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 Definition of Machine Learning:

• Learning from experiences.

“A computer program is said to learn from experience E 

with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as 

measured by P, improves with experience E.”

- Tom Mitchell
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 “Classical” Machine Learning Tasks:

• Classification: 

 spam filter, face recognition, …

• Regression

 Hook’s law, Kepler’s law,…

• Ranking

 Search engine

• Probability (Distribution) Estimation
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 “Classical” Machine Learning Algorithms

• Classification

 SVM

 Boosting

 Random Forest

 Bagging

 (Deep) Neural Networks

• Regression

 Lasso

 Boosting
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Support Vector Machines (SVMs)

 SVM: the large margin classifier

 SVM: hinge loss minimization + regularization

22 ll /



Boosting

 Boosting: (implicit) large           margin classifier

 Boosting: exp loss minimization (+ regularization)
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 “Classical” Machine Learning Theories

• VC theory Capacity of the hypothesis space

• PAC-theory

• Margin theory                   Confidence

• Empirical Processes        Capacity

• PAC-Bayes theory           PAC in Bayes framework

• Regularization                  Capacity, smoothness
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ML theories: Quantification of 

Occam’s Razor

Force

Length

Hook’s law



 Comparison of “Classical” Machine Learning 

Theories

• Regularization: 

 Bayesian optimality

 Only asymptotic (convergence, rate, non-uniform)

• VC/PAC, Margin, PAC-Bayes,…

 Relative optimality (optimal in a hypothesis space)

 Non-asymptotic (finite sample bounds)
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 Limitations of the “Classical” ML

• Representation

 Euclidean representation for input.

 Simple representation for output.

 How to represent STRUCTURES in data?
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Chapter I: Representation
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 Probabilistic Graphical Models: What and Why

• PGMs: 

 A model for joint probability distribution over random 

variables.

 Represent dependencies and independencies between the 

random variables.

• Why is probability distribution important?

 Genes and diseases, and everything

• Why PGM was invented by computer scientist, why not 

the statisticians?
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 Two types of PGMs

• Directed graph: Bayesian Networks (BNs).

• Undirected graph: Markov Random Fields (MRFs)
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Bayesian Networks (BNs)
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 (Intuitively) How BNs Represent Joint pdfs:
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Example 1:

A CB

)|()|()()( BCPABPAPABCP 

Given B, C and A are independent

Note:     Dependency vs. Causality



 (Intuitively) How BNs Represent Joint pdfs:
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Example 2:

A

C

B

)|()|()()( ACPABPAPABCP 

Given A, B and C are independent



 (Intuitively) How BNs Represent Joint pdfs:
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Example 3:

A

C

B

)|()()()( BCAPCPBPABCP 

B and C are independent;

But given A, B and C are NOT independent



 (Intuitively) How BNs Represent Joint pdfs:
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Example 4:
A

C

B
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ABCDEFGP



E

D

F G



 Learning:

Find a factorization 

rule according to 

previous examples.

21

A

C

B

)|()|()|()|()|()()(

)(

EGPDFPCEPADPABCPBPAP

ABCDEFGP



E

D

F G

 Factorization:
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A

C

B

E

D

F G

BN must be DAG

The graph must be acyclic!



 Definition (Factorize according to a DAG):

A probability distribution P is said to be factorized 

according to a directed acyclic graph G if
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 Definition (Bayesian Network):

A Bayesian network is a pair (P, G) of a 

probability distribution and a DAG, where P is 

factorized according to G, and all the “local” 

conditional probability distributions are given.
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 Given the factorization, which variables are 

independent of C, given C’s Parents A and B? 
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 Question: Let C be a node (random variable) in a 

BN. Which nodes (random variables) are 

independent of C, given C’s Parents? 
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 Theorem (Local Markov property for BN):

For any node C (random variable) in a BN, all 

nodes that are not descendents of C are 

independent of C, given C’s parents.



Sparse vs. Dense
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VS

 What is the joint pdf of the right BN?

 Is there any independence in the right BN?



 Question: Given a BN=(P, G), can you determine, 

for three arbitrary sets of random variables X={…}, 

Y={…}, and Z={…}, whether the following 

conditional independency hold?
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 Definition (active trail in BN)

Let x, y be two nodes and Z be a set of nodes. A 

path between x and y are said to be an active trial 

given Z, if the followings are true:

1) Let                                           be the path, then m 

or one of its descendants is not in Z. That is, 

whenever there is a “v-structure” in the path, the 

middle node or one of its descendants is in Z;

2) No other node along the path is in Z.
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 Definition (D-separation in BN)

Let X, Y, Z be three sets of nodes. X and Y are 

said to be D-separated by Z if for every node x in 

X and every y in Y, and every path between x and 

y, the path is not an active trial given Z.

 Theorem (Informal)

The independencies in a BN are exactly those 

characterized by D-separation.
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 Theorem 

For any BN (P,G), and arbitrary sets of nodes X, 

Y, Z. If X and Y are D-separated by Z in G, then
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P(Y | Z) P(X | Z)  P(X,Y | Z) 



 Theorem

For any DAG G, and any sets of nodes X, Y, Z. If 

X and Y are not D-separated by Z in G, then there 

must exist a probability distribution P which 

factorize according to G, but 
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P(Y | Z) P(X | Z)  P(X,Y | Z) 
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 Is there a BN that has precisely these independencies? 

 Not every distribution can be represented by a BN

satisfying exactly all the independencies!

The Representation Limit of BN



 To sum up:

• BN represents joint probability distributions that 

can factorize according to:

• The local independencies in BN are 

characterized by parents and non-descendants.

• The global independencies in BN are 

characterized by D-separation.
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Markov Random Fields (MRF)
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 How MRFs Represent Joint pdfs:
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A

C

B

factors

Partition function



 How MRFs Represent Joint pdfs:
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A

C

B

D

 Factors correspond to maximal cliques.

 The joint distribution is the product of all 

factors normalized by the partition function.



 Formal Definition (MRFs):

A Markov network is a pair (P, G), where G is an 

undirected graph and P factorizes according to G, 

i.e., P has the form
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where each      is a (maximal) clique in G. iC



 The independence in MRF:

40

A

C

B

Easy to see:



 Question: Given a MRF=(P, G), can you 

determine, for three arbitrary sets of random 

variables X={…}, Y={…}, and Z={…}, whether the 

following conditional independency hold?

41



 Definition (Separation)

Let X, Y, Z be three sets of nodes in an undirected 

graph G. X and Y are said to be separated by Z if 

for every node x in X and every y in Y, and every 

path between x and y, there is a node in the path 

that belongs to Z.

 Theorem (Informal)

All independencies in MRF are characterized by 

separation.
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 Theorem 

For any MRF (P,G), and arbitrary sets of nodes X, 

Y, Z. If X and Y are separated by Z in G, then
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P(Y | Z) P(X | Z)  P(X,Y | Z) 



 Theorem

For any undirected graph G, and any sets of 

nodes X, Y, Z. If X and Y are not separated by Z in 

G, then there must exist a probability distribution P 

which factorize according to G, but 
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P(Y | Z) P(X | Z)  P(X,Y | Z) 
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Chapter II: Learning
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 Learning Graphical Models:

• Definition of Bayesian Networks:

A Bayesian network is a pair (P, G) of a 

probability distribution and a DAG, where P is 

factorized according to G, and all the “local” 

conditional probability distributions are given.
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 Learning Bayesian Networks

• BN = Structure (graph) + Local conditional distribution

• Learning BN:

 How to learn distribution’s parameters from data

• Relatively simple, standard parameter estimation.

 How to learn structure from data

• Very difficult ! Why?
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 Structure learning:

• Structure (graph): edges between nodes.

• Is the structure of a BN learnable?

• Note: the edge A —> C exists or not equals to 

whether the following equation holds strictly.  
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 Useful structure learning methods:

• Constraint-based structure learning.

 Using hypothesis test to obtain independencies.

 Construct the graph.

• Score-based structure learning: Penalizing 

“dense” graph

 Likelihood scores

 BIC

 MDL

 AIC
51



Open Problems

 Robust Learning of Structures?
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Chapter II: Inference
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 What is inference in GM

 The hardness of inference in GM

 Exact inference algorithms

 Approximate inference algorithms

 Future research directions
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What is inference in GM
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 Input: a graph and the local conditional 

distributions.

 Goal: two types of inference

• Conditional probability

• MAP inference
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The hardness of inference in 

GM
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 Exact inference in GM is hard

• Decision version of exact inference is NPC.

• Exact inference is #P complete.

 Approximate inference in GM is hard

• -approximate inference is NP-hard for every  
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 Thm.1: Decide                      is NP complete.

Proof: Reduction from 3SAT.

 Thm.2: Compute                 is #P complete.

Proof: Use above reduction from #3SAT. A 

Levin reduction, certificates are one-to-one.

 Thm.3: For every         , compute an   -

approximate of                 is NP-hard. 
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Proof:     is an   -approximation of                

means that  

Clearly, if one has an   -approximation of 

, one can solve the NPC problem  
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Remark: For absolute approximate it’s still NP-hard.



 Thm.4: Exact and approximate MAP 

inference are all hard.

 Conclusion: The worst-case complexity of 

the inferences, both exact and approximate 

are NP-hard.
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Exact Inference Algorithms
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 The relation between BN and MRF

• From BN to MRF (factors)
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 From BN to MRF (graphs)

 Moral graph （联姻图）

Delete the directions for edges;

Connecting the parents.
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 Exact inference algorithms:

• The variable elimination algorithm.

• Belief propagation: the sum-product algorithm.

• Belief update.

 Why study exact inference algorithms?

• Gain intuition and insight for developing useful 

approximate algorithms.
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 The variable elimination algorithm

query:

distribution:

solve:
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Variable elimination---dynamic programming
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 Message Passing: the SP algorithm

• Variable elimination induced clique tree

72
Running intersection property!

Family preserving property: factors scope



• General message passing from clique 
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• The Sum-Product belief propagation algorithm:

 Construct a clique tree that satisfies the family 

preserving and running intersection properties.

 Choose clique where the query variable lies in as the 

root.

 Message passing from the leaves.

 After all messages arrive at the root, sum over all 

other variables in the root clique other than the query 

variable.

74

Thm: The Sum-Product algorithm always gives 

the correct answer for any clique tree!



 What if we want to compute k queries?

• Message passing k times? 

• No! Message can be reused.

• For each edge in the clique tree, twice is 

enough, one for each direction (up-down)
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• After message passing on all edges in two 

directions, each clique has a belief (joint 

probability).

• Belief:

• The system must satisfy the calibration

property:
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• Why calibration holds?
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 Belief update algorithm:

• Message passing:

• Belief:

• So 
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• Belief update algorithm:

 Construct clique tree

 Initialize: 

 Update:
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• How to construct clique tree?

 Graph:

 Clique tree?

 The graph cannot have a 4-loop (or larger)!

 Solution: triangulation and chordal graph.

80

No!



• What if the graph is an Ising model, 

Triangulation and chordal graph induce clique 

trees that have large width and the 

computational complexity is very high.
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 Construction of Clique Trees:

• Variable Elimination;

• BN to Moral graph, then to chordal graph, then 

find all the maximum cliques, and then use the 

maximum spanning tree algorithm to construct 

the edges of the clique tree.

82



 Reflection of the Sum-Product Belief 

Propagation algorithm:

• The algorithm itself does require the clique tree 

has to be a “tree”.

• What if we construct a general “clique graph” 

instead of a “clique tree” and run the SP 

algorithm?

83

Clique tree

Cluster graph
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Ising Model Cluster Graph



 What’s the result if run Sum-Product belief 

propagation on the cluster graph?

85

Loops?

Convergence?

Correctness?

This is the “Loopy Belief Propagation” algorithm!
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 Approximate inference methods:

• Variational Methods.

 (Loopy) belief propagation.

 Mean field method.

• Sampling based methods.

 Metropolis-Hastings

 Gibbs Sampling

 Importance Sampling

88



Variational Methods

89



 (Loopy) belief propagation:

90

Cluster graph



• Loopy belief propagation: just let the belief 

propagates.

• On clique trees, belief propagation converges 

after propagating on all edges (two directions).

• For general cluster graphs, it is not guaranteed 

to converge. Even if it converges, it can 

converge to a wrong answer.
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 Variational explanation of the (loopy) belief 

propagation:

• Exact inference

Proposition: The following optimization 

problem gives the same result as exact 

inference: 

Find a set of beliefs to minimize the Helmholtz 

free energy (or equivalently the relative entropy) 

to the factored distribution on clique trees under 

the constraints of calibration (local agreement).
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• The fixed point characterization of the solution 

of the optimization problem:
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• Approximate inference

Find a set of beliefs to minimize the factored 

free energy to the factored distribution on 

cluster graphs under the constraints of 

calibration.

• The fixed point characterization of the solution 

of this optimization problem is the (loopy) belief 

propagation formula.
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 Mean field method:

• Using first order approximation of the target 

distribution:

• The fixed point equation and updating rule have 

simple forms.
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Sampling Based Methods
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 Sampling-based (Monte Carlo) algorithms:

• Idea: Using sample based frequency to 

approximate the probability.

• Probability is Expectation:

• Expectation (of a function) can be approximated 

by sample average:

97
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 Monte Carlo is useful in many problems:

• High dimensional numerical integration.

 How to generate the sample when the target 

probability distribution is difficult to compute?

 Markov Chain Monte Carlo (MCMC)

• Key idea :Generate data by Markov chain, 

whose stationary distribution is the target pdf.
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 A brief review of finite state Markov chains:

• Reducible vs. Irreducible

• Periodic vs. Aperiodic

• Ergodic: no matter which initial state is, the 

process will converge to a unique stationary 

distribution.
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• Regular MC: 1) for every pair of states x, x’, the 

prob. that x will reach x’ in k steps for some finite k 

is positive; 2) for every state x, there is positive 

prob. that x will stay in x in the next step.  

• Theorem (sufficient condition for ergodic MC):

If a finite state MC is regular, then it is ergodic.

100

Easy to understand via the graph view



 Regular Markov chains are good for our 

purpose.

 We run the Markov chain, and wait for it 

converges to the stationary distribution, then 

the data can be used for approximate 

calculation.

 But, how long will it take for the MC to 

converge?   
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Gibbs Sampling

102



 Gibbs Sampling

• One of the simplest sampling algorithm.

• Assume for                           ,                     is 

easy to sample.

• Easy to implement for Graphical Models.

• Proposed by Geman & Geman (TPAMI, 1984).
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 Gibbs sampling algorithm

• Goal: draw a sequence of examples                , 

when            ,            , where     is the target 

distribution;

• Algorithm:

 Draw from some initial distribution

 For 

• 1.

• 2.   For each 

 Sample        according to 

 Return 
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 Why Gibbs sampling is easy for PGM?

• Sample 
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• Generally, for both Bayesian networks and 

Markov networks, the conditional probability for 

Gibbs sampling involves only factors that the 

query random variable lives in.

• Trivially generalize to the case where there is 

evidence

 Draw a sequence of examples where the target 

distribution is 
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• Theorem:

The Gibbs sampling process has a unique 

stationary distribution      (or                 )

• Disadvantages of Gibbs sampling for PGMs:

 Slow convergence to stationary distribution.
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Metropolis-Hastings Algorithm
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 For Gibbs sampling, we assume that it is 

easy to generate a sample from                . 

But sometimes, this is difficult.

 More generally, for a target distribution    , it 

may be very difficult to generate sample 

directly according to    , does MCMC help?

 The idea of Metropolis-Hastings:

• Using a proposal distribution            : a 

transition model.
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 An important result for Markov chain:

• Detailed Balance (Reversible Markov chain):

Definition: A finite state MC with transition 

probability matrix T is said to be reversible if 

there exists a unique distribution P such that for 

all x, x’

The above equation is called detailed balance.

• Reversible: for any sequence                 , the 

probability that it occurs in the process is the 

same as the probability that                    occurs.
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• Theorem: 

If the transition matrix T defines a regular 

Markov chain, and T satisfies the detailed 

balance w.r.p. to P, then P is the unique 

stationary distribution of the Markov chain T.
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 Metropolis-Hastings algorithm:

• Goal: draw a sequence of examples                , 

when            ,            , where     is the target 

distribution.

• Algorithm:

 Let                be a proposal transition model.

 Define the transition matrix of a Markov chain as:

 Generate                        according to the MC of     .  
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 Proposition:

For any target distribution   , and any proposal 

transition model            , the Markov chain 

defined by     in the Metropolis-Hastings 

algorithm satisfies the detailed balance w.r.p.   .

Thus if the Markov chain defined by     is 

regular,      is the unique stationary distribution.
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Convergence
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 Mixing time for MCMC:

• What we need is the stationary distribution of 

the Markov chain, but how long does it take to 

converge --- mixing time (burn in).

• Gibbs sampling sometimes has very slow 

convergence.

• Metropolis-Hastings’s convergence depends on 

the proposal distribution. 
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 Theory for the convergence for MCMC:

• For a Markov chain, the largest eigenvalue of 

the transition matrix T is 1; the gap between the 

largest and the second largest (in absolute 

value) eigenvalue determines the mixing time.

 A main challenge for PGM:

• Design MCMC algorithms that: 1) efficiently 

implementable for PGMs; 2) mixing time is not 

too long.
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Some Thoughts and 

Open Problems

117



 Inference is NP-hard, what shall we do?

• Develop practical algorithms. #P complete is a 

worst case result.

• To solve the inference problem, we are in a 

situation very similar to solving TSP (NP-hard):
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TSP: Find the shortest 

path such that each vertex 

is visited exactly once.



• TSP (decision) is NP-complete.

• Euclidean TSP is NP-hard.

• Approximate TSP is NP-hard.
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Arora proved (Gödel prize, 2010) : 

Euclidean TSP + approximation  

polynomial approximation scheme



 Can we find a reasonable class of graphical 

models such that (approximate) inference has 

polynomial time algorithm?
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 联系方式

• Email: wanglw@cis.pku.edu.cn

• 个人主页：
http://www.cis.pku.edu.cn/faculty/vision/wangliwei/
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Thanks!
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