

Machine Learning and Graphical Models

(Lecture I)

王立威

北京大学
信息科学技术学院

<http://www.cis.pku.edu.cn/faculty/vision/wangliwei/>

wanglw@cis.pku.edu.cn

Outline

- A brief overview of Machine Learning
- Graphical Models
 - Representation
 - Inference
 - Learning

■ Definition of Machine Learning:

- Learning from experiences.

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

- Tom Mitchell

■ “Classical” Machine Learning Tasks:

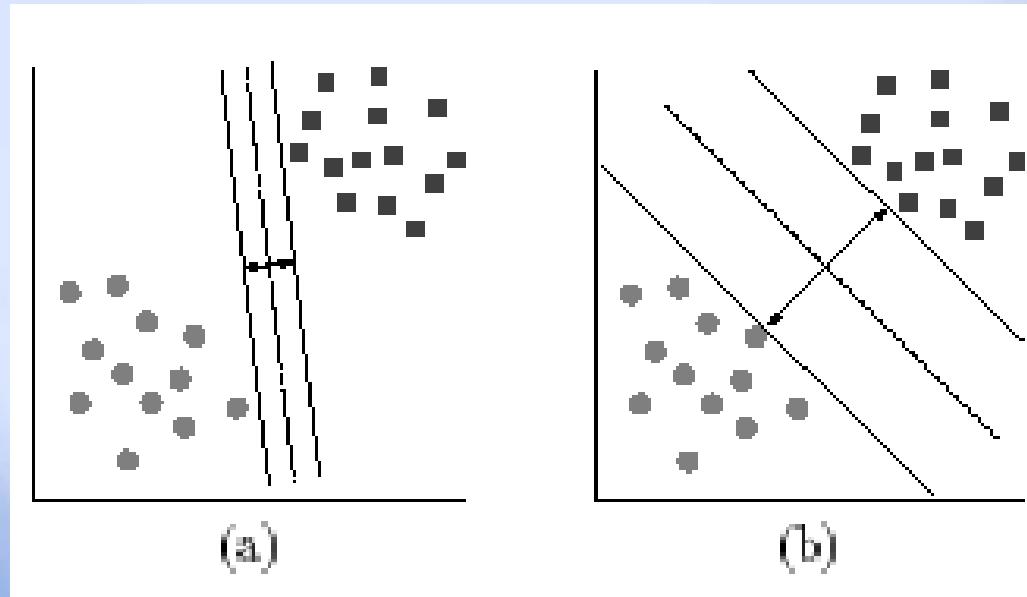
- Classification: $f : \mathbf{R}^n \rightarrow \{-1,1\}$
 - spam filter, face recognition, ...
- Regression $f : \mathbf{R}^n \rightarrow \mathbf{R}$
 - Hook's law, Kepler's law, ...
- Ranking $f : \mathbf{R}^n \rightarrow \mathbf{R}$
 - Search engine
- Probability (Distribution) Estimation

■ “Classical” Machine Learning Algorithms

- Classification
 - SVM
 - Boosting
 - Random Forest
 - Bagging
 - (Deep) Neural Networks
- Regression
 - Lasso
 - Boosting

Support Vector Machines (SVMs)

- SVM: the large l_2 / l_2 margin classifier



- SVM: hinge loss minimization + regularization

Boosting

- Boosting: (implicit) large l_1 / l_∞ margin classifier
- Boosting: exp loss minimization (+ regularization)

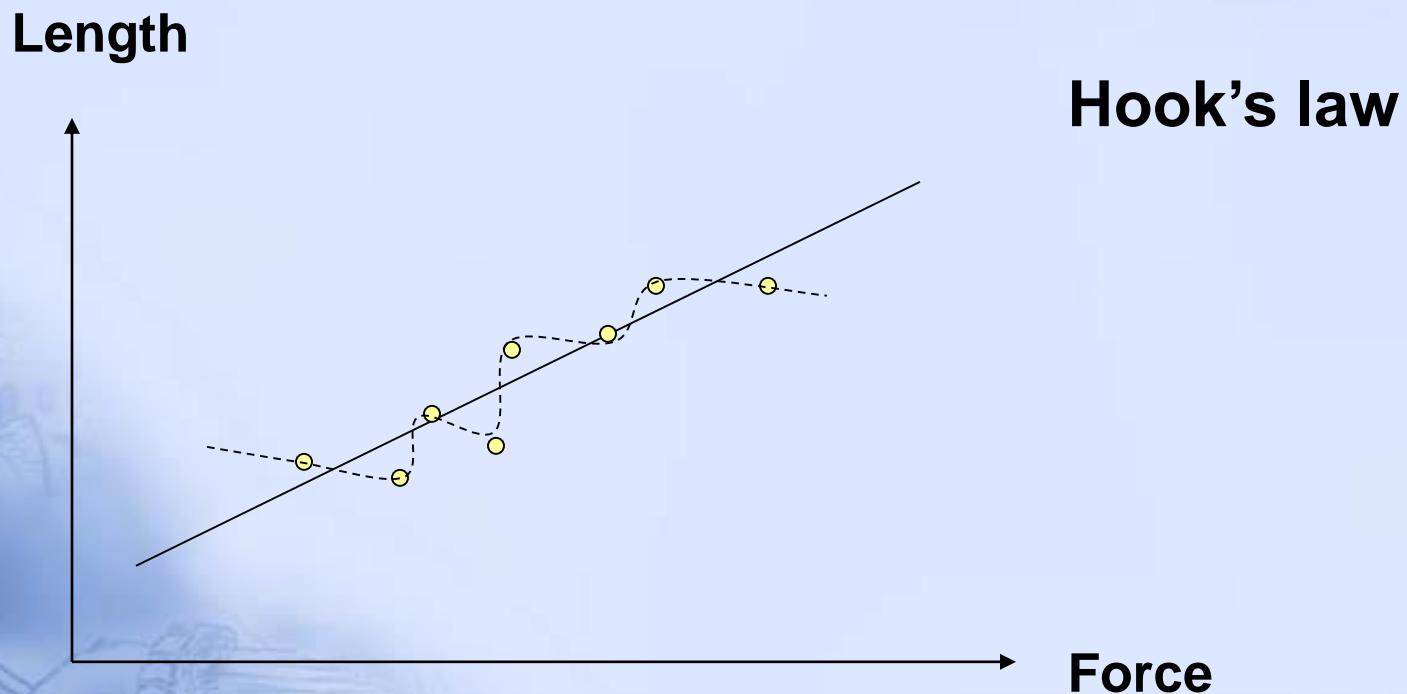
程序员最可信赖的求职帮手

■ “Classical” Machine Learning Theories

- VC theory Capacity of the hypothesis space
- PAC-theory
- Margin theory Confidence
- Empirical Processes Capacity
- PAC-Bayes theory PAC in Bayes framework
- Regularization Capacity, smoothness

程序员最可信赖的求职帮手

ML theories: Quantification of Occam's Razor



■ Comparison of “Classical” Machine Learning Theories

- Regularization:
 - Bayesian optimality
 - Only asymptotic (convergence, rate, non-uniform)
- VC/PAC, Margin, PAC-Bayes,...
 - Relative optimality (optimal in a hypothesis space)
 - Non-asymptotic (finite sample bounds)

- Limitations of the “Classical” ML
 - Representation
 - Euclidean representation for input.
 - Simple representation for output.
- How to represent STRUCTURES in data?

Outline

- A brief overview of Machine Learning
- Graphical Models
 - Representation
 - Inference
 - Learning

Chapter I: Representation

■ Probabilistic Graphical Models: What and Why

- PGMs:
 - A model for joint probability distribution over random variables.
 - Represent dependencies and independencies between the random variables.
- Why is probability distribution important?
 - Genes and diseases, and everything
- Why PGM was invented by computer scientist, why not the statisticians?

■ Two types of PGMs

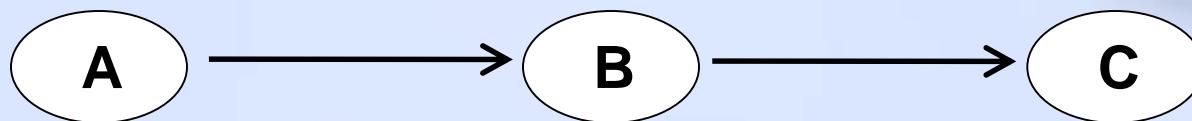
- Directed graph: Bayesian Networks (BNs).
- Undirected graph: Markov Random Fields (MRFs)

程序员最可信赖的求职帮手

Bayesian Networks (BNs)

■ (Intuitively) How BNs Represent Joint pdfs:

Example 1:



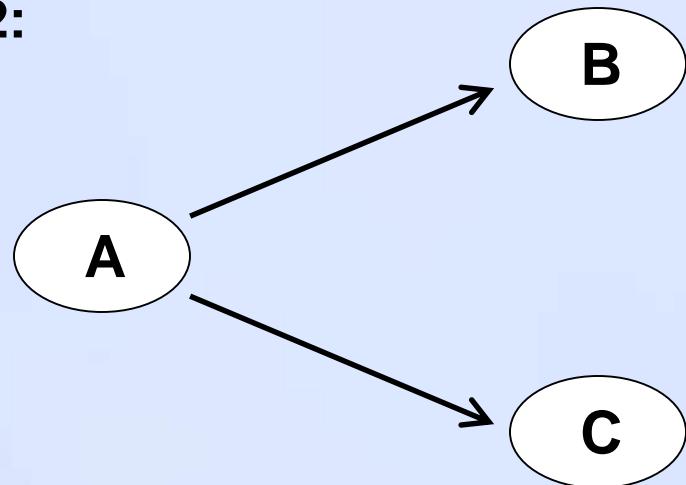
$$P(ABC) = P(A)P(B | A)P(C | B)$$

Given B, C and A are independent

Note: Dependency vs. Causality

■ (Intuitively) How BNs Represent Joint pdfs:

Example 2:

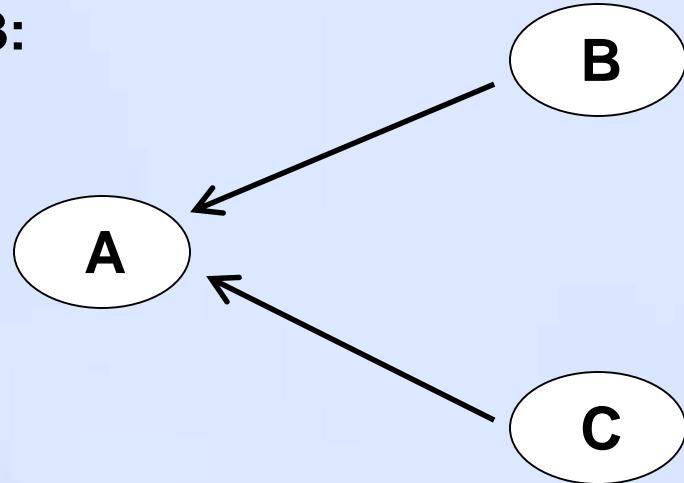


$$P(ABC) = P(A)P(B|A)P(C|A)$$

Given A, B and C are independent

■ (Intuitively) How BNs Represent Joint pdfs:

Example 3:



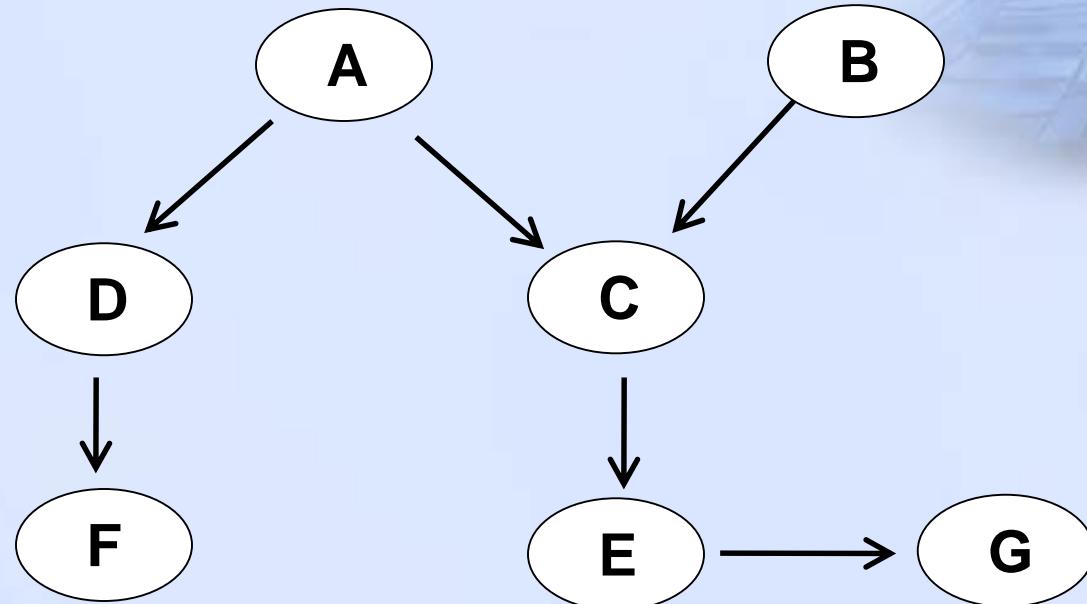
$$P(ABC) = P(B)P(C)P(A | BC)$$

B and C are independent;

But given A, B and C are **NOT** independent

■ (Intuitively) How BNs Represent Joint pdfs:

Example 4:



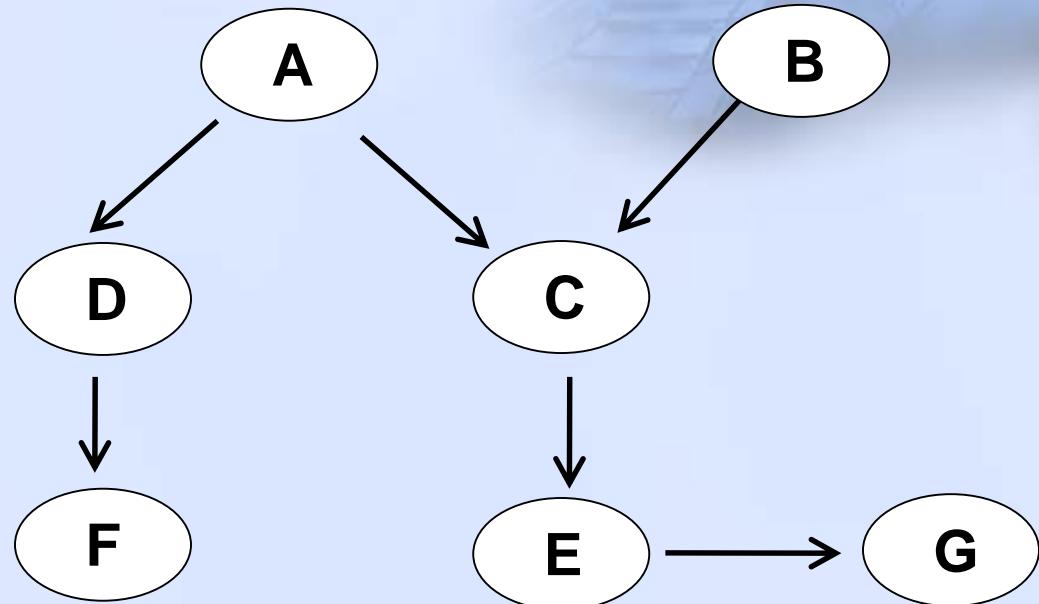
$$P(ABCDEFG)$$

$$= P(A)P(B)P(C | AB)P(D | A)P(E | C)P(F | D)P(G | E)$$

$$P(ABCDEFG)$$

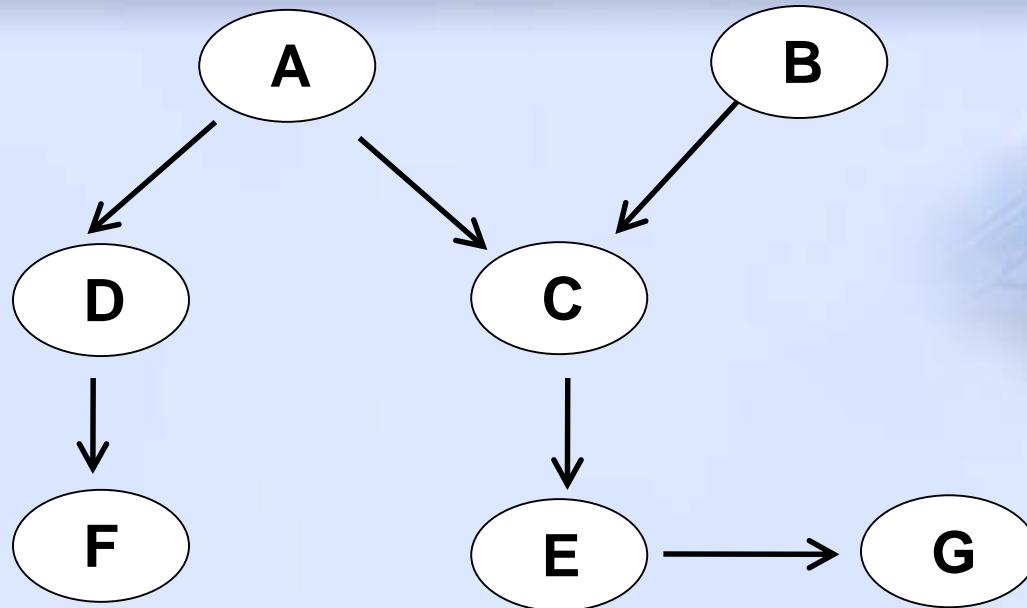
$$= P(A)P(B)P(C | AB)P(D | A)P(E | C)P(F | D)P(G | E)$$

- **Learning:**
Find a factorization rule according to previous examples.



- **Factorization:**

$$P(X_1, \dots, X_n) = \prod_i P(X_i | Pa(X_i))$$



$$P(X_1, \dots, X_n) = \prod_i P(X_i | Pa(X_i))$$

The graph must be **acyclic**!

BN must be **DAG**

■ Definition (Factorize according to a DAG):

A probability distribution P is said to be factorized according to a directed acyclic graph G if

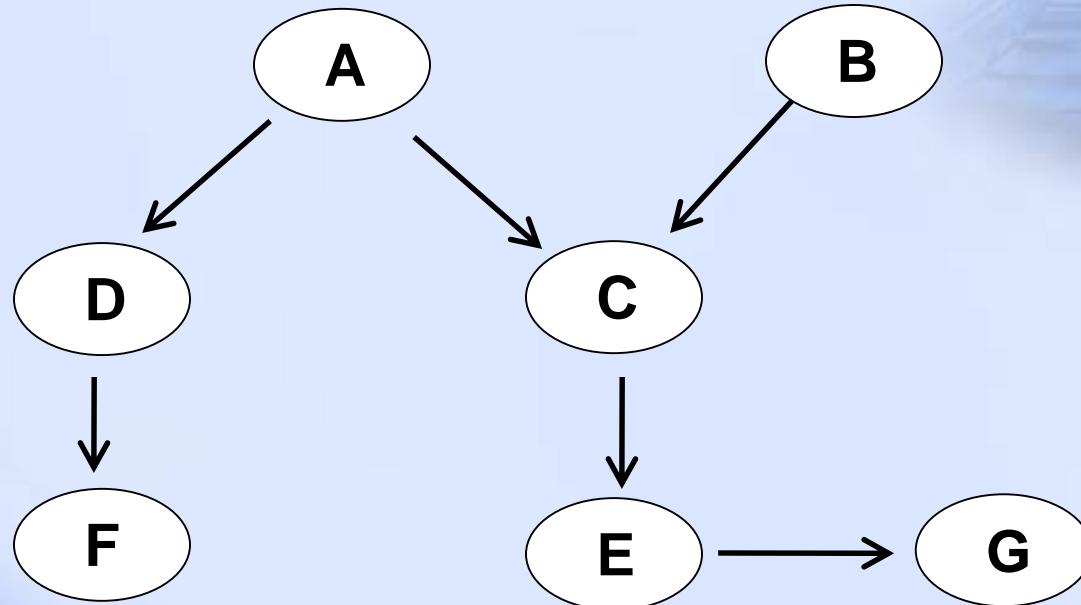
$$P(X_1, \dots, X_n) = \prod_i P(X_i | Pa(X_i))$$

■ Definition (Bayesian Network):

A Bayesian network is a pair (P, G) of a probability distribution and a DAG, where P is factorized according to G , and all the “local” conditional probability distributions are given.

$$P(X_1, \dots, X_n) = \prod_i P(X_i | Pa(X_i))$$

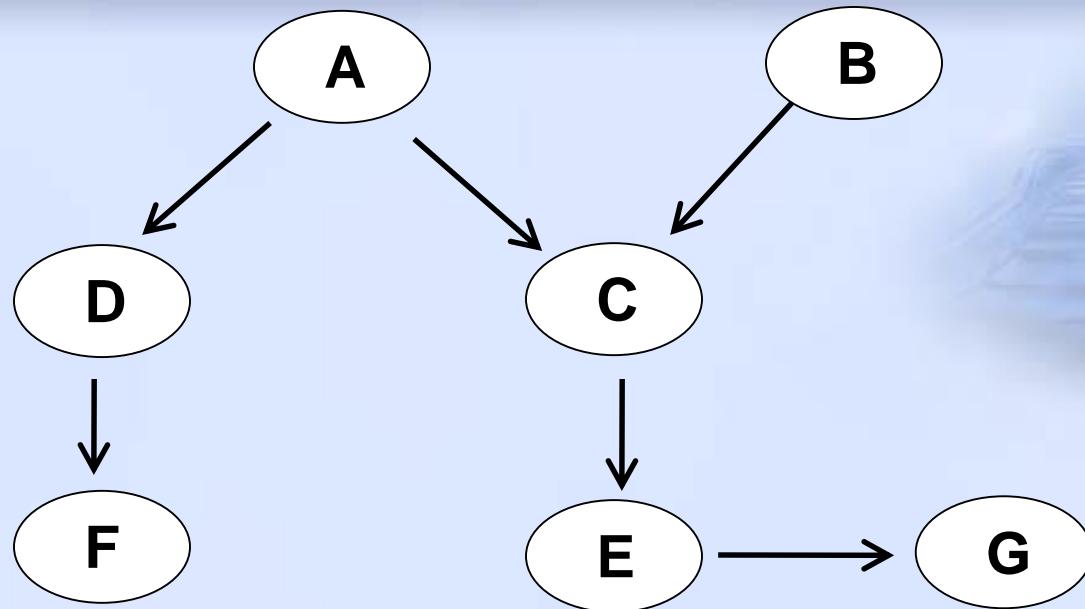
- Given the factorization, which variables are independent of C, given C's Parents A and B?



$$P(ABCDEFG)$$

$$= P(A)P(B)P(C | AB)P(D | A)P(E | C)P(F | D)P(G | E)$$

D, F



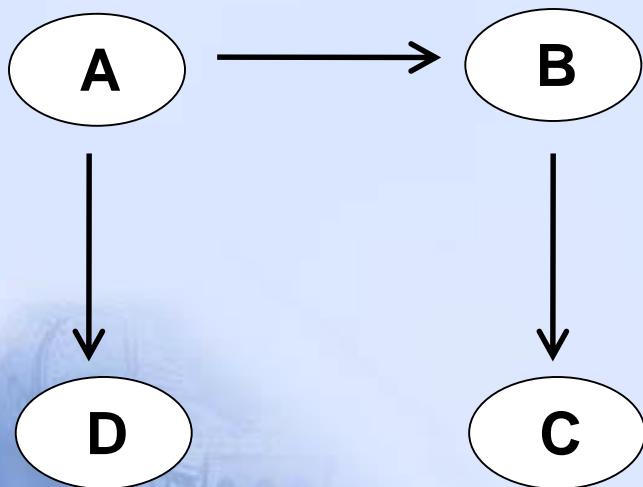
$$P(ABCDEFG) = P(A)P(B)P(C | AB)P(D | A)P(E | C)P(F | D)P(G | E)$$

$$P(CD | AB) = P(C | AB)P(D | AB)$$

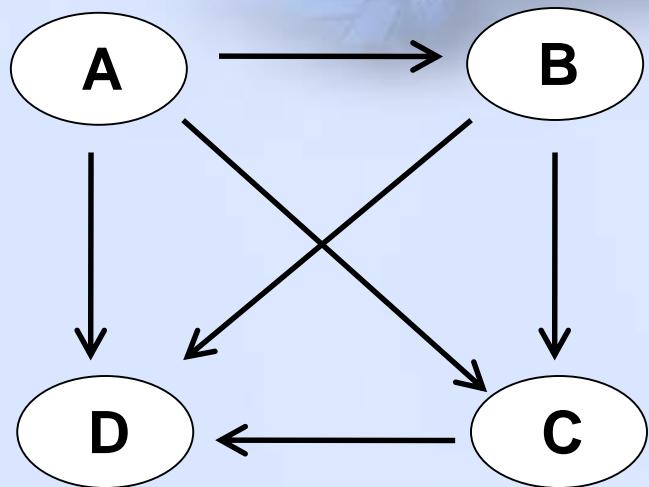
$$P(CF | AB) = P(C | AB)P(F | AB)$$

- Question: Let C be a node (random variable) in a BN. Which nodes (random variables) are independent of C , given C 's Parents?
- Theorem (**Local Markov property for BN**):
For any node C (random variable) in a BN, all nodes that are not descendants of C are independent of C , given C 's parents.

Sparse vs. Dense



vs



- What is the joint pdf of the right BN?
- Is there any independence in the right BN?

- Question: Given a BN=(P, G), can you determine, for three arbitrary sets of random variables $X=\{\dots\}$, $Y=\{\dots\}$, and $Z=\{\dots\}$, whether the following conditional independency hold?

$$X \perp\!\!\! \perp Y | Z$$

- Definition (**active trail in BN**)

Let x, y be two nodes and Z be a set of nodes. A path between x and y are said to be an active trial given Z , if the followings are true:

- 1) Let $x \Leftrightarrow \dots \Leftrightarrow x' \rightarrow m \leftarrow y' \Leftrightarrow \dots \Leftrightarrow y$ be the path, then m or one of its descendants is not in Z . That is, whenever there is a “**v-structure**” in the path, the middle node or one of its descendants is in Z ;
- 2) No other node along the path is in Z .

- **Definition (D-separation in BN)**

Let X, Y, Z be three sets of nodes. X and Y are said to be D-separated by Z if for every node x in X and every y in Y , and every path between x and y , the path is not an active trial given Z .

- **Theorem (Informal)**

The independencies in a BN are exactly those characterized by D-separation.

- Theorem

For any BN (P, G) , and arbitrary sets of nodes X, Y, Z . If X and Y are D-separated by Z in G , then

$$P(X, Y | Z) = P(X | Z) P(Y | Z)$$

■ Theorem

For any DAG G , and any sets of nodes X, Y, Z . If X and Y are not D-separated by Z in G , then there must exist a probability distribution P which factorize according to G , but

$$P(X, Y | Z) \neq P(X | Z) P(Y | Z)$$

The Representation Limit of BN

- Is there a BN that has precisely these independencies?

$$A \perp B | C, D; \quad C \perp D | A, B;$$

- Not every distribution can be represented by a BN satisfying exactly all the independencies!

■ To sum up:

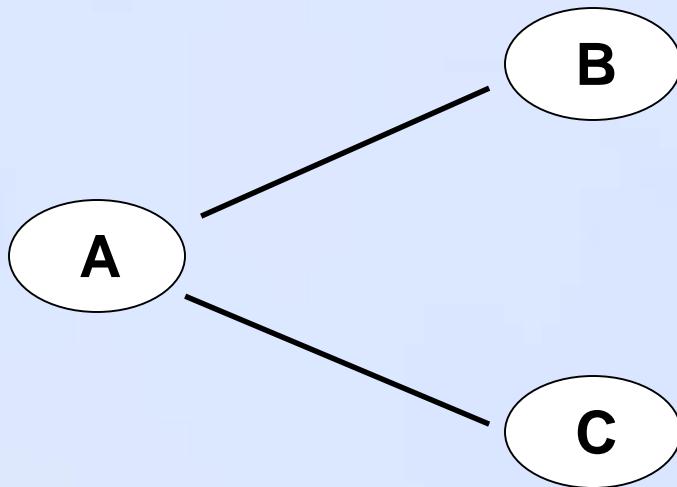
- BN represents joint probability distributions that can factorize according to:

$$P(X_1, \dots, X_n) = \prod_i P(X_i | Pa(X_i))$$

- The local independencies in BN are characterized by parents and non-descendants.
- The global independencies in BN are characterized by D-separation.

Markov Random Fields (MRF)

■ How MRFs Represent Joint pdfs:

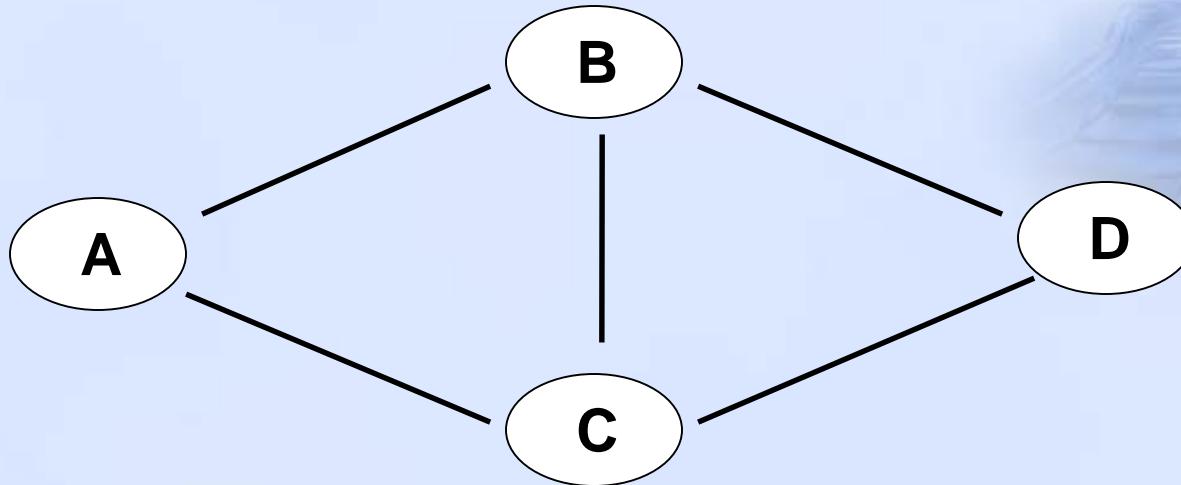


factors

$$P(ABC) = \frac{1}{Z} \phi_1(AB) \phi_2(AC).$$

Partition function

■ How MRFs Represent Joint pdfs:



$$P(ABCD) = \frac{1}{Z} \phi_1(ABC) \phi_2(BCD).$$

- Factors correspond to *maximal cliques*.
- The joint distribution is the product of all factors normalized by the partition function.

- Formal Definition (**MRFs**):

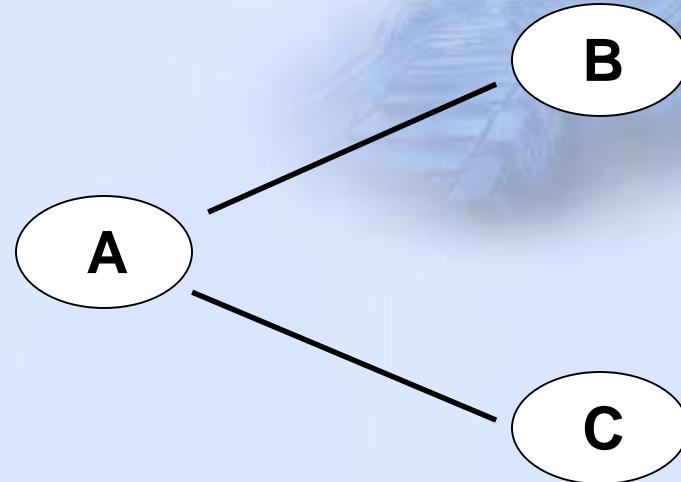
A Markov network is a pair (P, G) , where G is an undirected graph and P factorizes according to G , i.e., P has the form

$$P(X_1, \dots, X_n) = \frac{1}{Z} \tilde{P}(X_1, \dots, X_n) = \frac{1}{Z} \prod_i \phi_i(C_i)$$

where each C_i is a (maximal) clique in G .

■ The independence in MRF:

$$P(ABC) = \frac{1}{Z} \phi_1(AB) \phi_2(AC).$$



Easy to see:

$$B \perp C | A$$

$$P(BC|A) = P(B|A)P(C|A)$$

- Question: Given a MRF=(P, G), can you determine, for three arbitrary sets of random variables $X=\{\dots\}$, $Y=\{\dots\}$, and $Z=\{\dots\}$, whether the following conditional independency hold?

$$X \perp\!\!\!\perp Y | Z$$

- Definition (Separation)

Let X, Y, Z be three sets of nodes in an undirected graph G . X and Y are said to be separated by Z if for every node x in X and every y in Y , and every path between x and y , there is a node in the path that belongs to Z .

- Theorem (Informal)

All independencies in MRF are characterized by separation.

- Theorem

For any MRF (P, G) , and arbitrary sets of nodes X , Y , Z . If X and Y are separated by Z in G , then

$$P(X, Y | Z) = P(X | Z) P(Y | Z)$$

■ Theorem

For any undirected graph G , and any sets of nodes X, Y, Z . If X and Y are not separated by Z in G , then there must exist a probability distribution P which factorize according to G , but

$$P(X, Y | Z) \neq P(X | Z) P(Y | Z)$$

Machine Learning and Graphical Models

(Lecture II)

王立威

北京大学
信息科学技术学院

<http://www.cis.pku.edu.cn/faculty/vision/wangliwei/>

wanglw@cis.pku.edu.cn

Outline

- A brief overview of Machine Learning
- Graphical Models
 - Representation
 - Learning
 - Inference

Chapter II: Learning

■ Learning Graphical Models:

- Definition of **Bayesian Networks**:

A Bayesian network is a pair (P, G) of a probability distribution and a DAG, where P is factorized according to G , and all the “local” conditional probability distributions are given.

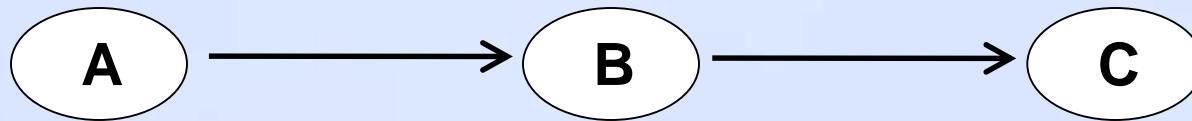
$$P(X_1, \dots, X_n) = \prod_i P(X_i | Pa(X_i))$$

■ Learning Bayesian Networks

- BN = **Structure** (graph) + **Local conditional distribution**
- Learning BN:
 - How to learn distribution's **parameters** from data
 - Relatively simple, standard parameter estimation.
 - How to learn **structure** from data
 - Very difficult ! Why?

■ Structure learning:

- Structure (graph): **edges** between nodes.
- Is the structure of a BN learnable?



- Note: the edge $A \rightarrow C$ exists or not equals to whether the following equation holds strictly.

$$P(AC | B) = P(A | B)P(C | B)$$

■ Useful structure learning methods:

- Constraint-based structure learning.
 - Using hypothesis test to obtain independencies.
 - Construct the graph.
- Score-based structure learning: Penalizing “dense” graph
 - Likelihood scores
 - BIC
 - MDL
 - AIC

Open Problems

- Robust Learning of Structures?

Outline

- A brief overview of Machine Learning
- Graphical Models
 - Representation
 - Learning
 - Inference

Chapter II: Inference

- What is inference in GM
- The hardness of inference in GM
- Exact inference algorithms
- Approximate inference algorithms
- Future research directions

What is inference in GM

- Input: a graph and the local conditional distributions.
- Goal: two types of inference
 - Conditional probability

$$\Pr(X = x \mid E = e)$$

- MAP inference

$$\max_x \Pr(X = x \mid E = e)$$

The hardness of inference in GM

- Exact inference in GM is hard
 - Decision version of exact inference is **NPC**.
 - Exact inference is **#P** complete.
- Approximate inference in GM is hard
 - ε -approximate inference is **NP-hard** for every ε

- Thm.1: Decide $\Pr(X = x) > 0$ is **NP** complete.
Proof: Reduction from 3SAT.
- Thm.2: Compute $\Pr(X = x)$ is **#P** complete.
Proof: Use above reduction from #3SAT. A Levin reduction, certificates are one-to-one.
- Thm.3: For every $\varepsilon > 0$, compute an ε -approximate of $\Pr(X = x)$ is **NP-hard**.

Proof: \hat{p} is an ε -approximation of $\Pr(X = x)$ means that

$$\frac{\Pr(X = x)}{1 + \varepsilon} \leq \hat{p} \leq \Pr(X = x)(1 + \varepsilon)$$

Clearly, if one has an ε -approximation of $\Pr(X = x)$, one can solve the **NPC** problem $\Pr(X = x) > 0$.

Remark: For absolute approximate it's still **NP-hard**.

- Thm.4: Exact and approximate MAP inference are all hard.
- **Conclusion:** The worst-case complexity of the inferences, both exact and approximate are **NP-hard**.

Exact Inference Algorithms

- The relation between BN and MRF
 - From BN to MRF (factors)

BN:

$$P(X_1, \dots, X_n) = \prod_i P(X_i | Pa(X_i))$$

MRF: $P(X_1, \dots, X_n) = \frac{1}{Z} \tilde{P}(X_1, \dots, X_n) = \frac{1}{Z} \prod_i \phi_i(C_i)$

BN --> MRF: $\phi_i(X_i, Pa(X_i)) = P(X_i | Pa(X_i))$

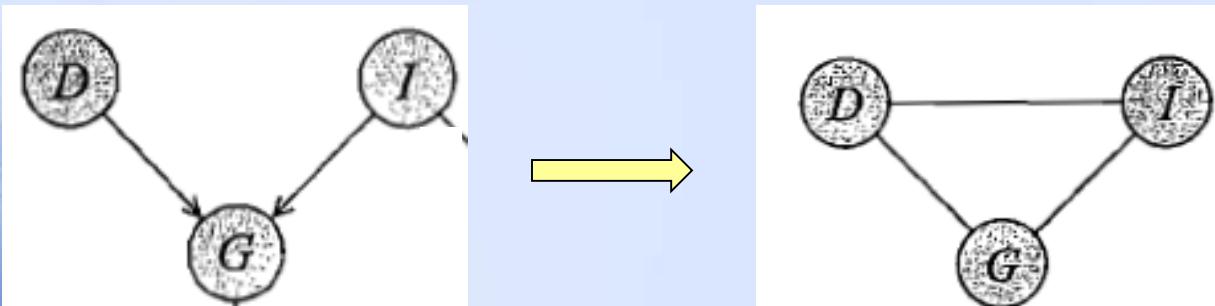
$$Z = 1$$

- From BN to MRF (graphs)

- Moral graph (联姻图)

Delete the directions for edges;

Connecting the parents.



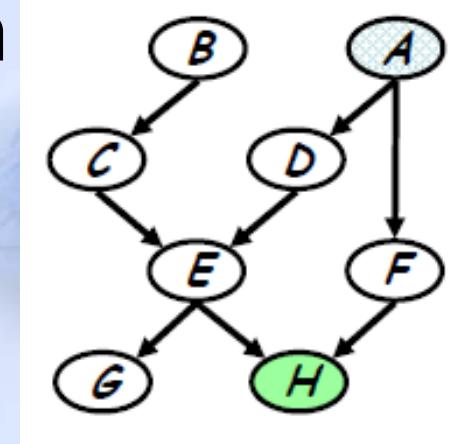
- Exact inference algorithms:
 - The variable elimination algorithm.
 - Belief propagation: the sum-product algorithm.
 - Belief update.
- Why study exact inference algorithms?
 - Gain intuition and insight for developing useful approximate algorithms.

■ The variable elimination algorithm

query: $\Pr(A = a \mid H = h)$

distribution:

$$P(A)P(B)P(C \mid B)P(D \mid A)P(E \mid C, D)P(F \mid A)P(H \mid E, F)P(G \mid E)$$



solve:

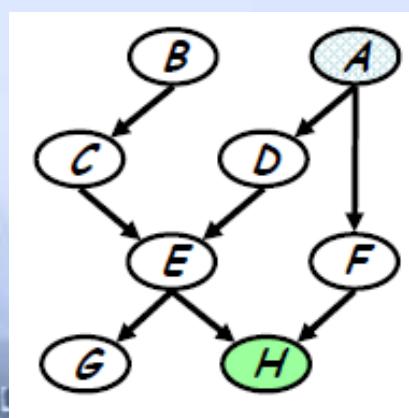
$$P(a, h)$$

$$= \sum_{b,c,d,e,f,g} P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(h \mid e, f)P(g \mid e)$$

Variable elimination---dynamic programming

$$\begin{aligned} P(a, h) &= \sum_{b,c,d,e,f,g} P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(h|e,f)P(g|e) \\ &= P(a) \sum_b P(b) \sum_c P(c|b) \sum_d P(d|a) \sum_e P(e|c,d) \sum_f P(f|a) \sum_g P(g|e) P(h|e,f) \end{aligned}$$

\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
 $\phi(a)$ $\phi(b)$ $\phi(c, b)$ $\phi(d, a)$ $\phi(e, c, d)$ $\phi(f, a)$ $\phi(g, e)$ $\phi(h, e, f)$



$$\phi(a) \sum_b \phi(b) \sum_c \phi(c, b) \sum_d \phi(d, a) \sum_e \phi(e, c, d) \sum_f \phi(f, a) \phi(h, e, f) \sum_g \phi(g, e)$$

Step 1: $\delta(e) = \sum_g \phi(g, e) = 1$ (g,e)

→ $\phi(a) \sum_b \phi(b) \sum_c \phi(c, b) \sum_d \phi(d, a) \sum_e \phi(e, c, d) \sum_f \phi(f, a) \phi(h, e, f) (\delta(e))$

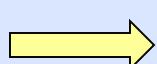
Step 2: $\delta(a, e) = \sum_f \phi(f, a) \phi(h, e, f) (\delta(e))$ (a,e,f)

→ $\phi(a) \sum_b \phi(b) \sum_c \phi(c, b) \sum_d \phi(d, a) \sum_e \phi(e, c, d) \delta(a, e)$



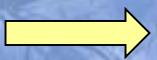
$$\phi(a) \sum_b \phi(b) \sum_c \phi(c, b) \sum_d \phi(d, a) \sum_e \phi(e, c, d) \delta(a, e)$$

Step 3: $\delta(a, c, d) = \sum_e \phi(e, c, d) \delta(a, e)$ (a,c,d,e)



$$\phi(a) \sum_b \phi(b) \sum_c \phi(c, b) \sum_d \phi(d, a) \delta(a, c, d)$$

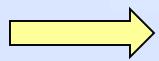
Step 4: $\delta(a, c) = \sum_d \phi(d, a) \delta(a, c, d)$ (a,c,d)



$$\phi(a) \sum_b \phi(b) \sum_c \phi(c, b) \delta(a, c)$$

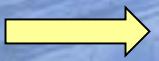
$$\phi(a) \sum_b \phi(b) \sum_c \phi(c, b) \delta(a, c)$$

Step 5: $\delta(a, b) = \sum_c \phi(c, b) \delta(a, c)$ (a,b,c)



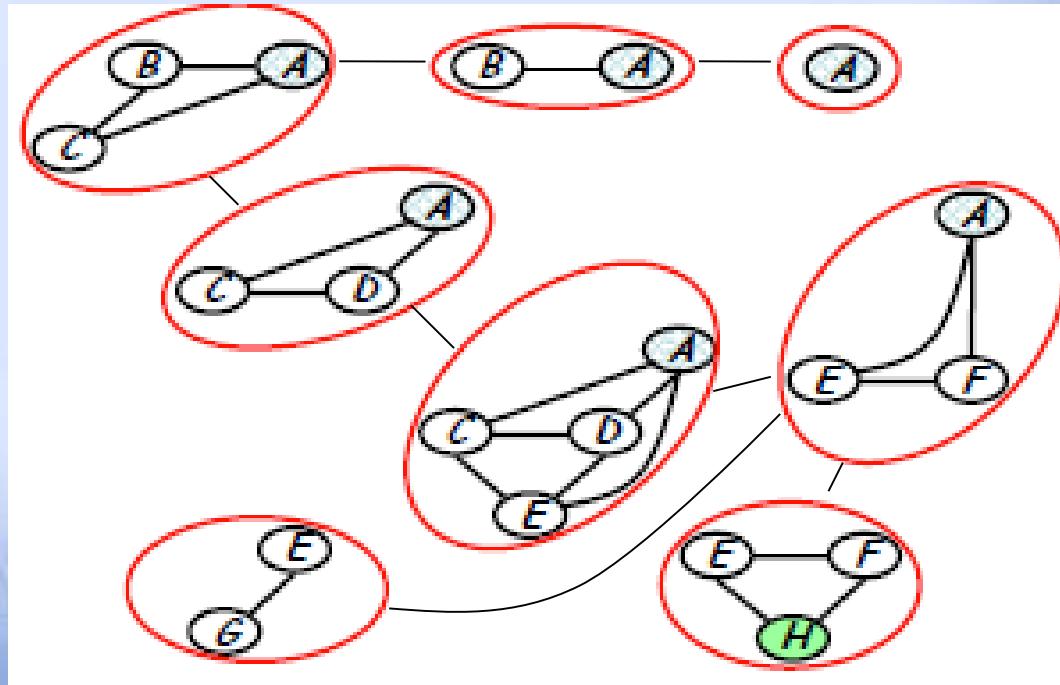
$$\phi(a) \sum_b \phi(b) \delta(a, b)$$

Step 6: $\delta(a) = \sum_b \phi(b) \delta(a, b)$ (a,b)



$$\phi(a) \delta(a)$$

- Message Passing: the SP algorithm
 - Variable elimination induced clique tree



Family preserving property: factors scope

Running intersection property!

Variable elimination as message passing on clique tree:

- General message passing from clique C_i to C_j

$$\delta_{i \rightarrow j} = \sum_{C_i \setminus S_{ij}} \psi_i \prod_{k \in Nb(i) \setminus \{j\}} \delta_{k \rightarrow i}$$

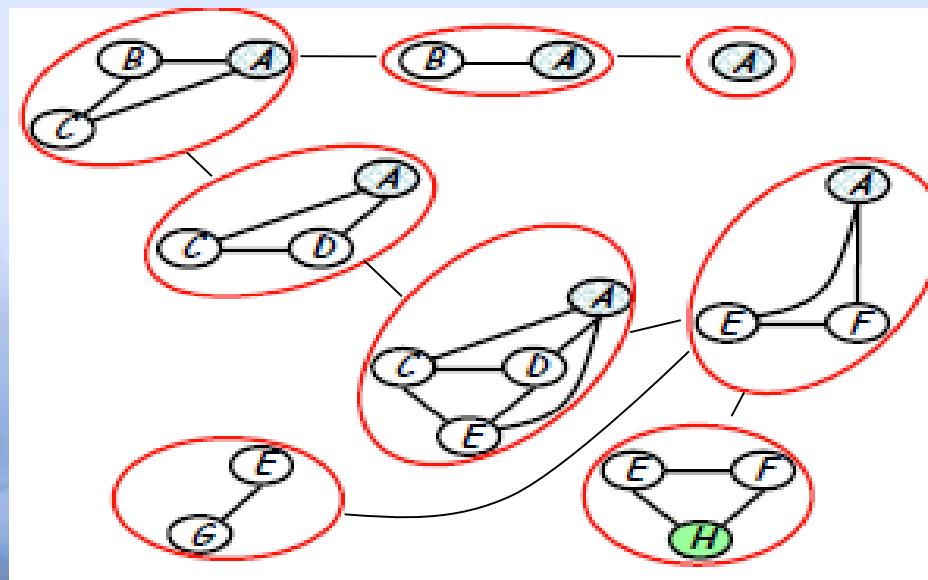
$$S_{ij} = C_i \cap C_j$$

ψ_i : original terms (potential) of C_i

- The Sum-Product belief propagation algorithm:
 - Construct a clique tree that satisfies the family preserving and **running intersection properties**.
 - Choose clique where the query variable lies in as the root.
 - Message passing from the leaves.
 - After all messages arrive at the root, sum over all other variables in the root clique other than the query variable.

Thm: The Sum-Product algorithm always gives the correct answer for any clique tree!

- What if we want to compute k queries?
 - Message passing k times?
 - No! Message can be reused.
 - For each **edge** in the clique tree, twice is enough, one for each direction (up-down)



- After message passing on all edges in two directions, each clique has a belief (joint probability).
- Belief: $\beta_i = \psi_i \prod_{k \in Nb(i)} \delta_{k \rightarrow i}$
- The system must satisfy the **calibration** property:

$$\sum_{C_i \setminus S_{ij}} \beta_i = \sum_{C_j \setminus S_{ij}} \beta_j$$

- Why calibration holds?

$$\beta_i = \tilde{P}(C_i) \propto P(C_i)$$

Beliefs are marginal probabilities on the cliques!

$$\sum_{C_i \setminus S_{ij}} \beta_i = \sum_{C_j \setminus S_{ij}} \beta_j = \tilde{P}(S_{ij}) \propto P(S_{ij})$$

Agree on the marginal probability of S_{ij} !

■ Belief update algorithm:

- Message passing:

$$\delta_{i \rightarrow j} = \sum_{C_i \setminus S_{ij}} \psi_i \prod_{k \in Nb(i) \setminus \{j\}} \delta_{k \rightarrow i}$$

- Belief: $\beta_i = \psi_i \prod_{k \in Nb(i)} \delta_{k \rightarrow i}$

$$\bullet \text{ So } \delta_{i \rightarrow j} = \frac{\sum_{C_i \setminus S_{ij}} \beta_i}{\delta_{j \rightarrow i}}$$

Propagating beliefs from C_i to C_j

- Belief update algorithm:

- Construct clique tree

- Initialize: $\beta_i = \psi_i$ $\mu_{i \rightarrow j} = 1$

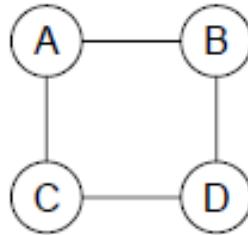
- Update: $t_{i \rightarrow j} \leftarrow \sum_{C_i \setminus S_{ij}} \beta_i$

$$\beta_j \leftarrow \frac{\beta_j t_{i \rightarrow j}}{\mu_{ij}}$$

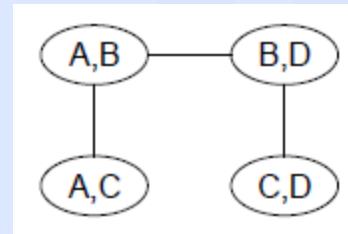
$$\mu_{ij} \leftarrow t_{i \rightarrow j}$$

- How to construct clique tree?

- Graph:

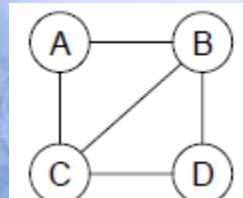
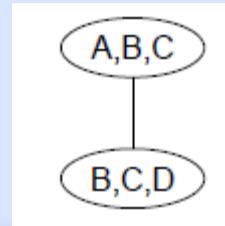


- Clique tree?

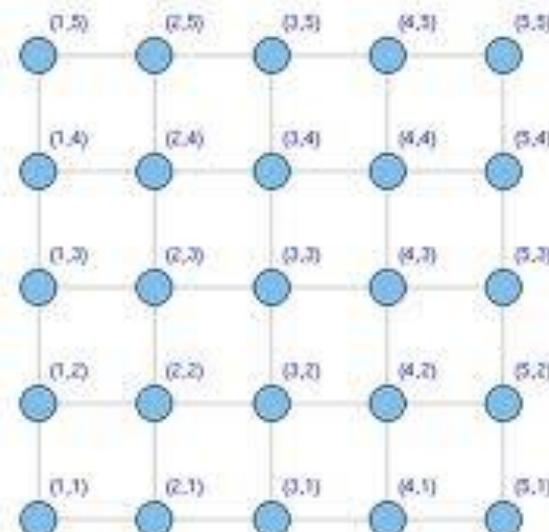


No!

- The graph cannot have a 4-loop (or larger)!
 - Solution: triangulation and chordal graph.



- What if the graph is an Ising model, Triangulation and chordal graph induce clique trees that have large width and the computational complexity is very high.

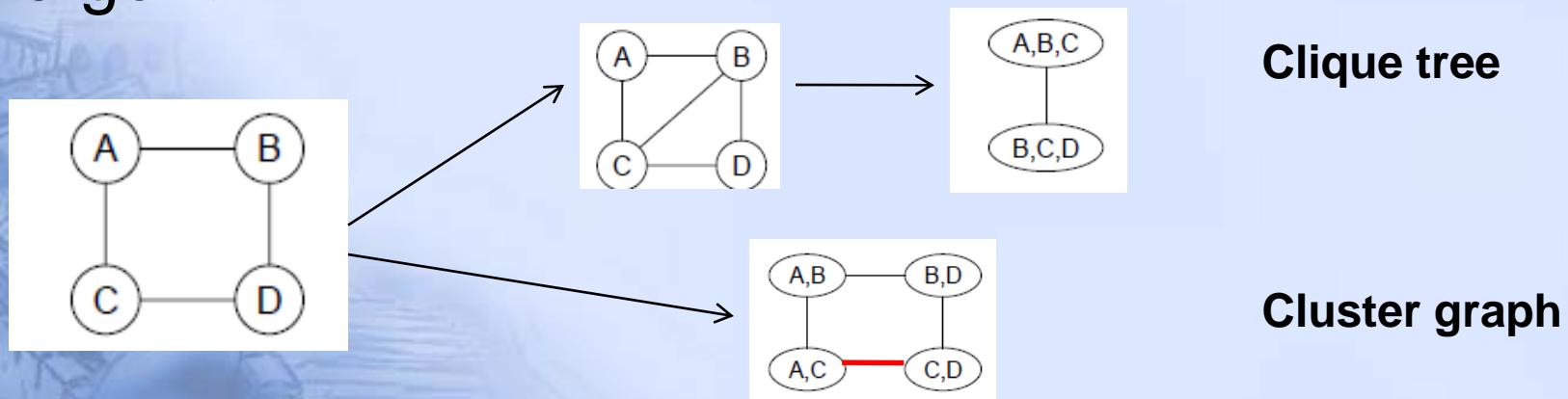


■ Construction of Clique Trees:

- Variable Elimination;
- BN to Moral graph, then to chordal graph, then find all the maximum cliques, and then use the maximum spanning tree algorithm to construct the edges of the clique tree.

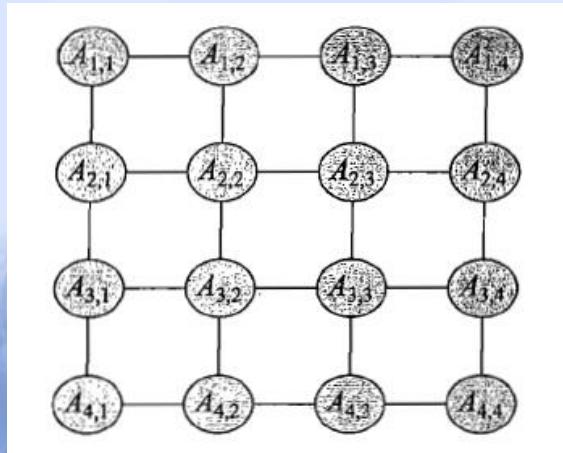
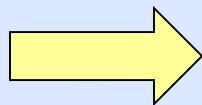
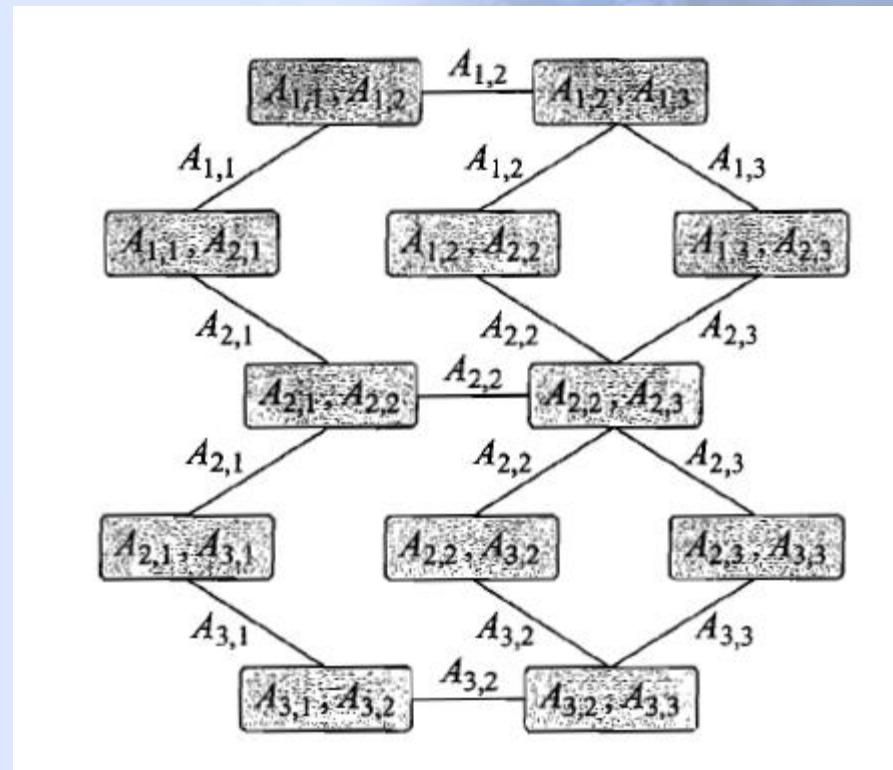
■ Reflection of the Sum-Product Belief Propagation algorithm:

- The algorithm itself does require the clique tree has to be a “tree”.
- What if we construct a general “clique graph” instead of a “clique tree” and run the SP algorithm?



Ising Model

Cluster Graph



- What's the result if run Sum-Product belief propagation on the cluster graph?

Loops?

Convergence?

Correctness?

This is the “Loopy Belief Propagation” algorithm!

Machine Learning and Graphical Models

(Lecture III)

王立威

北京大学
信息科学技术学院

<http://www.cis.pku.edu.cn/faculty/vision/wangliwei/>

wanglw@cis.pku.edu.cn

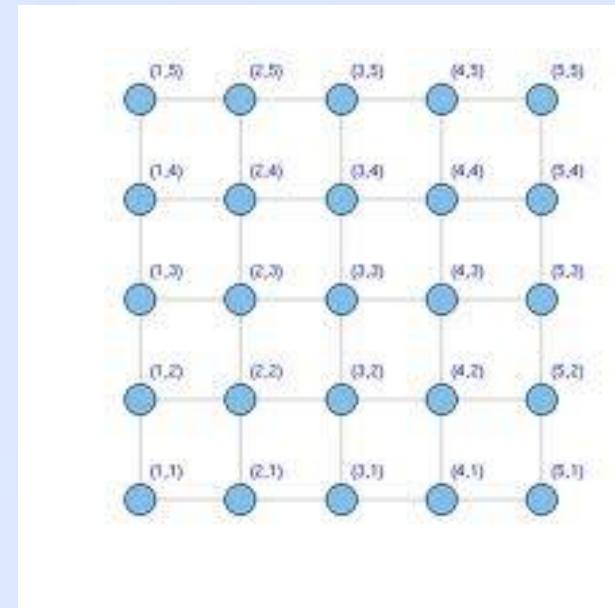
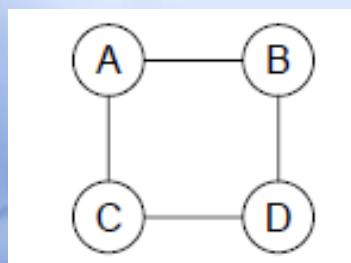
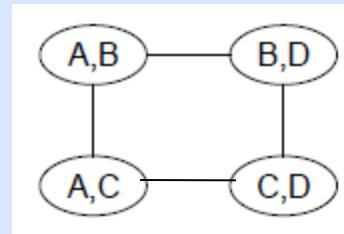
- What is inference in GM
- The hardness of inference in GM
- Exact inference algorithms
- Approximate inference algorithms
- Future research directions

■ Approximate inference methods:

- Variational Methods.
 - (Loopy) belief propagation.
 - Mean field method.
- Sampling based methods.
 - Metropolis-Hastings
 - Gibbs Sampling
 - Importance Sampling

Variational Methods

■ (Loopy) belief propagation:



Cluster graph

- Loopy belief propagation: just let the belief propagates.
- On clique trees, belief propagation converges after propagating on all edges (two directions).
- For general cluster graphs, it is not guaranteed to converge. Even if it converges, it can converge to a wrong answer.

- Variational explanation of the (loopy) belief propagation:
 - Exact inference

Proposition: The following optimization problem gives the same result as exact inference:

Find a set of beliefs to minimize the Helmholtz free energy (or equivalently the relative entropy) to the factored distribution on clique trees under the constraints of calibration (local agreement).

- The fixed point characterization of the solution of the optimization problem:

$$\delta_{i \rightarrow j} = \sum_{C_i \setminus S_{ij}} \psi_i \prod_{k \in Nb(i) \setminus \{j\}} \delta_{k \rightarrow i}$$

- Approximate inference

Find a set of beliefs to minimize the factored free energy to the factored distribution on cluster graphs under the constraints of calibration.

- The fixed point characterization of the solution of this optimization problem is the (loopy) belief propagation formula.

- Mean field method:

- Using first order approximation of the target distribution:

$$P(X_1, \dots, X_n) = \prod_i P(X_i)$$

- The fixed point equation and updating rule have simple forms.

Sampling Based Methods

■ Sampling-based (Monte Carlo) algorithms:

- Idea: Using sample based frequency to approximate the probability.
- Probability is Expectation:

$$P(X = x) = E[I(X = x)]$$

- Expectation (of a function) can be approximated by sample average:

$$E[f(X)] \approx \frac{1}{n} \sum_i f(X_i)$$

$$X, X_1, \dots, X_n \text{ i.i.d.} \sim P$$

- Monte Carlo is useful in many problems:
 - High dimensional numerical integration.
- How to generate the sample when the target probability distribution is difficult to compute?
- Markov Chain Monte Carlo (MCMC)
 - Key idea :Generate data by Markov chain, whose stationary distribution is the target pdf.

- A brief review of finite state Markov chains:
 - Reducible vs. Irreducible
 - Periodic vs. Aperiodic
 - **Ergodic**: no matter which initial state is, the process will converge to a unique stationary distribution.

- **Regular MC:** 1) for every pair of states x, x' , the prob. that x will reach x' in k steps for some finite k is positive; 2) for every state x , there is positive prob. that x will stay in x in the next step.

Easy to understand via the graph view

- **Theorem** (sufficient condition for ergodic MC):
If a finite state MC is regular, then it is ergodic.

- Regular Markov chains are good for our purpose.
- We run the Markov chain, and wait for it converges to the stationary distribution, then the data can be used for approximate calculation.
- But, how long will it take for the MC to converge?

Gibbs Sampling

■ Gibbs Sampling

- One of the simplest sampling algorithm.
- Assume for $X = (X^1, \dots, X^d)$, $P(X^j | X^{-j})$ is easy to sample.
- Easy to implement for Graphical Models.
- Proposed by Geman & Geman (TPAMI, 1984).

■ Gibbs sampling algorithm

- Goal: draw a sequence of examples $x_1, x_2 \dots, x_n$, when $n \rightarrow \infty$, $x_n \sim P$, where P is the target distribution; $x_i = (x_i^1, \dots, x_i^d) \in R^d$
- Algorithm:
 - Draw from some initial distribution $x_0 \sim P_0$
 - For $t = 1, \dots, n$
 - 1. $x_t \leftarrow x_{t-1}$
 - 2. For each $j \in [d]$
 - Sample x_t^j according to $P(X^j | X^{-j})$
 - Return $x_1, x_2 \dots, x_n$

■ Why Gibbs sampling is easy for PGM?

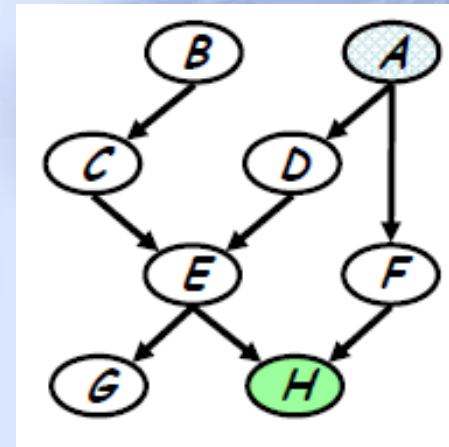
- Sample $P(F | a, \dots, e, g, h)$

$$P(F | a, \dots, e, g, h)$$

$$= \frac{P(F, a, \dots, e, g, h)}{\sum_f P(f, a, \dots, e, g, h)}$$

$$= \frac{P(a)P(b)P(c | b)P(d | a)P(e | c, d)P(F | a)P(g | e)P(h | e, F)}{\sum_f P(a)P(b)P(c | b)P(d | a)P(e | c, d)P(f | a)P(g | e)P(h | e, f)}$$

$$= \frac{P(F | a)P(h | e, F)}{\sum_f P(f | a)P(h | e, f)}$$



Only the factors that involve F left!

- Generally, for both Bayesian networks and Markov networks, the conditional probability for Gibbs sampling involves only factors that the query random variable lives in.
- Trivially generalize to the case where there is evidence
 - Draw a sequence of examples where the target distribution is $P(\cdot | E = e)$

- **Theorem:**

The Gibbs sampling process has a unique stationary distribution P (or $P(\cdot | E = e)$)
- Disadvantages of Gibbs sampling for PGMs:
 - Slow convergence to stationary distribution.

Metropolis-Hastings Algorithm

- For Gibbs sampling, we assume that it is easy to generate a sample from $P(X^j | X^{-j})$. But sometimes, this is difficult.
- More generally, for a target distribution P , it may be very difficult to generate sample directly according to P , does MCMC help?
- The idea of Metropolis-Hastings:
 - Using a *proposal* distribution $\tilde{T}(x'| x)$: a transition model.

- An important result for Markov chain:
 - Detailed Balance (Reversible Markov chain):
Definition: A finite state MC with transition probability matrix T is said to be *reversible* if there exists a unique distribution P such that for all x, x'

$$P(x)T(x'|x) = P(x')T(x|x').$$

The above equation is called ***detailed balance***.

- Reversible: for any sequence $x_1, x_2 \dots, x_n$, the probability that it occurs in the process is the same as the probability that $x_n, x_{n-1} \dots, x_1$ occurs.

- **Theorem:**

If the transition matrix T defines a regular Markov chain, and T satisfies the detailed balance w.r.p. to P , then P is the unique stationary distribution of the Markov chain T .

■ Metropolis-Hastings algorithm:

- Goal: draw a sequence of examples $x_1, x_2 \dots, x_n$, when $n \rightarrow \infty$, $x_n \sim P$, where P is the target distribution.
- Algorithm:
 - Let $\tilde{T}(x'|x)$ be a proposal transition model.
 - Define the transition matrix of a Markov chain as:

$$T(x'|x) = \min \left[1, \frac{P(x')\tilde{T}(x|x')}{P(x)\tilde{T}(x'|x)} \right]$$

- Generate $x_1, x_2 \dots, x_n$ according to the MC of T .

- Proposition:

For any target distribution P , and any proposal transition model $\tilde{T}(x'|x)$, the Markov chain defined by T in the Metropolis-Hastings algorithm satisfies the detailed balance w.r.p. P .

Thus if the Markov chain defined by T is regular, P is the unique stationary distribution.

Convergence

■ Mixing time for MCMC:

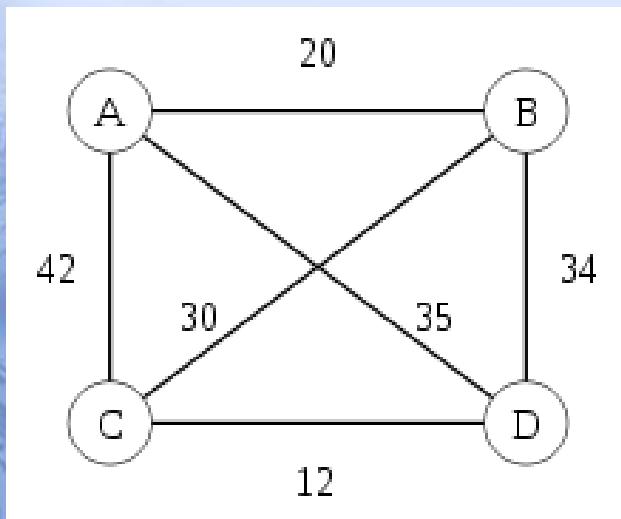
- What we need is the stationary distribution of the Markov chain, but how long does it take to converge --- mixing time (burn in).
- Gibbs sampling sometimes has very slow convergence.
- Metropolis-Hastings's convergence depends on the proposal distribution.

- Theory for the convergence for MCMC:
 - For a Markov chain, the largest eigenvalue of the transition matrix T is 1; the **gap** between the largest and the second largest (in absolute value) eigenvalue determines the mixing time.
- A main challenge for PGM:
 - Design MCMC algorithms that: 1) efficiently implementable for PGMs; 2) mixing time is not too long.

Some Thoughts and Open Problems

程序员最可信赖的求职帮手

- Inference is **NP-hard**, what shall we do?
 - Develop practical algorithms. **#P** complete is a worst case result.
 - To solve the inference problem, we are in a situation very similar to solving TSP (**NP-hard**):



TSP: Find the shortest path such that each vertex is visited exactly once.

- TSP (decision) is **NP**-complete.
- Euclidean TSP is NP-hard.
- Approximate TSP is NP-hard.

Arora proved (Gödel prize, 2010) :

Euclidean TSP + approximation

→ **polynomial** approximation scheme

- Can we find a reasonable class of graphical models such that (approximate) inference has **polynomial** time algorithm?

■ 联系方式

- Email: wanglw@cis.pku.edu.cn
- 个人主页：
<http://www.cis.pku.edu.cn/faculty/vision/wangliwei/>

Thanks!

程序员最可信赖的求职帮手

<http://www.cis.pku.edu.cn/faculty/vision/wangliwei/>

wanglw@cis.pku.edu.cn