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Outline

= A brief overview of Machine Learning

= Graphical Models

* Representation
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= Definition of Machine Learning:

* Learning from experiences.

“A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”

- Tom Mitchell

¢ -
R——ind R | i d=empyr=g 1o e et EF iy S

_...,_,_....JL--..."'__L_....,’;;::;::‘_":L; RSN W PRGNS AN S, G DS SR 16



) RS [ m._l---;f | "_[ S
Ny e . .-

“Classical” Machine Learning Tasks:

* Classification: f:R" >{-11}

= spam filter, face recognition,

* Regression f:R" >R

= Hook’s law, Kepler's law,...
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‘V,. * Ranking f:R" >R

= Search engine

\‘ bab'“ty (Distribution) Estimation
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“Classical” Machine Learning Algorithms

* Classification
= SVM
= Boosting
= Random Forest
= Bagging
= (Deep) Neural Networks

- * Regression

e

- Lasso
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Support Vector Machines (SVM;.)' |

= SVM: the large |, /1, margin classifier
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Boosting

= Boosting: (implicit) large 1, /1, margin classifier

= Boosting: exp loss minimization (+ regularization)
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“Classical” Machine Learning Theories

* VC theory Capacity of the hypothesis space
 PAC-theory
* Margin theory Confidence
» Empirical Processes Capacity
-~ * PAC-Bayes theory PAC in Bayes framework
(;;: Regularization Capacity, smoothness
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ML theories: Quantification of
Occam’s Razor

. Hook’s law
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= Comparison of “Classical” Machine Learning
Theories

* Regqularization:

= Bayesian optimality
= Only asymptotic (convergence, rate, non-uniform)

. * VC/PAC, Margin, PAC-Bayes,...

/f * Relative optimality (optimal in a hypothesis space)
o N Non-asymptotic (finite sample bounds)
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= Limitations of the “Classical” ML

* Representation
= Euclidean representation for input.

= Simple representation for output.

- How to represent STRUCTURES In data?
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Outline

= A brief overview of Machine Learning

= Graphical Models
» Representation

eninference
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= Probabilistic Graphical Models: What and Why

e PGMs:

= A model for joint probability distribution over random
variables.

= Represent dependencies and independencies between the
random variables.

« Why is probability distribution important?
* = Genes and diseases, and everything

f,’;ft’ Why PGM was invented by computer scientist, why not
| theﬁtatlst|0|ans?
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= Two types of PGMs
« Directed graph: Bayesian Networks (BNSs).

« Undirected graph: Markov Random Fields (MRFs)
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Bayesian Networks (BNs)
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(Intuitively) How BNs Represent Joint pdfs:

/'a&“, '

Example 1:

Ca)——(e ) ——(c)

: T 13
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(Intumvely) How BNs Represent Joint pdfs

Example 2:

SRR

/R R R

P(ABC)=P(A)P(B|AP(C|A)
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= (Intuitively) How BNs Represent Joint pdfs:

Example 4: @ G

4 “ \

BN

P(A)P B)P(C | AB)P(D | A)P(E |C)P(F | D)P(G | E)
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- = L_JL_,L_JL«_ ;__“L_... ';_;;L:;L_;L.,L_J_AL_&L“ ;I;,.__.;.’_ P L; r‘_
P(ABCDEFG) -
=P(A)P(B)P(C|AB)P(D|AP(E|C)P(F |D)P(G|E)

= Learning: @
Find a factorization / \
(D)

rule according to
previous examples.
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P(X,,...,X,) = HP[XHP{I(X?:))
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The graph must be acyclic!



= Definition (Factorize according to a DAG):

A probabillity distribution P is said to be factorized
according to a directed acyclic graph G if

l P(Xq,....X HP (X;|Pa(X;))
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= Definition (Bayesian Network):

A Bayesian network is a pair (P, G) of a
probability distribution and a DAG, where P Is
factorized according to G, and all the “local”
conditional probability distributions are given.

n)—HPX |Pa(X;))
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- leen the factorlzatlon which varlables are
independent of C, given C’s Parents A and B?

SN

@ (e

@ (e )—(6)
BCDEFG )

)P(B)P(C | AB)P(D|A)P(E|C)P(F |D)P(G|E)
D, F
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= Question: Let C be a node (random variable) in a
BN. Which nodes (random variables) are
independent of C, given C’s Parents?

= Theorem (Local Markov property for BN):

For any node C (random variable) in a BN, all
° nodes that are not descendents of C are
_ independent of C, given C’s parents.
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= Question: Given a BN=(P, G), can you determine,
for three arbitrary sets of random variables X={...},
Y={...}, and Z={...}, whether the following

conditional independency hold?
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= Definition (active trail in BN)

Let X, y be two nodes and Z be a set of nodes. A
path between x and y are said to be an active trial

given Z, If the followings are true:

1) Letx=..oxX—>m«y<..<Yy be the path, then m
or one of its descendants is not in Z. That Is,
whenever there is a “v-structure” in the path, the

. middle node or one of its descendants is in Z;

~ No other node along the path is in Z.
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= Definition (D-separation in BN)

Let X, Y, Z be three sets of nodes. X and Y are
said to be D-separated by Z if for every node X In
X and every y in Y, and every path between x and
y, the path is not an active trial given Z.

#- Theorem (Informal)
4gﬂ"he Independencies in a BN are exactly those
\\ghaf'mtenzed by D-separation.
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= Theorem f -

For any BN (P,G), and arbitrary sets of nodes X,
Y, Z. lf Xand Y are D-separated by Z in G, then
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= Theorem

For any DAG G, and any sets of nodes X, Y, Z. If
X and Y are not D-separated by Z in G, then there
must exist a probability distribution P which

- factorize according to G, but
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The Representation Limit of BN

» Is there a BN that has precisely these independ,.e‘rlcies?

ALB|C,D;  CLD|A,B:
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= To sum up:

* BN represents joint probability distributions that
can factorize according to.

P(Xl_,,,, sXﬂ,) — HP[X1|P{1(X?:D

« The local independencies in BN are
- characterized by parents and non-descendants.

global independencies in BN are
acterized by D-separation.
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Markov Random Fields (MRF)
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= How MRFs Represent Joint pdfs:

// factors

P(ABC) = —61(AB)#3(AC).
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(o)

P(ABCD) = Eml(ﬁBff‘}mg(B{“’B}

e e iﬁ'tfgiistribution is the product of all
aIized by the partition function.
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= Formal Definition (MRFSs):

A Markov network is a pair (P, G), where G Is an
undirected graph and P factorizes according to G,
l.e., P has the form

P(Xy1res X) =5 P(Xye X,) = [T 41(C)
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= The independence in MRF:

P(ABC) = —61(AB)(AC). o

P(BC|A) = P(B|A)P(C|A)



= Question: Given a MRF=(P, G), can you
determine, for three arbitrary sets of random
variables X={...}, Y={...}, and Z={...}, whether the
following conditional independency hold?
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= Definition (Separation)
Let X, Y, Z be three sets of nodes in an undirected
graph G. X and Y are said to be separated by Z if
for every node x in X and every y in Y, and every
path between x and y, there is a node In the path
that belongs to Z.

4" Theorem (Informal)

'f’;ﬁﬂ mdependenues iIn MRF are characterized by

\
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= Theorem f -

For any MRF (P,G), and arbitrary sets of nodes X,
Y, Z. If Xand Y are separated by Z in G, then
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= Theorem

For any undirected graph G, and any sets of

nodes X, Y, Z. If Xand Y are not separated by Z in

G, then there must exist a probability distribution P
~ which factorize according to G, but

PXXY|2 = P(X|2 P(Y| 2
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= Graphical Models

» Representation




Chapter II: Learning
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= Learning Graphical Models:

 Definition of Bayesian Networks:

A Bayesian network is a pair (P, G) of a
probability distribution and a DAG, where P Is
factorized according to G, and all the “local”
conditional probability distributions are given.
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= Learning Bayesian Networks
BN = Structure (graph) + Local conditional distribution
« Learning BN:

= How to learn distribution’s parameters from data

* Relatively simple, standard parameter estimation.

= How to learn structure from data

* Very difficult ! Why?

,
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= Structure learning:

 Structure (graph): edges between nodes.
* |s the structure of a BN learnable?

(A)——Ce)——()

* Note: the edge A —> C exists or not equals to
whether the following equation holds strictly.

‘\ ;,4‘.‘”'

e oy e Mo
- A

P(AC |B)=P(A|B)P(C|B)
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= Useful structure learning methods:

» Constraint-based structure learning.
= Using hypothesis test to obtain independencies.
= Construct the graph.

» Score-based structure learning: Penalizing
“dense” graph

= Likelihood scores

= "B
.( Q/ C
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= Graphical Models

» Representation




Chapter lI: Inference
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= What iIs inference in GM

= The hardness of inference in GM
= Exact inference algorithms

= Approximate inference algorithms

. Future research directions
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What Is inference in GM
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= Input: a graph and the local conditional
distributions.

= Goal: two types of inference
» Conditional probability

Pr(X =x|E=¢)




The hardness of inference In
GM
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= Exact inference in GM Is hard
* Decision version of exact inference i1s NPC.
» Exact inference is #P complete.

= Approximate inference in GM is hard
« g-approximate inference is NP-hard for every &

.- L. _4[_ ‘s...a[...._.AL-. _.4 Rt —— L L-_V‘-JL.‘—-—: ‘—,-r .———c‘ -
- T r e e
—

HASHEEE L .L....- AEEEE | CHRESETNS | R WOR] | TIRRRERIRESOIRET | SURAWECLE WSS



O D D e e - -

s AN ...L = ...,[Z_”..JL. uw';':.{.'.;m ..L % J... [ ...,..Z;;_ [:. .....E._ ..( JL Bl ..L......['"._]L;."."' S
. -—— Y ’ —— L . g i 3 - - - ‘--y e

= Thm.1: Decide Pr(X X)>01Is NP complete
Proof: Reduction from 3SAT.

= Thm.2: Compute Pr(X =Xx) Is #P complete.

Proof: Use above reduction from #3SAT. A
Levin reduction, certificates are one-to-one.

~  Thm.3: For every ¢ >0, compute an -
N iapprommate of Pr(X = x) is NP-hard.




Proof p IS ang-approxmatlon of Pr(X x)
means that
Pr(X = x)
1+ ¢
Clearly, If one has an ¢-approximation of

Pr(X =X) , one can solve the NPC problem
. % P»r(X =X) > 0.

< p<Pr(X =x)(1+¢&)




= Thm.4: Exact and approximate MAP
Inference are all hard.

= Conclusion: The worst-case complexity of
the inferences, both exact and approximate
»are NP-hard.




Exact Inference Algorithms
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= The relation between BN and MRF
 From BN to MRF (factors)

BN: P(Xy,...,X,) = || P(X:i|Pa(X;))

15 1
”‘MRF: P(X,,.... X)) :z P(X,,.... X,) ZZH¢‘ (C)

RF: 4 (X;, Pa(X;)) = P(X; [ Pa(X;))
%=
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* From BN to MRF (graphs)

= Moral graph CEEGHED

Delete the directions for edges;

Connecting the parents.




= Exact inference algorithms:
* The variable elimination algorithm.
» Belief propagation: the sum-product algorithm.
 Belief update.

= Why study exact inference algorithms?

iy Gain intuition and insight for developing useful
' .’;;approximate algorithms.
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= The variable elimination algorithm (B
query: pr(A=a|H =h) L P

distribution: & &
P(A)P(B)P(C|B)P(D| A)P(E|C,D)P(F|AP(H | E,F)P(G|E)

~ solve:

67
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Varlable ellmlnatlon---dynamlc programmmg

P(a,h) = ZP(a)P(b)P(C|b)P(d |a)P(e|c,d)P(f |a)P(h]|e, f)P(g|e)

b,c,d,e f,g

=P(@)> P(©)> P(c|b)> P(d|a)d> P(e|c,d)> P(f|a)> P(gle)P(h]e, f)
A A A :

“(az ¢(b) ¢cb) ¢(d.,a) decd) ¢(f.a) ¢g.e) é(h,e, )

'3;' B L




#(2)) $(0) ) #(c,b)D 4(d,a) ge,c,d)d ¢(f,a)(he, F)D 4(g,e)

Step 1:  8(e)=) ¢(g.e) =1 (9.€)

—> #(@) (b)) ¢(c.b)d ¢(d.a)) se.c,d)) ¢(f,ap(he f)S(e)
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Step 3:  d(a,c,d) =) g(ec,d)5(a,e) G dsk -

— #(2)) (b)) 4(c,b)) ¢(d,a)s(a,c,d)

5(a,c)=) ¢(d,a)s(a,c,d) (a,c,d)
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— #(2))_ #(b)) ¢4(c,b)s(a,c)

Step 5:  8(a,b)=> ¢(c,b)s(a,c) =

—— #(a)) #(b)5(a,b)

5(a) = 4(b)s(a,b)
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= Message Passing: the SP algorithm
- Variable elimination induced clique tree
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W A

Variable elimination as message passing on
clique tree:

i
« General message passing from cquueCi to C,—

5i->j = z 4 Hé‘k—ﬁ

Ci\S;  keNb(i)\{j}
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* The Sum-Product belief propagation algorithm:

= Construct a cligue tree that satisfies the family
preserving and running intersection properties.

= Choose cligue where the guery variable lies in as the
root.

= Message passing from the leaves.

= After all messages arrive at the root, sum over all
& other variables in the root clique other than the query

/ variable.
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* Message passing k times?
* No! Message can be reused. 4

* For each edge in the clique tree, twice s
enough, one for each direction (up-down)




« After message passing on all edges in two
directions, each cligue has a belief (joint
probabillity).

° Be“ef ﬂ =Y, H k—i

keNb(i)

~* The system must satisfy the calibration
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 Why calibration holds? ‘ “‘ “§

B = |S(C) < P(C)) Beliefs are margi

probabilities o

Zﬂi = ZIBJ = IS(Sij) ot P(Sij)

e

-~ Agree on the marginal probability of S;; !
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= Belief update algorithm:
* Message passing:

5= 1o N

Ci\S;  keNb(i)\{j}

- Belief: g =y, | |5,

keNb(i)
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 Belief update algorithm:
= Construct cliqgue tree

= [nitialize: B =y M, -1

“ Update: t,« > f3
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* How to construct cligue tree?
= Graph:

= Clique tree? “AB)—BD) No!

| f _* The graph cannot have a 4-loop (or larger)!
= Solution: triangulation and chordal graph.




* What if the graph is an Ising model,

Triangulation and chordal graph induce cli
trees that have large width and the
computational complexity is very high.




= Construction of Clique Trees:

* Variable Elimination;

* BN to Moral graph, then to chordal graph, then
find all the maximum cliques, and then use the
maximum spanning tree algorithm to construct

the edges of the clique tree.

— 5

N
A

M‘ u}x. .>

- .

- _J‘.-_J[_ ‘w[‘_‘L _‘“ _,._____,.L L~_.. JL..—.A '-.-._.

| vy s waa

1200 L e L. A JL e ....,s-- ...;L. e RO




= Reflection of the Sum-Product Belief
Propagation algorithm:

* The algorithm itself does require the clique tree
has to be a “tree”.

* What if we construct a general “clique graph”
iInstead of a “clique tree” and run the SP
algorithm?

A—(B) @—‘?‘9 Clique tree

=
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= What's the result if run Sum-Product beli'e\f‘
propagation on the cluster graph?

Loops?

Convergence?

- Correctness?

IS the ‘Loopy Belief Propagation” algorithm!
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= What is inference in GM
= The hardness of inference in GM
= Exact inference algorithms

= Approximate inference algorithms




= Approximate inference methods:

 Variational Methods.
= (Loopy) belief propagation.

= Mean field method.

« Sampling based methods.

= Metropolis-Hastings

a Gibbs Sampling
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= (Loopy) belief propagation:
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* Loopy belief propagation: just let the belief
propagates.

* On cligue trees, belief propagation converges
after propagating on all edges (two directions).

* For general cluster graphs, it is not guaranteed
to converge. Even if it converges, it can
. converge to a wrong answer.

| gomn | o | s o J.....L......‘L. = _L- i

r—--

t i
St | aaamienino | s

.L“..[......- oo ..-...-JL.. o .._..L-.,....,.JL. PSSR L D e g



...Z.:..}'L_.. ...,L-’ ) S—— ..JL."..".,::( = ..C i L-.. P ._...C. ._...JL‘..:_..C' ]L-ﬁ. ..L......u ._.u_. JE--[ -J[’
! . ' : 4 l

= Variational explanation of the (loopy) belief
propagation:

 Exact Inference

Proposition: The following optimization
problem gives the same result as exact
Inference:

y Find a set of beliefs to minimize the Helmholtz

i " / free energy (or equivalently the relative entropy)

| . to the factored distribution on clique trees under
ﬂ:}@ constralnts of calibration (local agreement).
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» The fixed point characterization of the sm
of the optimization problem:

Z Wi H Koi

C\S;  keNb()\{j}
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* Approximate inference

Find a set of beliefs to minimize the factored
free energy to the factored distribution on
cluster graphs under the constraints of
calibration.

* The fixed point characterization of the solution
 of this optimization problem is the (loopy) belief
S ;;'f.f.propagation formula.
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= Mean field method:

 Using first order approximation of the target
distribution:

P(Xl,...,Xn):HP(Xi)

* The fixed point equation and updating rule have
~_simple forms.
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= Sampling-based (Monte Carlo) algorithms:

* |dea: Using sample based frequency to
approximate the probability.

* Probability is Expectation:
P(X =x)=E[I(X =X)]

« Expectation (of a function) can be approximated
LB by sample average:

ELFOO1== 3 1(X)

";-_:fjxixl,"',x i|d~P
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= Monte Carlo Is useful in many problems:

* High dimensional numerical integration.

= How to generate the sample when the target
probability distribution is difficult to compute?

= Markov Chain Monte Carlo (MCMC)

-+ Key idea :Generate data by Markov chain,

_ {%&:whose stationary distribution is the target pdf.
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= A brief review of finite state Markov chains:
 Reducible vs. Irreducible
 Periodic vs. Aperiodic

* Ergodic: no matter which initial state Is, the
process will converge to a unique stationary
dlstrlbutlon
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« Regular MC: 1) for every pair of states x, X, the
prob. that x will reach x’ in k steps for some finite k
IS positive; 2) for every state X, there Is positive
prob. that x will stay in x in the next step.

Easy to understand via the graph view
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= Regular Markov chains are good for our
purpose.

= We run the Markov chain, and wait for it
converges to the stationary distribution, then
the data can be used for approximate
calculation.

}ut how long will it take for the MC to
Qou\\/erge’P
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Gibbs Sampling



= Gibbs Sampling

* One of the simplest sampling algorithm.

« Assume for X =(X*,---, X%, P(X'| X ) is
easy to sample.

» Easy to implement for Graphical Models.

Proposed by Geman & Geman (TPAMI, 1984).




= Gibbs sampling algorithm

* Goal: draw a sequence of examplesX;, X, -
when n—o, x ~P, Where P is the target

distribution; x, —(xi, x) eR®

» Algorithm:
= Draw from some initial distribution X, ~ P,
“Fort=1---,n

* 1. X <X
* 2. Foreach jel[d]
« Sample X/ accordingto P(X | X ™)
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NS )

o\

Ve .

s s S PN G S B NIRRT SO (SR U S s smen cemn

re

venn e

T

RS L =31 L. SRS JL N ....,'.-- Sl | FIFRRERIRESONRT | QUSRI | U -......4[.*..4 9 oDy | CASRRL | GRIED | Geel S




-
qJ—..—A-L

' ‘-‘L—-—.A ;-4&........[ ...o;..... :r

= Why Gibbs sampling Is easy for PGM?

« Sample P(F|a,...e,g,h) B L

P(F|a,...e,g,h) (& (&)

_ P(F,a,...e,g,h) O B
Y P(f,a,..eg,h) & &

__P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(F |a)P(g|e)P(h|e,F)
o 2 P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f [a)P(g|e)P(h]e, )

P(F |a)P(h|e, F)
(T [a)P(h|e, T)
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* Generally, for both Bayesian networks and
Markov networks, the conditional probability for
Gibbs sampling involves only factors that the
guery random variable lives in.

 Trivially generalize to the case where there is
evidence

. : » Draw a sequence of examples where the target
- distribution is P(-| E =€)
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* Theorem:

The Gibbs sampling process has a unique
stationary distribution P (orP(-|E=¢e))

» Disadvantages of Gibbs sampling for PGMs:

= Slow convergence to stationary distribution.
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Metropolis-Hastings Algorithm
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= For Gibbs sampling, we assume that it Is
easy to generate a sample from P(X!| X )
But sometimes, this is difficult.

= More generally, for a target distribution P , It
may be very difficult to generate sample
directly according to P, does MCMC help?

- The idea of Metropolis-Hastings:

-

i -
- * Using a proposal distributionT (x'| x) : a
~ transition model.
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= An important result for Markov chain:

 Detailed Balance (Reversible Markov chain):

Definition: A finite state MC with transition
probability matrix T is said to be reversible if
there exists a unique distribution P such that for
all x, X’

PO)T (X' x) = P(X")T (x| x").

The above equation is called detailed balance.

-/ ,,"'

\ »f. = Reversible: for any sequence X, X, -+, X, , the
]a(pbablllty that it occurs in the process IS the
as the probability that X, X,_; -+, X, OCccurs.
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* Theorem:

If the transition matrix T defines a regular
Markov chain, and T satisfies the detailed
balance w.r.p. to P, then P is the unique
stationary distribution of the Markov chain T.
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= Metropolis-Hastings algorithm:

» Goal: draw a sequence of examplesx;, X, -+, X
when n— oo, X ~P, where P Is the target
distribution.

» Algorithm:
= Let T (X'| X) be a proposal transition model.

= Define the transition matrix of a Markov chain as:

L POOT(X]x)

POOT (X[ x)

T (X'| X) =min| 1,

X, X, --+, X according to the MC of T .
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= Proposition:
For any target distributionP , and any proposal
transition model T (X'| X) , the Markov chain

defined by T in the Metropolis-Hastings
algorithm satisfies the detailed balance w.r.p.P.

Thus if the Markov chain defined by T Is
regular, P is the unique stationary distribution.
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Convergence
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= Mixing time for MCMC.:

* What we need is the stationary distribution of
the Markov chain, but how long does it take to
converge --- mixing time (burn in).

* Gibbs sampling sometimes has very slow
convergence.

- * Metropolis-Hastings’s convergence depends on
| é’ithe proposal distribution.
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Theory for the convergence for MCMC:

* For a Markov chain, the largest eigenvalue of
the transition matrix T is 1; the gap between the
largest and the second largest (in absolute
value) eigenvalue determines the mixing time.

A main challenge for PGM:

* Design MCMC algorithms that: 1) efficiently
Implementable for PGMSs; 2) mixing time is not

too long.
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Some Thoughts and

Open Problems
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= |Inference Is NP-hard, what shall we do?
» Develop practical algorithms. #P complete Is a
WOrst case result.

* To solve the inference problem, we are in a
situation very similar to solving TSP (NP-hard):

35

34

TSP: Find the shortest
path such that each vertex
IS visited exactly once.
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* TSP (decision) is NP-complete.
* Euclidean TSP is NP-hard.
* Approximate TSP is NP-hard.

Arora proved (Godel prize, 2010) .

. ..Euclldean TSP + approximation

e ’ —> polynomial approximation scheme
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= Can we find a reasonable class of graphical

models such that (approximate) inference has

polynomial time algorithm?
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« Email: wanglw@cis.pku.edu.cn

¢ /I\AEEﬁ
http.//www.cis.pku.edu.cn/faculty/vision/wangliwel/
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