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Abstract Machine learning is an important area of artificial intelligence. Since 1980s, huge success
has been achieved in terms of algorithms, theory, and applications. From 2006, a new machine
learning paradigm, named deep learning, has been popular in the research community, and has
become a huge wave of technology trend for big data and artificial intelligence. Deep learning
simulates the hierarchical structure of human brain, processing data from lower level to higher level,
and gradually composing more and more semantic concepts. In recent years, Google, Microsoft,
IBM, and Baidu have invested a lot of resources into the R&.D of deep learning, making significant
progresses on speech recognition, image understanding, natural language processing, and online
advertising. In terms of the contribution to real-world applications, deep learning is perhaps the most
successful progress made by the machine learning community in the last 10 years. In this article, we
will give a high-level overview about the past and current stage of deep learning, discuss the main

challenges, and share our views on the future development of deep learning.
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processing; online advertising
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