的位置。
bootloader,内核等程序刚开始运行时。他们所处的地址通常不等于运行地址，在程序的开头，先使用b,bl.mov等位置无关的指令
将代码从flash等设备中复制到内存的运行地址处，然后跳转到运行地址去执行。
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【推荐】50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库

【推荐】最懂中文的 H5 开源前端框架

最新IT新闻:

· 让机器像人类一样学习 Facebook开放相关代码
· 谷歌搜索整合票务信息 可直接购买演出门票
· 李丰：中国与美国创业企业看似相似 实则不同
· ASP.NET 5 Beta2 发布
· Airbnb负责人：分享经济是未来发展趋势
» 更多新闻...
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最新知识库文章:

· 关于请求被挂起页面加载缓慢问题的追查
· 小团队的技术管理
· 高效编程之欲擒故纵
· 互联网组织的未来：剖析GitHub员工的任性之源
· 内存数据库中的索引技术
» 更多知识库文章...

历史上的今天:

2011-04-02 firedebug调试Jquery

2011-04-02 jQuery 开发环境搭配(转)
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